Document: Analysis Workshop (2011)
Professor: Shkoller
Latest Update: September 19, 2011
Author: Jeff Irion

## Contents

1 9-12-11 2
2 9-13-11 3
3 9-14-11 4
4 9-15-11 5
5 9-16-11 6
6 Important 7

## Remark 1.1. Taylor Formula

Let $u \in C^{\infty}(\mathbb{R})$. Expand about $x=0$.

$$
u(x)=\sum_{j=0}^{k} \frac{x^{j}}{j!} \frac{d^{j} u}{d x^{j}}(0)+\frac{x^{k+1}}{k!} \int_{0}^{1}(1-s)^{k} \frac{d^{k+1} u}{d x^{k+1}}(s x) d s
$$

## Remark 1.2. Calculus Review

$\Omega \subset \mathbb{R}^{n}, f: \Omega \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\int_{\Omega} D f \cdot \mathbf{G} d x & =\int_{\Omega} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathbf{G}_{i} d x \\
& =-\int_{\Omega} f \operatorname{div} \mathbf{G} d x+\int_{\partial \Omega} f \mathbf{G} \cdot \mathbf{n} d S
\end{aligned}
$$

Note that each integrand is a scalar. In the case of problem 4, we had $f=\frac{1}{2}|u|^{2}, \mathbf{G}=x$. This formula is very important!!!

$$
\int_{\Omega} D f \cdot \mathbf{G} d x=-\int_{\Omega} f \operatorname{div} \mathbf{G} d x+\int_{\partial \Omega} f \mathbf{G} \cdot \mathbf{n} d S
$$

Remark 2.1. General Tip: MCT

When you see positivity and/or a series, think MCT.

Theorem 2.2. Egorov's Theorem

Given: $\Omega \subset \mathbb{R}^{n}$ bounded, $\left(f_{n}\right) \subset \Omega, f_{n} \rightarrow f$ a.e., $|f|<\infty$ a.e.

Then for every $\delta>0$ there exists $E \subset \Omega$ such that
(a) $\mu(E)<\delta$
(b) $f_{n} \rightarrow f$ uniformly on $E^{c}$

## Remark 3.1. Some Inequalities

Suppose $u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. By Gagliardo-Nirenberg,

$$
\alpha\|D u\|_{L^{2}} \geq \beta\|u\|_{L^{6}}
$$

Now suppose $u \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. By the second Poincaré Inequality,

$$
C \sqrt{q}\|D u\|_{L^{2}} \geq\|u\|_{L^{q}}, \quad 1 \leq q<\infty
$$

## $4 \quad 9-15-11$

Remark 4.1.

If $u_{n} \rightharpoonup u$ in $\mathcal{H}$ and

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}\right\| \leq\|u\|
$$

Then $u_{n} \rightarrow u$.

Proof. Assuming real-valued functions, we have

$$
\left\|u_{n}-u\right\|^{2}=\left\|u_{n}\right\|^{2}+\|u\|^{2}-2\left\langle u_{n}, u\right\rangle \rightarrow 0
$$

Theorem 4.2. Mazur's Theorem

Read it. Do chapter 8 problem 20.

Remark 5.1.

We don't need to worry about convexity on the prelim.

Remark 5.2.

Jason Hole, jhole@math.ucdavis.edu, subject BSP
Shkoller's Remarks

- Points reside in the details.
- If you forget how to compute an integral, you can comment on why it's bounded.


## 6 Important

119A

- Memorize the "classification of fixed points" picture (page 137)
- Hamiltonian systems
- Conservative systems (see Midterm 2 cheat sheet)
- 119A Final Cheat Sheet
- Memorize the $\Delta, \tau$, and $\lambda_{1,2}$ formulas
- Memorize the polar coordinates identity:

$$
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}}
$$

- A Liapunov function is basically a contour map whose local minima correspond to the fixed points
- Memorize 1-D, 2-D, and Hopf bifurcations.

Analysis

- Memorize the definitions of point, continuous, and residue spectra.
- Memorize the Taylor remainder formula (see Remark 1.1).
- Memorize the "integration by parts" formula (see Remark 1.2).
- Memorize the Weierstrass approximation theorem and Stone-Weierstrass theorem.
- Weierstrass approximation theorem: the set of polynomials is dense in $C([a, b])$ with respect to the uniform norm. From H\&N page 40.
- Stone-Weierstrass theorem, real version: "Suppose $X$ is a compact Hausdorff space and $A$ is a subalgebra of $C(X, \mathbb{R})$ which contains a non-zero constant function. Then $A$ is dense in $C(X, \mathbb{R})$ if and only if it separates points." From http://en.wikipedia.org/wiki/Stone-Weierstrass_ theorem\#Stone.E2.80.93Weierstrass_theorem.2C_real_version.
- When working on $(0,1)$, note that $\int_{0}^{1} \frac{1}{x} d x=\left.\ln x\right|_{0} ^{1}=\infty$. Since log goes to infinity slowly, this is saying that $\frac{1}{x}$ is a cutoff function. Thus, $\frac{1}{x^{0.99}}$ is integrable, while $\frac{1}{x}$ is not.
- Embeddings/Inequalities
- Sobolev spaces into $k$-times differentiable
- Sobolev spaces into $L^{p}$ (which $p$ ?)
- Sobolev spaces into other Sobolev spaces (google Terrence Tao Sobolev, exercise 24)
- Riemann-Lebesgue Lemma (page 308)
- Uniform Boundedness Principle

