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1 4-2-12

1.1 Algorithms

Integer

• GF(2)

• Symbolic

• Numerical ← finite precision arithmetic
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1. Scientific computing and computational science

Scientific computing is about the design and analysis of numerical algorithms and engineering
software for solving mathematical problems in finite precision arithmetic.

Computational science involves innovative and essential use of high performance computation,
and/or the development of computational technologies to advance knowledge or capabilities
in scientific and engineering disciplines. A necessary element in computational science is a
strong, close tie to an application discipline. Research in computation is inherently multidis-
ciplinary and includes, for example, environmental modeling, simulation of complex physical
systems that generate energy, semiconductor design, modeling DNA sequences and protein
structure, and the simulation and analysis of flow through geologic structures (Ref: DOE’s
computational science graduate fellowship program).

2. Algorithms as a technology, computational simulation as the third pillar of science.

3. Algorithm general strategy: to replace/reduce a difficult problem with an easier one that
has the same solution or a closely related solution.

Example. Consider solving the linear equations Ax = b for x. If we can write A = LU , where
L and U are lower and upper triangular matrices, respectively, then it is equivalent to solve
triangular linear equations Ly = b for y and Ux = y for x. The triangular linear equations
can be computed straightforward by forward and back substitutions.

4. Approximation and error (not mistake!) are the facts of life.

Sources of errors:

measurement and data uncertainty,
modeling,
truncation (discretization),
rounding in finite precision arithmetic

For example, consider f : R −→ R

x −→ f(x)

We have an inexact input x̂, and approximate function f̂ constructued by some algorithm,
then

total error = f̂(x̂)− f(x)

= [f̂(x̂)− f(x̂)] + [f(x̂)− f(x)]

= computational errors︸ ︷︷ ︸
trunction/rounding

+ propagated data errors︸ ︷︷ ︸
(conditioning)×(data error)

5. Two error measurements: absolute error and relative error

Let x̂ be an approximation of x. Then the absolute error is defined by

abserr(x) = |x̂− x|,
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and the relative error (assume that x is a nonzero number) is defined by

relerr(x) = |ρ| := |x̂− x|
|x| .

Remarks:

• The relative error is independent of scaling.

• x̂ = x(1 + ρ), where |ρ| is the relative error .

• Rule of Thumb: if |ρ| = O(10−d), then x and x̂ agree to about d significant digits, and
conversely.

6. Forward error analysis and backward error analysis

Suppose that an approximation ŷ to y = f(x) is computed. How should we measure the
“quality” of ŷ ?

Ideally, we would like to have the forward error

relerr(y) =
|y − ŷ|
|y| = “tiny”.

However, we don’t know y ! Instead, we ask “for what set of data have we actually solved our
problem?” That is, for what ∆x, do we have

ŷ = f(x+∆x)?

|∆x| (or min |∆x| if there are many such ∆x) is called backward error.

Two main motiviations for using backward error analysis:

• interprets errors as being equivalent to perturbations in the data,

• reduces the question of bounding or estimating the forward error to perturbation theory,
for which many problems is well understood (and only has to be developed once, for the
given problem, and not for each method.)

7. An algorithm for computing y = f(x) is called (backward) stable if, for any x, it produces a
computed ŷ with a small backward error, that is, ŷ = f(x+∆x) for some small ∆x.

8. Conditioning of problems: the relationship between forward and backward errors for a prob-
lem is governed by the conditioning of the problem, that is, the sensitivity of the solution to
perturbation in the data.

Example: compute y = f(x). Let the computed results in terms of backward error ŷ =
f(x+∆x). Then the absolute error is

ŷ − y = f(x+∆x)− f(x) = f ′(x)∆x+O
(
(∆x)2

)
.

Correspondingly, the relative error is given by

ŷ − y

y
=

x · f ′(x)
f(x)

(
∆x

x

)
+O((∆)2).
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where

κf (x) =

∣∣∣∣
x · f ′(x)
f(x)

∣∣∣∣

The quantity κf (x) is called the condition number of f at x. It measures approximately how
much the relative backward error in x is magnified by evaluating of f at x.

Rule of Thumb:

|forward error| ≤ (condition number)× |backward error|.

The computed solution to an ill-conditioned (i.e., large condition number) problem can have
a large forward error, even for small backward error!

3



2 4-4-12

2.1 Forward and Backward Error

Example 2.1.

f : R→ R

Ideally, we have x→ y = f(x). In practice, x̂
f̂−→ ŷ. The forward error is

|ŷ − y|
|y| .

The backward error (A. Turing, J. von Numan) is

ŷ = f(x+ ∆x︸︷︷︸
backward

error

).

We say the algorithm is stable if it has a small |∆x|.

Forward error ≤ condition number× backward error︸ ︷︷ ︸
|∆x|
|x|

The condition number is intrinsic to the problem, while the backward error is from the algorithm.

Matrices are our fundamental structure.

Simple Matrices:

• I = the identity matrix

• D = diagonal matrix

• L = lower triangular matrix

• R = upper triangular matrix

2.2 Frequently Used Matrix Factorizations

1. LU factorization. For any square matrix A, we can write PA = LU , where P is a permutation matrix,
L is lower triangular, and U is upper triangular. Applications:

• Solving a linear system.

Ax = b

PAx = Pb

L (Ux)︸ ︷︷ ︸
y

= b̃

Ly = b̃

Ux = y
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• Finding a determinant.

det(PA) = det(LU)

det(P )︸ ︷︷ ︸
=±1

det(A) = det(L) det(U)

det(A) = ±(l11 · · · lnn)(u11 · · ·unn)

• Inverting a matrix.

(PA)−1 = (LU)−1

A−1P T = U−1L−1

A−1 = U−1L−1P

2. QR decomposition. For any n×m matrix A, we can write

A︸︷︷︸
n×m

= Q︸︷︷︸
n×n

R︸︷︷︸
n×m

,

where R is upper triangular and Q is an orthogonal matrix: QTQ = I ⇔ Q−1 = QT . Applications:

• We can use QR factorization to perform the Gram-Schmidt orthogonalization process.

A = QR =

[
Q1︸︷︷︸
n×m

Q2︸︷︷︸
n×n−m

] [
R1

0

]

= Q1R1

• Least squares, a.k.a. linear regression: min
x
‖Ax− b‖2. This problem always has a solution.

8
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1. LU decomposition. If A is a square nonsingular matrix, then there exist a permutation
matrix P , a unit lower triangular matrix L, and a upper triangular matrix U such that

PA = LU.

Examples of applications:

• LU decomposition is Gaussian Elimination in matrix form

• Solve Ax = b.

• Compute det(A).

• Compute A−1, if really necessary.

Special cases:

(a) Cholesky decomposition. A matrix A is symmetric positive definite if and only if there
exists a unique nonsingular upper triangular matrix R, with positive diagonal entries,
such that

A = RTR.

(b) LDLT factorization If AT = A is nonsingular, then there exists a permutation P , a unit
lower triangular matrix L, and a block diagonal matrix D with 1-by-1 and 2-by-2 blocks
such that

PAP T = LDLT .

2. QR decomposition. Let A be m-by-n with m ≥ n. Suppose that A has full column rank.
Then there exist a unique m-by-n orthogonal matrix Q (i.e. QTQ = I) and a unique n-by-n
upper triangular matrix R with positive diagonal rii > 0 such that

A = QR.

Examples of applications:

• Find an orthonormal basis of the subspace spanned by the columns of A (the Gram-
Schmidt orthogonalization process)

• Solve the linear least squares problem minx ‖Ax− b‖2.
• ...

3. Schur decomposition. Let A be of order n. Then there is an n× n unitary matrix U (i.e.
UHU = I) such that

A = UTUH ,

where T is upper triangular.

Variant: Real Schur decomposition.

1



Examples of applications:

• The eigenvalues of A are the diagonal elements of T .

• Eigenvalue decomposition, if exists

A = XΛX−1,

where Λ is a diagonal matrix.

• Compute matrix functions f(A) = Uf(T )UH .

• ...

4. Singular Value Decomposition (SVD). Let A be an m-by-n matrix with m ≥ n. Then
we can write

A = UΣV T ,

where U is m-by-m orthogonal matrix (i.e. UTU = Im) and V is n-by-n orthogonal matrix
(i.e. V TV = In), and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The columns u1, u2, . . . , un of U are called left singular vectors of A. The columns v1, v2, . . . , vn
of V are called right singular vectors. The σ1, σ2, . . . , σn are called singular values.

Examples of applications:

• Suppose that A is m-by-n with m ≥ n and has full rank, with A = UΣV T being A’s
SVD. Then the pseudo-inverse can also be written as

A† ≡ (ATA)−1AT = V Σ−1UT .

If m < n, then A† = AT (AAT )−1.

• Suppose that
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

Then the rank of A is r. The range space of A is span(u1, u2, · · · , ur). and the null space
of A is span(vr+1, vr+2, . . . , vn).

• ‖A‖2 = σ1(≡ σmax)

• Let A be m× n with m ≥ n. Then

(a) eigenvalues of ATA are σ2
i , i = 1, 2, . . . , n. The corresponding eigenvectors are the

right singular vectors vi, i = 1, 2, . . . , n.

(b) eigenvalues of AAT are σ2
i , i = 1, 2, . . . , n and m−n zeros. The left singular vectors

ui, i = 1, 2, . . . , n are corresponding eigenvectors for the eigenvalues σ2
i . One can take any

m− n other orthogonal vectors that are orthogonal to u1, u2, . . . , un as the eigenvectors
for the eigenvalues 0.

• Principal components. The SVD of A can be rewritten as

A = E1 + E2 + · · ·+ Ep

where p = min(m,n), and Ek is a rank-one matrix of the form

Ek = σkukv
T
k ,

2



Ek are referred to as component matrices, and are orthogonal to each other in the sense
that

EjE
T
k = 0, j 6= k.

Since ‖Ek‖2 = σk, the contribution each Ek makes to reproduce A is determined by the
size of the singular value σk.

• Optimal rank-k approximation:

min
B : m× n

rank(B) = k

‖A−B‖2 = ‖A−Ak‖2 = σk+1,

where
Ak = UΣkV

T ,= E1 + E2 + · · ·+ Ek,

and Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0)

• Data compression. Note that the optimal rank-k approximation Ak can be written in a
compact form as

Ak = UkΣ̂kV
T
k ,

where Uk and Vk are the first k columns of U and V , respectively, Σ̂k = diag(σ1, σ2, . . . , σk).
Therefore, Ak is represented by mk+ k+ nk = (m+ n+ 1)k elements, in contrast, A is
represented by mn elements.

compression ratio =
(m+ n+ 1)k

mn

The following plots show the original image, and three compressed ones with different
compression ratios:

3



3 4-6-12

3.1 Matrix Factorizations (Continued)

f(x) = ‖Ax− b‖22 = (Ax− b)T (Ax− b)
= (xTAT − bT )(Ax− b)
= xTATAx− 2bTAx+ bT b

∇f(x) = 0 (condition at the minimum)

ATA︸ ︷︷ ︸
m×m

x = Atb︸︷︷︸
m×1

Rt1Q
T
1Q1︸ ︷︷ ︸
=I

R1x = RT1Q
T
1 b = b̃

RT1 y = b̃

R1x = y

3. Schur decomposition. For any n×n matrix A, there exist a unitary matrix U and an upper triangular
matrix T such that

A = UTUH .

Applications:

• Finding the eigenvalues of A.

Ax = λx

UTUHx = λx

T UHx︸ ︷︷ ︸ = λUHx︸ ︷︷ ︸
Ty = λy ⇒ λi = tii

• Functions of matrices. For example, eA, sin(A), . . .

f(A) = f(UTUH) = Uf(T )UH (by property of function definition)

4. Singular Value Decomposition (SVD). “Swiss army knife of scientific computing.” For any matrix A,
we can write

A︸︷︷︸
n×m

= U︸︷︷︸
n×n

Σ︸︷︷︸
n×m

V T
︸︷︷︸
m×m

,

where Σ is a diagonal matrix whose diagonal entries are the singular values of A: σ1 ≥ σ2 ≥ · · · ≥
σm ≥ 0. (If A is complex, then we have V H .) U is an n × n orthogonal matrix: UTU = In. V is an
m×m orthogonal matrix: V TV = Im. Applications:

• rank(A) = # of positive (i.e., nonzero) singular values

12



• Principal component analysis (PCA)

A = UΣV T

=
[
U1 U2 · · · Un

]




σ1
σ2

. . .

σm
0







V T
1

V T
2
...
V T
m




=
[
σ1U1 σ2U2 · · · σmUm

]




V T
1

V T
2
...
V T
m




= σ1 U1V
T
1︸ ︷︷ ︸

n×m

+σ2 U2V
T
2︸ ︷︷ ︸

n×m

+ · · ·+ σm UmV
T
m︸ ︷︷ ︸

n×m
= E1 + E2 + · · ·+ Em

Ei = σiUiV
T
i , rank(Ei) = 1, ‖Ei‖ = σi

These Ei are known as the principal components of the matrix. We have

‖E1‖ ≥ ‖E2‖ ≥ · · · ≥ ‖Em‖
min

rank(B)=k
‖A−B‖2 or F = ‖A−Ak‖2 or F,

where Ak is the sum of the first k principal components of A. This is known as dimension
reduction.

• Generalized inverse. A+ = V Σ+UT . The solution to minx ‖Ax− b‖2 is given by x = A+b.

13
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Norms are an indispensable tool to provide vectors and matrices with measures of size, length
and distance.

I. Vector norms

1. A vector norm on Cn is a mapping that maps each x ∈ Cn to a real number ‖x‖, satisfying

(a) ‖x‖ > 0 for x 6= 0, and ‖0‖ = 0 (positive definite property)

(b) ‖αx‖ = |α| ‖x‖ for α ∈ C (absolute homogeneity)

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

2. Vector p-norm:

‖x‖p def
=

(
n∑

i=1

|xi|p
)1/p

,

where 1 ≤ p ≤ ∞.

3. Commonly used vector norms:

‖x‖1 =
n∑

i=1

|xi|, “Manhattan” or “taxi cab” norm

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

=
√
xHx, Euclidean length

‖x‖∞ = max
1≤i≤n

|xi|.

4. The geometry of the closed unit “ball”: {x ∈ C2 : ‖x‖p ≤ 1} for p = 1, 2,∞.

5. Norm equivalence: Let ‖·‖α and ‖·‖β be any two vector norms. There are constants c1, c2 > 0
such that

c1‖ · ‖α ≤ ‖ · ‖β ≤ c2‖ · ‖α
For examples, it can be easily shown that

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞

6. Cauchy-Schwarz inequality:
|xHy| ≤ ‖x‖2‖y‖2

with equality if and only if x and y are linearly dependent.

In general, we have Hölder inequality:

|xHy| ≤ ‖x‖p‖y‖q
for 1 ≤ p, q < ∞ and 1

p + 1
q = 1.

1



II. Matrix norms

1. A matrix norm on Cm×n is a mapping that maps each A ∈ Cm×n to a real number ‖A‖,
satisfying

(a) ‖A‖ > 0 for A 6= 0, and ‖0‖ = 0 (positive definite property)

(b) ‖αA‖ = |α| ‖A‖ for α ∈ C (absolute homogeneity)

(c) ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

2. Example: for A = (aij) ∈ Cm×n, the Frobenius norm ‖A‖F is defined by

‖A‖F def
=




m∑

i=1

n∑

j=1

|aij |2



1/2

=
√
tr(AHA).

3. The induced matrix norm ‖ · ‖:
A vector norm ‖ · ‖ induces a matrix norm, denoted by the same notation:

‖A‖ def
= max

x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

(Exercise. verify that ‖A‖ is indeed a norm on Cm×n)

4. Useful property: ‖Ax‖ ≤ ‖A‖ ‖x‖. Therefore, ‖A‖ is the maximal factor by which A can
“strech” a vector.

5. The vector p-norms induce the matrix p-norms, in particular, for p = 1, 2,∞, we have

‖A‖1 = max
x 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

m∑

i=1

|aij | = max absolute column sum,

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

=
√
the largest eigenvalue of A∗A = the largest singular value of A,

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

n∑

j=1

|aij | = max absolute row sum.

6. Some useful properties:

• ‖Ax‖ ≤ ‖A‖ ‖x‖. Therefore, ‖A‖ is the maximal factor by which A can “strech” a
vector.

• ‖A‖22 ≤ ‖A‖1‖A‖∞.

• Norm equivalence

2



5 4-11-12

5.1 IEEE Floating Point Arithmetic

The floating point representation of a nonzero binary number x is

x = ±b0.b1b2 · · · bp−1 × 2E .

(a) It is normalized, i.e. b0 = 1 (the hidden bit)

(b) Precision (= p) is the number of bits in the significand (mantissa), including the hidden bit.

(c) Machine epsilon ε = 2−(p−1), the gap between the number 1 and the smallest floating point number
that is greater than 1.

Special numbers: 0,∞,−∞, NaN.
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Part I: Floating-point numbers and representations

1. Floating-point representation of numbers (scientific notation), for example,

− 3.1416× 101

↑
sign

↑
significand

↑
base

← exponent

2. The floating-point representation of a nonzero binary number x is of the form

x = ± b0.b1b2 · · · bp−1 × 2E . (1)

(a) It is normalized, i.e., b0 = 1 (the hidden bit)

(b) Precision (= p) is the number of bits in the significand (mantissa) (including the hidden
bit).

(c) Machine epsilon ǫ = 2−(p−1), the gap between the number 1 and the smallest floating-
point number that is greater than 1.

(d) The unit in the last place, ulp(x) = 2−(p−1) × 2E = ǫ× 2E . If x > 0, then ulp(x) is the
gap between x and the next larger floating-point number. If x < 0, then ulp(x) is the
gap between x and the smaller floating-point number (larger in absolute value).

3. Special numbers: 0, −0, ∞, −∞, NaN = “Not a Number”.

4. All computers designed since 1985 use the ANSI/IEEE Standard 754-1985 for Binary Floating-
Point Arithmetic, represent each number as a binary number and use binary arithmetic.

Essentials of IEEE 754-1985:

• consistent representation of floating-point numbers by all machines adopting the stan-
dard;

• correctly rounded floating-point operations, using various rounding modes;

• consistent treatment of exceptional situation such as division by zero.

5. IEEE single format takes 32 bits long (= 4 bytes):

s E f

sign exponent

t
binary point fraction

←− −→8 ←− −→23

It represents the number
(−1)s · (1.f)× 2E−127

Note that the leading 1 in the fraction need not be stored explicitly, because it is always 1.
This hidden bit accounts for the “1.” here. The “E − 127” in the exponent is to avoid the
need for storage of a sign bit.

E is a normalized number, and Emin = (00000001)2 = (1)10, Emax = (11111110)2 = (254)10.

1



The range of positive normalized numbers is from

Nmin = 1.00 · · · 0× 2Emin−127 = 2−126 ≈ 1.2× 10−38

to
Nmax = 1.11 · · · 1× 2Emax−127 = (2− 2−23)× 2127 ≈ 2128 ≈ 3.4× 1038.

Special repsentations for 0, ±∞ and NaN:

zero = ± 00000000 00000000000000000000000

±∞ = ± 11111111 00000000000000000000000

NaN = ± 11111111 otherwise

6. IEEE double format takes 64 bits long (=8 bytes):

s E f

sign exponent

t
binary point fraction

←− −→11 ←− −→52

It represents the numer
(−1)s · (1.f)× 2E−1023

The range of positive normalized numbers is from

Nmin = 2−1022 ≈ 2.2× 10−308

to
Nmax = 1.11 · · · 1× 21023 ≈ 21024 ≈ 1.8× 10308.

Special repsentations for 0, ±∞ and NaN.

7. IEEE extended format, with at least 15 bits available for the exponent and at least 63 bits
for the fractional part of the significant. (Pentium has 80-bit extended format)

8. Precision and machine epsilon of the IEEE formats

Format Precision p Machine epsilon ǫ = 2−p−1

single 24 ǫ = 2−23 ≈ 1.2× 10−7

double 53 ǫ = 2−52 ≈ 2.2× 10−16

extended 64 ǫ = 2−63 ≈ 1.1× 10−19

9. Rounding

Let a positive real number x is in the normalized range, i.e., Nmin ≤ x ≤ Nmax, and write in
the normalized form

x = (1.b1b2 · · · bp−1bpbp+1 . . .)× 2E ,

Then the closest floating-point number less than or equal to x is

x− = 1.b1b2 · · · bp−1 × 2E ,

2



i.e., x− is obtained by truncating. The next floating-point number bigger than x− is

x+ = ((1.b1b2 · · · bp−1) + (0.00 · · · 01))× 2E ,

therefore, also the next one that bigger than x.

If x is negative, the situtation is reversed.

Correctly rounding modes:

• round down: round(x) = x−;

• round up: round(x) = x+;

• round towards zero: round(x) = x− of x ≥ 0; round(x) = x+ of x ≤ 0;

• round to nearest: round(x) = x− or x+, whichever is nearer to x, except that if x > Nmax,
round(x) = ∞, and if x < −Nmax, round(x) = −∞. In the case of tie, i.e., x− and x+
are the same distance from x, the one with its least significant bit equal to zero is chosen

When the round to nearest (IEEE default rounding mode) is in effect,

abserr(x) = |round(x)− x| ≤ 1

2
ulp(x)

and

relerr(x) =
|round(x)− x|

|x| ≤ 1

2
ǫ.

Therefore, we have

the max. rel. representation error =





1
2 · 21−24 = 2−24 ≈ 5.96 · 10−8

1
2 · 2−52 ≈ 1.11× 10−16.

Part II: Floating point arithmetic

1. IEEE rules for correctly rounded floating-point operations:

if x and y are correctly rounded floating-point numbers, then

fl(x+ y) = round(x+ y) = (x+ y)(1 + δ)

fl(x− y) = round(x− y) = (x− y)(1 + δ)

fl(x× y) = round(x× y) = (x× y)(1 + δ)

fl(x/y) = round(x/y) = (x/y)(1 + δ)

where |δ| ≤ 1
2ǫ for the round to nearest,

IEEE standard also requires that correctly rounded remainder and square root operations be
provided.

2. IEEE standard response to exceptions

3



Event Example Set result to

Invalid operation 0/0, 0×∞ NaN
Division by zero Finite nonzero/0 ±∞
Overflow |x| > Nmax ±∞ or ±Nmax

underflow x 6= 0, |x| < Nmin ±0, ±Nmin or subnormal
Inexact whenever fl(x ◦ y) 6= x ◦ y correctly rounded value

3. Let x̂ and ŷ be the floating-point numbers and that

x̂ = x(1 + τ1) and ŷ = y(1 + τ2), for |τi| ≤ τ ≪ 1

where τi could be the relative errors in the process of “collecting/getting” the data from the
original source or the previous operations.

Question: how do the four basic arithmetic operations behave?

4. Addition and subtraction

fl(x̂+ ŷ) = (x̂+ ŷ)(1 + δ), |δ| ≤ 1

2
ǫ

= x(1 + τ1)(1 + δ) + y(1 + τ2)(1 + δ)

= x+ y + x(τ1 + δ +O(τǫ)) + y(τ2 + δ +O(τǫ))

= (x+ y)

(
1 +

x

x+ y
(τ1 + δ +O(τǫ)) +

y

x+ y
(τ2 + δ +O(τǫ))

)

≡ (x+ y)(1 + δ̂),

where δ̂ can be bounded as follows:

|δ̂| ≤ |x|+ |y||x+ y|

(
τ +

1

2
ǫ+O(τǫ)

)
.

Three possible cases:

• If x and y have the same sign, i.e., xy > 0, then |x+ y| = |x|+ |y|; this implies

|δ̂| ≤ τ +
1

2
ǫ+O(τǫ)≪ 1.

Thus fl(x̂+ ŷ) approximates x+ y well.

• If x ≈ −y ⇒ |x+y| ≈ 0, then (|x|+ |y|)/|x+y| ≫ 1; this implies that |δ̂| could be nearly
or much bigger than 1. Thus fl(x̂+ ŷ) may turn out to have nothing to do with the true
x + y. This is so called catastrophic cancellation which happens when a floating-point
number is subtracted from another nearly equal floating-point number. Cancellation
causes relative errors or uncertainties already presented in x̂ and ŷ to be magnified.

• In general, if (|x| + |y|)/|x + y| is not too big, fl(x̂ + ŷ) provides a good approximation
to x+ y.

5. Multiplication and Division are very well-behaved.

fl(x̂ ∗ ŷ) = (x̂× ŷ)(1 + δ) = xy(1 + τ1)(1 + τ2)(1 + δ) ≡ xy(1 + δ̂×),

fl(x̂/ŷ) = (x̂/ŷ)(1 + δ) = (x/y)(1 + τ1)(1 + τ2)
−1(1 + δ) ≡ xy(1 + δ̂÷),

where
δ̂× = τ1 + τ2 + δ +O(τǫ), δ̂÷ = τ1 − τ2 + δ +O(τǫ).

Thus |δ̂×| ≤ 2τ + 1
2ǫ+O(τǫ) and |δ̂÷| ≤ 2τ + 1

2ǫ+O(τǫ).
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6. Examples of catastrophic cancellation

Example 1. Computing
√
n+ 1 −√n straightforward causes substantial loss of significant

digits for large n

n fl(
√
n+ 1) fl(

√
n) fl(fl(

√
n+ 1)− fl(

√
n)

1.00e+10 1.00000000004999994e+05 1.00000000000000000e+05 4.99999441672116518e-06

1.00e+11 3.16227766018419061e+05 3.16227766016837908e+05 1.58115290105342865e-06

1.00e+12 1.00000000000050000e+06 1.00000000000000000e+06 5.00003807246685028e-07

1.00e+13 3.16227766016853740e+06 3.16227766016837955e+06 1.57859176397323608e-07

1.00e+14 1.00000000000000503e+07 1.00000000000000000e+07 5.02914190292358398e-08

1.00e+15 3.16227766016838104e+07 3.16227766016837917e+07 1.86264514923095703e-08

1.00e+16 1.00000000000000000e+08 1.00000000000000000e+08 0.00000000000000000e+00

Catastrophic cancellation can sometimes be avoided if a formula is properly reformulated. In
the present case, one can compute

√
n+ 1−√n almost to full precision by using the equality

√
n+ 1−√n =

1√
n+ 1 +

√
n
.

Consequently, the computed results are

n fl(1/(
√
n+ 1 +

√
n))

1.00e+10 4.999999999875000e-06

1.00e+11 1.581138830080237e-06

1.00e+12 4.999999999998749e-07

1.00e+13 1.581138830084150e-07

1.00e+14 4.999999999999987e-08

1.00e+15 1.581138830084189e-08

1.00e+16 5.000000000000000e-09

In fact, one can show that fl(1/(
√
n+ 1+

√
n)) = (

√
n+ 1−√n)(1+δ), where |δ| ≤ 5ǫ+O(ǫ2)

(try it!)

Example 2. Consider the function

f(x) =
1− cosx

x2
=

1

2

(
sin(x/2)

x/2

)2

.

Note that
0 ≤ f(x) < 1/2 for all x 6= 0.

Compare the computed values for x = 1.2 × 10−5 using the above two expressions (assume
that the value of cosx rounded to 10 significant figures).

Part III: Floating point error analysis

1. Forward and backward error analysis

We illustrate the basic idea through a simple example. Consider the computation of an inner
product of two vector x, y ∈ R3

xT y
def
= x1y1 + x2y2 + x3y3,

5



assuming already xi’s and yj ’s are floating-point numbers. It is likely that fl(x ·y) is computed
in the following order.

fl(xT y) = fl( fl(fl(x1y1) + fl(x2y2)) + fl(x3y3) ).

Adopting the floating-point arithmetic model, we have

fl(xT y) = fl( fl(x1y1(1 + ǫ1) + x2y2(1 + ǫ2)) + x3y3(1 + ǫ3) )

= fl( (x1y1(1 + ǫ1) + x2y2(1 + ǫ2))(1 + δ1) + x3y3(1 + ǫ3) )

= ( (x1y1(1 + ǫ1) + x2y2(1 + ǫ2))(1 + δ1) + x3y3(1 + ǫ3) )(1 + δ2)

= x1y1(1 + ǫ1)(1 + δ1)(1 + δ2) + x2y2(1 + ǫ2)(1 + δ1)(1 + δ2)

+x3y3(1 + ǫ3)(1 + δ2),

where |ǫi| ≤ 1
2ǫ and |δj | ≤ 1

2ǫ.

Now there are two ways to interpret the errors in the computed fl(xT y):

(a) We have
fl(xT y) = xT y + E,

where E = x1y1(ǫ1+ δ1+ δ2)+x2y2(ǫ2+ δ1+ δ2)+x3y3(ǫ3+ δ2)+O(ǫ2). It implies that

|E| ≤ 1

2
ǫ(3|x1y1|+ 3|x2y2|+ 2|x3y3|) +O(ǫ2) ≤ 3

2
ǫ · |x|T |y|+O(ǫ2).

This bound on E tells the worst case difference between the exact xT y and its computed
value. Such an error analysis is so-called Forward Error Analysis.

(b) We can also write
fl(xT y) = x̂T ŷ = (x+∆x)T (y +∆y),

where1

x̂1 = x1(1 + ǫ1), ŷ1 = y1(1 + δ1)(1 + δ2) ≡ y1(1 + δ̂1),

x̂2 = x2(1 + ǫ2), ŷ2 = y2(1 + δ1)(1 + δ2) ≡ y2(1 + δ̂2),

x̂3 = x3(1 + ǫ3), ŷ3 = y3(1 + δ2) ≡ y3(1 + δ̂3).

It can be seen that |δ̂1| = |δ̂2| ≤ ǫ+ O(ǫ2) and |δ̂3| ≤ 1
2ǫ. This says the computed value

fl(xT y) is the exact inner product of a slightly perturbed x̂ and ŷ. Such an error analysis
is so-called Backward Error Analysis.

Part IV: Further reading

1. The following article based on lecture notes of Prof. W. Kahan of the University of California
at Berkeley provides an excellent review of IEEE float point arithmetics.

D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 18(1):5–48, 1991.

1There are many ways to distribute factors (1 + ǫi) and (1 + δj) to xi and yj . In this case it is even possible to
make either x̂ ≡ x or ŷ ≡ y.
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2. The following book gives a broad overview of numerical computing, with special focus on the
IEEE standard for binary floating-point arithmetic.

M. Overton. Numerical computing with IEEE floating-point arithemetic. SIAM, Philadel-
phia, 2001. ISBN 0-89871-482-6. Student price $20.00 directly from www.siam.org.

3. A classical book on error analysis, where the notion of backward error analysis is invented, is

J.H. Wilkinson. Rounding Errors in Algebraic Process. Prentice-Hall, Englewood, NJ,
1964. Reprinted by Dover, New York, 1994.

4. A contemporary treatment of error analysis and its applications to numerical analysis is

N.J. Higham, Accuracy and stability of Numerical Algorithms. second edition, SIAM,
Philadelphia, 2002.

5. Websites for discussion of numerical disasters:

• D. Arnold, Some disasters attributable to bad numerical computing

http://www.ima.umn.edu/∼arnold/disasters/disasters.html

• K. Vuik, Some disasters caused by numerical errors

http://ta.twi.tudelft.nl/nw/users/vuik/wi211/disasters.html

• T. Huckle, Collection of software bugs

http://www5.in.tum.de/∼huckle/bugse.html
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6 4-18-12

4 types of multiplications:

1. scalar-scalar

2. Level 1 BLAS: vector-vector, x+ y → z

3. Level 2 BLAS: matrix-vector, Ax→ y

4. Level 3 BLAS: matrix-matrix, AB → C
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7 4-20-12

7.1 Segment 1 Recap

1. Basic concepts and terminology. Scientific computing vs. computational science: these are differ-
ent. We look at the forward and backward error here, and relate that to stability and conditioning.

2. Frequently used matrix decompositions. The idea is to reduce to a subspace that we can project
our problems onto; these are smaller problems with the same or similar structure. The purpose of this
is to refamiliarize ourselves with matrix/vector multiplication.

We have four decompositions:

(a) LU-Factorization: PA = LU . This certainly works for square nonsingular matrices, but we can
extend this to singular or non-square matrices.

(b) A = QR, where Q is orthogonal and R is upper triangular. Here we don’t place any requirements
on the structure of A; this is naturally defined for non-square or singular matrices.

(c) Schur decomposition: A = UTUH . Here A is again square and (I think) nonsingular. T is upper
triangular, with the eigenvalues of A on the diagonal. U is unitary/orthogonal.

(d) Principle value decomposition: A = UΣV T , where U , V are orthogonal and Σ is diagonal (though
not necessarily square), with elements (σ1, . . . , σm) such that σ1 ≥ . . . ≥ σm ≥ 0. Note here that
A need not be square or nonsingular.

3. Vector and Matrix Norms.

4. Accuracy/Speed.

(a) Floating-point representation

(b) Floating-point arithmetic. The big point here is catastrophic cancellation. Know this!

(c) Floating-point error analysis. (We did not cover this.)

5. Block matrix multiplication using BLAS. We use blocking/tiling, which leads to high-performance
computing. Later on we’ll talk about multicore and GPU implementations.
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8.1 Large Scale Linear Systems

A︸︷︷︸
n×n

x︸︷︷︸
n×1

= b︸︷︷︸
n×1

1. n is large: n = 104, 105, unknown

2. A is sparse, either in terms of its elements or its data (rank and/or structure)

3. “Matrix-free” ⇒ A is a black box. We don’t know how it is generated, we just know its action:

u
A−→ v = Au.

8.2 Subspace Projection Methods

“Dimension Reduction.” Consider a problem Ax = b, where x ∈ Rn. Let V ⊆ Rn be a subspace. Given an
initial guess x0, generate

x ≈ x̃ = x0 + v, v ∈ V,
subject to b−Ax̃ ⊥ V (Galerkin condition).

0. Select/given x0

1. Pick (compute) Vk︸︷︷︸
n×k

, Wk

2. “Form” Ak︸︷︷︸
k×k

= W T
k AVk, bk = W T

k b

3. Solve Akz = bk ← solvable?

4. “Form” x̃ = x0 + Vkz

5. Iterate if necessary
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1. The landscape of solvers for linear systems of equations

Ax = b,

where A is an n× n matrix and b is an n-vector, x ∈ Rn is the unknown.

more robust ← −−− → less storage

Direct Iterative
(u = Av)

Nonsymmetric A LU GMRES

Symmetric positive definite A Cholesky CG

more general
↑
|
|
|
↓

more robust

2. Subspace projection methods: framework

The basic idea of subspace projection technique is to extract an approximate solution x̃ from
a subspace of Rn. It is a technique of dimension reduction.

LetW and V be two m-dimensional subspaces of Rn, and x0 is an initial guess of the solution,
then the subspace projection technique is to

find x̃ ∈ x0 +W such that b−Ax̃⊥V . (1)

Write x̃ = x0 + z, z ∈ W and define initial residual r0 = b − Ax0. Notice that b − Ax̃ =
b−A(x0 + z) = r0 −Az. Then the formulation (1) is equivalent to

find z ∈ W such that r0 −Az⊥V . (1a)

If W = V , then it is called an orthogonal projection method and the corresponding orthog-
onality constraints in (1a) is known as the Galerkin condition. Otherwise, if W 6= V , it is
called an oblique projection method and the corresponding orthogonality constraints in (1a)
is known as the Petrov-Galerkin condition.

Remark: What we described is a basic one projection step. Most implementations use a
succession of such projections. Typically, a new projection step uses a “new” pair of subspaces
W and V (updated from the previous step) and an initial guess x0 equal to the most recent
approximation. This leads to an iterative (refinement) procedure, and is a common approach
in numerical computing.

3. In matrix notation, let V = [v1, v2, . . . , vm] be an n×m matrix whose columns form a basis
of V , and similarly W = [w1, w2, . . . , wm] an n×m matrix whose columns form a basis of W.
Then any approximation solutions in x0 +W can be written as

x̃ = x0 + z = x0 +Wy, i.e., z = Wy,

1



and the orthogonality condition (1a) implies

V T (r0 −Az) = 0.

Thus we have
V TAWy = V T r0

Consequently,
y = (V TAW )−1V T r0,

provided V TAW is invertible. Putting it all together, we have

x̃ = x0 +W (V TAW )−1V T r0.

4. Now, we have a prototype subspace projection technique:

0. Let x0 be an initial approximation
1. Iterate until convergence:
2. Select a pair of subspaces V and W
3. Generate basis matrices V and W for V and W
4. r0 ← b−Ax0
5. y ← (V TAW )−1V T r0
6. x0 ← x0 +Wy

Two remarks are in order:

1. In many practical algorithms, the matrix V TAW does not have to be formed explicitly.
It is available as a by-product of Steps 2 and 3.

2. The method is defined only when V TAW is nonsingular, which is not guaranteed to
be true even when A is nonsingular. There are two important special cases where the
nonsingularity of V TAW is guaranteed:

(a) If A is symmetric positive definite (SPD) and W = V , then V TAW = W TAW is
nonsingular.

(b) If A is nonsingular, and V = AW, then then V TAW = W TATAW is nonsingular.

5. A one-dimensional subspace projection process is defined when

W = span{w} and V = span{v},

where w and v are two vectors. In this case, the new approximation takes form

x0 ← x0 + z = x0 + αw

and the orthogonality condition (1a) implies vT (r0 −Az) = vT (r0 − αAw) = 0, and thus

α =
vT r0
vTAw

.
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6. Steepest Descent (SD) method

When A is SPD, at each step, let

v = w = r0 = b−Ax0

This yields

1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk

4. αk =
rTk rk
rT
k
Ark

5. xk+1 = xk + αkrk

Remarks: (1) Since A is SPD, rTk Ark > 0 except rk = 0. Therefore, SD does not breakdown.

(2) We can view that each step of the SD iteration minimizes

f(x)
def
=

1

2
‖x∗ − x‖2A =

1

2
(x∗ − x)TA(x∗ − x),

over all vectors of the form x − α(∇f(x)), where ∇f(x) = b − Ax is the gradient of f at x.
Recall that from the Calculus, we learned that the negative of the gradient direction is locally
the direction that yields the fastest rate of decrease for f .

7. Minimal Residual (MR) Iteration.

For a general nonsingular matrix A, at each step, let

w = r0 and v = Ar0,

It yields

1. Pick an initial guess x0
2. For k = 0, 1, 2, . . . until convergence do
3. rk = b−Axk

4. αk =
rTk Ark

rT
k
ATArk

5. xk+1 = xk + αkrk

Remark: each step of the MR iteration minimizes

f(x)
def
= ‖r‖22 = ‖b−Ax‖22

over all vectors of the form x− αr, i.e., solve the least squares problem minx ‖b−Ax‖2

Further reading

1. Optimality for orthogonal projection. Assume that A is SPD and that V =W. Then a vector
x̃ is the result of (1) if and only if

‖x∗ − x̃‖A = min
x∈x0+W

‖x∗ − x‖A,
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where ‖x∗ − x‖A =
√
(x∗ − x)TA(x∗ − x), and x∗ is the exact solution to Ax = b.

Proof: Notice that (A(·), ·) is an inner product on Rn. Thus ‖x∗ − x‖A over all possible
x ∈ x0 +W is minimized at x̃ if and only if x∗ − x̃⊥AW, i.e.,

(A(x∗ − x̃), w) = (b−Ax̃, w) = 0 for any w ∈ W = V.
This is (1).

Remark: The steepest descent (SD) method and conjugate gradient (CG) method are the
corresponding implementations for solving large scale symmetric definite linear system of
equations.

2. Optimality for oblique projection. Let A be an arbitrary square matrix and assume V = AW.
Then a vector x̃ is the result of (1) if and only if

‖b−Ax̃‖2 = min
x∈x0+W

‖b−Ax‖2.

Proof: ‖b−Ax‖2 over all possible x ∈ x0+W is minimized at x̃ if and only if b−Ax̃⊥AW,
i.e.,

(b−Ax̃, v) = 0 for any v ∈ AW = V.
This is (1).

Remark: The minimal residual residual (MR) method and generalized minimal residual (GM-
RES) method are the corresponding implementations for solving large scale nonsymmetric
linear systems of equations.

3. Convergence theorem of SD algorithm: Let A be SPD, and let λmin and λmax be its smallest
and largest eigenvalues respectively. Then for the SD Algorithm

‖x∗ − xk+1‖A ≤
(
λmax − λmin

λmax + λmin

)
‖x∗ − xk‖A =

(
κ(A)− 1

κ(A) + 1

)
‖x∗ − xk‖A,

where x∗ is the exact solution to Ax = b. κ(A) = λmax/λmin is the condition number of A.

For a proof, see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

Remark: The SD converges for any initial guess. However, if κ(A) is large and κ(A)−1
κ(A)+1 ≈ 1,

the convergence could be extremely slow. The simple SD becomes impractical.

4. Convergence theorem of MR algorithm: Assume thatA+AT is SPD ,1, and let µ = λmin

(
A+AT

2

)
,

and σ = ‖A‖2. Then for the MR iteration

‖rk+1‖2 ≤
(
1− µ2

σ2

)1/2

‖rk‖2.

For a proof, see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

Remark: For any positive definite (not necessarily symmetric) linear systems, the MR itera-
tion converges for any initial guess. However, if µ

σ ≈ 0, the convergence becomes extremely
slow and the MR is not a practical method.

1This is equivalent to say that A is positive definite. A real matrix A said to be positive definite if uTAu > 0
for any 0 6= u ∈ R. It can be shown that if A is real positive definite, then A is nonsingular, in addition, uTAu ≥
λmin

(
1
2
(A+AT )

)
uTu.
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9.1 Large Scale Linear Systems

Dimension reduction:

x =




x1
...
...
...
xn



≈




Vm





z


 = x̃

We want

1. Vm to be a “high-quality” base

2. the ≈ to be “optimal”

• by subspace projection:

b−Ax̃ ⊥ Vm
V T
m (b−Ax̃) = 0

V t
mAVmz = V T

m b

9.1.1 One-Dimensional Situation

Let m = 1.

x ≈


V1


 zx0

x1 = x0 + v1z

(V t
1AV1)z = V T

1 b

Z =
V T
1 b

V T
1 AV1

, V T
1 AV1 6= 0 (no breakdown)

AT = A > 0 A general

1-D subspace projection Steepest Descent (SD) Minimal Residual (MR)

m-D subspace projection Conjugate Gradient (CG) GMRES
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1. Krylov subspace is defined as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v},

where A is an n× n matrix, and v is a column vector of length n.

Note that if x ∈ Km(A, v), then x = p(A)v, where p(A) is a polynomial of degree not exceeding
m− 1.

2. Arnoldi procedure is an algorithm for building an orthogonal basis {v1, v2, . . . , vm} of the
Krylov subspace Km(A, v) using a modified Gram-Schmidt orthogonalization process.1

[Vm+1, Ĥm] = arnoldi(A, v,m)
1. v1 = v/‖v‖2
2. for j = 1, 2, . . . ,m
3. compute w = Avj
4. for i = 1, 2, . . . , j
5. hij = vTi w
6. w := w − hijvi
7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, stop
10. vj+1 = wj/hj+1,j

11. endfor

Proposition 1 Assume that the Arnoldi procedure does not stop before the m-th step. Then
the vectors {v1, v2, . . . , vm} form an orthonormal basis of the Krylov subspace Km(A, v):

span{v1, v2, . . . , vm} = Km(A, v).

3. Arnoldi decomposition. Let

Vm = [v1, v2, . . . , vm] and Hm =




h11 h12 · · · h1,m−1 h1m
h21 h22 · · · h2,m−1 h2m

h32
. . . h3,m−1 h3m
. . .

...
...

hm,m−1 hm,m



,

where Hm is called an upper Hessenberg matrix, then in the matrix form, the Arnoldi proce-
dure can be expressed in the following governing relations:

AVm = VmHm + hm+1,mvm+1e
T
m

1Alternatively, we can also view the Arnoldi procedure as a partial implementation for computing a Hessenberg
decomposition of A. The Hessenberg decompositoin is defined as the following: for any real square matrix A, there
exists an orthogonal matrix V (i.e., V TV = I), such that A = V HV T , where H is an upper Hessenberg matrix,
H = (hij) with hij = 0 for i > j + 1.

1



and V T
mVm = Im and V T

mAVm = Hm. This is referred to as an order-m Arnoldi decomposition.

If we denote

Vm+1 = [Vm, vm+1] and Ĥm =

[
Hm

hm+1,meTm

]
,

where Ĥm is a m+ 1 by m upper triangular matrix, then an order-m Arnoldi decomposition
can also be written in the following compact form

AVm = Vm+1Ĥm.

4. Remarks:

• Note that the matrix A is only referenced via the matrix-vector multiplication Avj .
Therefore, it is ideal for large sparse or dense structure matrices. Any sparsity or struc-
ture of a matrix can be exploited in the matrix-vector multiplication.

• The main storage requirement is n(m+1) for storing Arnoldi vectors {vi} plus the storage
requirement for the matrix A in question or the required matrix-vector multiplication.

• The primary arithmetic cost of the procedure is the cost ofmmatrix-vector products plus
2m2n for the rest. It is common that the matrix-vector multiplication is the dominant
cost.

• The Arnoldi procedure breaks down when hj+1,j = 0 for some j. It is easy to see that
if the Arnoldi procedure breaks down at step j (i.e. hj+1,j = 0), we have

AVj = VjHj .

This indicates that Kj is an invariant subspace of A.

• Some care must be taken to insure that the vectors vj remain orthogonal to working
accuracy in the presence of rounding error. The usual technique is called reorthogonal-
ization.

5. The Generalized Minimum Residual (GMRES) method2 is a generalization of the one-dimensional
MR iteration. It uses a pare of Krylov subspaces as pair of projection subspaces:

W = Km(A, r0) and V = AW = AKm(A, r0).

The GMRES method can then be derived under the framework of the subspace projection
technique (shown in the class).

6. We can also derive the GMRES method by exploitng the optimality property. Note that any
vector x in x0 +Km can be written as x = x0 + Vmy, where y is an m-vector. Define

J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy)‖2 (1)

Then using the Arnoldi decomposition, we have

b−Ax = b−A(x0 + Vmy) = r0 −AVmy

= βv1 − Vm+1Ĥmy = Vm+1(βe1 − Ĥmy).

2Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal RESidual algorithm for solving nonsymmetric linear
systems, SIAM Journal on Scientific and Statistical Computing, Vol.7, pp.856–869, 1986.
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Since the column vectors of Vm+1 are orthonormal, then

J(y) = ‖b−A(x0 + Vmy)‖2 = ‖βe1 − Ĥmy‖2.

Therefore, the GMRES approximation xm is the unique vector

xm = x0 + Vmy,

where y the solution of the least squares problem

min
y

‖βe1 − Ĥmy‖2.

This least squares problem is inexpensive to compute since m is typically small.

7. Restarting GMRES method. As m increases, the computational cost increases at least as
O(m2n). The memory cost increases as O(mn). For large n this limits the largest value of m
that can be used. The popular remedy is to restart the algorithm periodically for a fixed m.

Restarted GMRES:
1. compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β
2. call Arnoldi procedure with A, v1 and m

3. solve miny ‖βe1 − Ĥmy‖2
. 4. xm = x0 + Vmym

5. test for convergence, if satisfied, then stop
6. set x0 := xm and go to 1.

8. Breakdown of GMRES: Since the least squares problem always has solution, the only possi-
bility of the breakdown of the GMRES is in the Arnoldi procedure when hj+1,j at some step
j. However, in this case, the residual norm of xj is zero, b−Axj = 0. xj is the exact solution
of the linear system Ax = b. This is called lucky breakdown. In fact, we have

Proposition 2 Let A be a nonsingular matrix. Then the GMRES algorithm breaks down at
step j, i.e., hj+1,j = 0, if and only if xj is an exact solution of Ax = b.

Further reading

1. Convergence of GMRES. We wish to establish a result to provide an upper bound on the
convergence rate of the GMRES iterates. Unfortunately, because of the complication of non-
Hermitian matrices and their spectral distribution, it is not possible to prove a simple result,
but can get pretty close for practical use. First, we have the following lemma to characterize
the approximate solution by the GMRES method:

Lemma 1 Let xm be the approximate solution obtained from the m-th step of the GMRES
algorithm, and let rm = b−Axm. Then xm is of the form

xm = x0 + qm(A)r0

and
‖rm‖2 = ‖(I −Aqm(A))r0‖2 = min

q∈Pm−1

‖(I −Aq(A))r0‖2.

3



Proof: This is true because xm minimizes the 2-norm of the residual in the affine subspace
x0+Km, the optimality property of the projection technique. Recall that Km is the set of all
vectors of the form x0 + q(A)r0, where q is a polynomial of degree ≤ m− 1.

Proposition 3 Assume that A is diagonalizable matrix and let A = V ΛV −1 where Λ =
diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues. Define

ǫ(m) = min
p∈Pm,p(0)=1

max
1≤i≤n

|p(λi)|.

Then the residual norm satisfies the inequality

‖rm‖2 ≤ κ2(V )ǫ(m)‖r0‖2.

where κ2(V ) = ‖V ‖2‖V −1‖2.

Proof: see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

The results of approximation theory on near-optimal Chebyshev polynomials in the complex
plane can now be used to obtain an upper bound for ǫ(m). This is stated in the following
corollary.

Corollary 1 Assume that all the eigenvalues of A are located in the ellipse E(c, d, a) which
excludes the origin. Then

‖rm‖2 <∼ κ2(V )

(
a+

√
a2 − d2

c+
√
c2 − d2

)m

‖r0‖2.

Proof: see [Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM,
2003]

The follow plots show the spectrum of A is contained in the ellipses E(c, d, a) with center c,
focal distance d and major semi axis a. The left plot is for the case of real d and the right
plot is for the case of purely imaginary d.

c

c+a

c c+dc-d

c+d

c-d

c-a 

c+ac+a

Re

Im

Re

Im

Since the condition number κ2(V ) is typically not known and can be very large, results are of
limited practical interest. They can be useful one when it is known that the matrix is nearly
normal, in which case, κ2(V ) ≈ 1.
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10.1 Framework

1. Vm = Kyrlov subspace,
Vm = span

{
r0, Ar0, A

2r0, . . . , A
m−1r0

}
,

where r0 = b−Ax0
2. Optimal approximation: projection

b−A(x0 + Vmz) ⊥ Vm (A SPD)

V T
m (b−A(x0 + Vmz)) = 0

V T
mAVmz = V T

m r0

OR

b−A(x0 + Vmz) ⊥ AVm (A general)

V T
mA

T (b−A(x0 + Vma)) = 0

V T
mA

TAVmz = V T
mA

T r0

10.2 Implementation

1. Vm = Kyrlov subspace =
[
v1 v2 · · · vm

]
, orthonormal. By exploting the structure of the Kyrlov

subspace, we can make the Gram-Schmidt process more efficient ⇒ Arnoldi procedure. In matrix
form,

AVm = VmHm + hm+1,mvm+1e
T
m

where Hm is an upper Hessenberg matrix (almost triangular) and hm+1,m is a scalar. V T
mVm =

I, V T
mvm+1 = 0. In shorthand format:

AVm =
[
Vm vm+1

] [ Hm

hm+1,mvm+1e
T
m

]

= Vm+1Ĥm

2. GMRES.

V T
mA

TAVm = ĤT
m V

T
m+1Vm+1︸ ︷︷ ︸

I

Ĥm = ĤT
mĤm, v1 =

r0
‖r0‖

V T
mA

T r0 = ĤT
mV

T
m+1r0

= ĤT
m‖r0‖ · V T

m+1v1

= ‖r0‖ · ĤT
me1

Reduced linear system:

ĤT
mĤmz = ‖r0‖ · ĤT

me1

This is the normal equation. It is equivalent to

min
z
‖Ĥmz − ‖r0‖e1‖2
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10.3 GMRES (version 0)

• Given x0 = initial approximation

• r0 = b−Ax0 (“restarting point”)

• Use the Arnoldi procedure to generate (Vm+1) Ĥm

• Solve min
z
‖Ĥmz − ‖r0‖e1‖2. Equivalently, ĤT

mĤmz = Ĥm(‖r0‖e1).

• Test for convergence of x1 = x0 + Vmz ⇒ stopping criterion

• If it has not converged, you can either:

– restart if m is fixed

– expand m+ 1
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11.1 Convergence Test/Stopping Criterion

x1 = x0 + Vmz

r1 = b−Ax1 = b−A(x0 + Vmz)

= r0 −Avmz
= r0 − Vm+1Ĥmz

= r0 − (VmHm + hm+1,mvm+1e
T
m)z

= r0 − VmHmz︸ ︷︷ ︸
=0

−hm+1,mvm+1e
T
mz

‖r1‖ = |hm+1,m| · |eTmz|

11.2 GMRES (version 0)

• Given x0 = initial approximation

• r0 = b−Ax0 (“restarting point”)

• Use the Arnoldi procedure to generate (Vm+1) Ĥm

• Sovel ĤT
mĤmz = ĤT

m(‖r0‖e1)

• Test ‖r1‖ = |hm+1,m| · |eTmz|

• Iterate...

• Finally: x1 = x0 + Vmz

11.3 The CG Method

Arnoldi process:

AVm = VmHmhm+1,mvm+1e
T
m

V T
mAVm = Hm

If AT = A, then (upper Hessenberg) Hm = HT
m (lower Hessenberg), so Hm is tridiagonal. We call this

matrix Tm, and the Lanczos process generates Tm directly.

Subspace Projection:

x1 = x0 + Vmz

V T
m A︸︷︷︸

SPD

Vmz = V T
m b

Tmz = b̃

x1 = x0 + VmT
−1
m b̃

Observations:

1. Tm is the product of lower and upper bidiagonal matrices
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2. (For the first step, x0 → xj , x1 → xj+1)

xj+1 = xj + αjpj

rj+1 = rj + αjApj = b−Axj+1

pj+1 = rj+1 + βjpj ,

where pj is the direction and α is the step size

So we just need to know how to get αj and βj .

1. If r1, r2, r3, . . . are basis vectors for the Krylov subspace, then

rTj+1rj = 0

(rTj + αjp
T
j A)rj = 0

αj = −
rTj rj

pTj Arj

2.

pTj+1Apj = 0

βj =

The CG Method

• x0, r0 = b−Ax0, p0 = r0

• for j = 0, 1, 2, . . .

– Compute αj

xj+1 = xj + αjpj

rj+1 = rj + αjApj

– Compute βj

pj+1 = rj + βjpj

• end (j)
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1. The symmetric Lanczos procedure can be regarded as a simplification of Arnoldi’s procedure
when A is symmetric.

By an order-m Arnoldi decomposition, we know that

Hm = V T
mAVm.

If A is symmetric, then Hm becomes symmetric tridiagonal. This simple observation leads to
the following procedure to compute an orthonormal basis Qm of Krylov subspace Km(A, v)
when A is symmetric1:

[Vm+1, T̂m] = Lanczos(A, v,m)
1. v1 = v/‖v‖2, set β1 = 0, v0 = 0
2. for j = 1, 2, . . . ,m
3. w = Avj − βjvj−1

4. αj = vTj w

5. w := w − αjvj
8. βj+1 = ‖w‖2
9. If βj+1 = 0, then stop
10. vj+1 = w/βj+1

11. endfor

Remarks:

• Only three vectors must be saved in the inner loop of the procedure. This is referred as
a three-term recurrence.

• The computed Lanczos vectors {vi} are orthogonal in exact arithmetic. In the presence
of finite precision, it starts losing such orthogonality rapidly with the increase of j. (The
same phenomenon is also observed in the Arnoldi procedure, but it’s not as severe as in
the Lanczos procedure). There has been much research devoted to understanding the
effect of loss of the orthogonality, and finding ways to either recover the orthogonality,
or to at last diminish its effects. An excellent reference on the subject is [B. N. Parlett,
The Symmetric Eigenvalue Problem, SIAM Press, 1998].

2. In the matrix form, the Lanczos procedure can be expressed in the following governing equa-
tions, referred to as an order−m Lanczos decomposition:

AVm = VmTm + βm+1vm+1e
T
m

= Vm+1T̂m

where Vm = [v1, v2, . . . , vm], Vm+1 = [Vm, vm+1], and

Tm =




α1 β2

β2 α2
. . .

β3
. . . βm−1

. . . αm−1 βm
βm αm




≡ tridiag(βj , αj , βj+1) and T̂m =

[
Tm

βm+1e
T
m

]
.

1Note that we change the notation αj = hjj and βj+1 = hj−1,j , comparing with the Arnoldi procedure.

1



By the orthogonlity properties V T
mVm = I and V T

mvm+1 = 0, we have

V T
mAVm = Tm = tridiag(βj , αj , βj+1).

3. The Conjugate Gradient (CG) method is the best known iterative techniques for solving sparse
SPD linear system, Ax = b, first published in 1952 by Hestenes and Stiefel.2 There are several
ways to derive the CG method. In terms of our familiar subspace projection technique, we
can describe the CG method in one sentence:

The CG method is a realization of an orthogonal projection technique onto the
Krylov subspace Km(A, r0), where A is symmetric positive definite and r0 = b−Ax0
with initial guess x0.

In the following, we provide a derivation of the CG method under this algorithmic framework.

4. Before we derive the CG method, we first derive a so-called direct Lanczos method. With
an initial guess x0, the approximate solution obtained from an orthogonal projection method
onto x0 +Km(A, r0) is given by

xm = x0 + Vmym (1)

where ym is the solution of the tridiagonal system

Tmym = βe1, where β = ‖r0‖2.

Now, let’s try to compute the solution of the tridiagonal system progressively along with the
Lanczos procedure. For doing so, let’s write the LU factorization of Tm as

Tm = LmUm,

i.e. the Gaussian elimination without pivoting:

Tm = LmUm =




1
λ2 1

λ3 1
. . .

. . .

λm 1







η1 β2
η2 β3

. . .
. . .

ηm−1 βm
ηm



,

where η1 = α1, and for j = 2, 3, . . . ,m,

λj = βj/ηj−1, ηj = αj − λjβj .

Then xm is given by
xm = x0 + VmU−1

m L−1
m (βe1)

Let Pm = VmU−1
m and zm = L−1

m (βe1), then

xm = x0 + Pmzm.

The following two observations connect Pm and zm of the mth step with Pm−1 and zm−1 of
the previous step.

2M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.
Standards, 49:409–436, 1952.
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(a) Let us write Pm = [Pm−1 pm], where pm is the last column of Pm, then we have

Pm = VmU−1
m =

[
Vm−1 vm

] [ Um−1 βmem−1

ηm

]−1

=
[
Vm−1 vm

] [ U−1
m−1 −U−1

m−1(βmem−1)η
−1
m

η−1
m

]

=
[
Vm−1U

−1
m−1 −Vm−1U

−1
m−1(βmem−1)η

−1
m + vmη−1

m

]

=
[
Pm−1 −Pm−1(βmem−1)η

−1
m + vmη−1

m

]

=
[
Pm−1 η−1

m (vm − βmpm−1)
]

Therefore, we see that the vector pm can be computed from previous pm−1 and vm by
the simple update

pm = η−1
m (vm − βmpm−1), (2)

(b) By the definition of the vector zm, we have

zm = L−1
m (βe1) =

[
L−1
m−1

−λmeTm−1L
−1
m−1 1

] [
βe1
0

]

=

[
L−1
m−1(βe1)

−λmeTm−1L
−1
m−1(βe1)

]
≡
[
zm−1

ζm

]

where ζm = −λmζm−1.

As a result of these two observations, xm can be written in an updated form

xm = x0 + [Pm−1, pm]

[
zm−1

ζm

]

= x0 + Pm−1zm−1 + ζmpm

= xm−1 + ζmpm.

This gives the following direct Lanczos algorithm:

Direct Lanczos Method
1. compute r0 = b−Ax0, β := ζ1 := ‖r0‖2, and v=r0/β,
2. set λ1 = β1 = 0, p0 = 0
3. for m = 1, 2, . . . ,
4. w := Avm − βmvm−1 and αm = vTmw
5. If m > 1 then compute λm = βm/ηm−1 and ζm = −λmζm−1

6. ηm = αm − λmβm
7. pm = η−1

m (vm − βmpm−1)
8. xm = xm−1 + ζmpm
9. If xm has converged, then Stop
10. w := w − αmvm
11. βm+1 = ‖w‖2 and vm+1 = w/βm+1

12. endfor

3



5. Now let us examine the residual vector rm of the approximate solution xm,

rm = b−Axm = b−A(x0 + Vmym) = r0 −AVmym

= r0 − (VmTm + βm+1vm+1e
T
m)ym

= r0 − VmTmym − βm+1vm+1(e
T
mym)

= −βm+1vm+1(e
T
mym).

Therefore, we see that the residual vector rm is in the direction of vm+1. Since {vi} are
orthogonal, we conclude that

the residual vectors {ri} are orthogonal,i.e., rTj ri = 0 for i 6= j. (3)

Next we can show that

the vectors {pi} are A-conjugate, i.e., pTj Api = 0 for i 6= j. (4)

To show this, we just need to show that P T
mAPm is a diagonal matrix. In fact,

P T
mAPm = U−T

m V T
mAVmU−1

m = U−T
m TmU−1

m = U−T
m LmUmU−1

m = U−T
m Lm.

Note that U−TLm is a lower triangular which is also symmetric. Therefore it must be a
diagonal matrix.

A consequence of the orthogonality condition (3) and conjugacy condition (4) is that a version
of the algorithm can be derived by directly imposing the conditions (3) and (4). This gives the
Conjugate Gradient (CG) algorithm.

We now drive this. Let express the vector xj+1 as 3

xj+1 = xj + αjpj

Therefore, the residual vectors must satisfy the recurrence

rj+1 = b−Axj+1 = b−A(xj + αjpj) = rj − αjApj . (5)

Since the rj ’s are orthogonal, i.e., rTj rj+1 = 0, then it gives

αj =
rTj rj

rTj Apj

By (2), it is known that the next search direction pj+1 is a linear combination of rj+1 and pj ,
and with proper rescaling the p vectors approximately, it can be written as

pj+1 = rj+1 + βjpj .

Thus a first consequence of the above relation is that

rTj Apj = (pj − βj−1pj−1)
TApj = pTj Apj .

3Note that the scalars αj and βj here are different from those of the direct Lanczos method.
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i.e.,

αj =
rTj rj

pTj Apj
.

By imposing A-conjugacy pTj+1Apj = 0, we have

βj = −
pTj Arj+1

pTj Apj

Note that from (5), Apj = − 1
αj
(rj+1 − rj) and therefore

βj =
1

αj

(rj+1 − rj)
T rj+1

pTj Apj
=

rTj+1rj+1

rTj rj

Putting these relations together gives the following CG algorithm

Conjugate Gradient (CG) Method
1. compute r0 = b−Ax0 and p0 := r0
2. for j = 0, 1, 2, . . . , until convergence do
3. αj = rTj rj/(p

T
j Apj)

4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. βj = rTj+1rj+1/(r

T
j rj)

7. pj+1 = rj+1 + βjpj
8. endfor

Note that in addition to the matrix A, four vectors of storage are required: x, p,Ap and r.

Further reading

1. There are many different derivations of the CG method, for example, see the following paper
(pdf file is available at the class website)

Jonathan Shewchuk, An Introduction to Conjugate Gradient Method Without the
Agonizing Pain. 1994 (64 pages)

2. Convergence analysis of the CG method

(a) From the optimality of the projection technique, we know that the approximate solution
obtained from the m-th step of the CG algorithm minimizes the A-norm of the error
in the affine subspace x0 + Km(A, r0). Since Km is the set of all vectors of the form
x0 + q(A)r0, where q is a polynomial of degree ≤ m − 1, we conclude the following
lemma which characterizes the approximate solution xm:

Lemma 1 Let xm be the approximate solution obtained from the m-th step of the CG
algorithm, and let dm = x∗ − xm where x∗ is the exact solution of Ax = b. Then xm is
of the form

xm = x0 + qm(A)r0

where qm is a polynomial of degree m− 1 such that

‖(I −Aqm(A))d0‖A = min
q∈Pm−1

‖(I −Aq(A))d0‖A

5



(b) From Lemma 1, we have the following theorem.

Theorem 1 Let xm be the approximate solution obtained from the m-th step of the CG
algorithm, and x∗ is the exact solution of Ax = b. Then,

‖x∗ − xm‖A ≤ 1

Tm(1 + 2η)
‖x∗ − x0‖A, (6)

where Tm is the Chebyshev polynomial of degree m, and η = λmin/(λmax − λmin). λmax

and λmin are the largest and smallest eigenvalues of A.

A slightly different formulation of inequality can be derived. Using the relation

Tm(t) =
1

2

[(
t+

√
t2 − 1

)m
+
(
t+

√
t2 − 1

)−m
]
≥ 1

2

(
t+

√
t2 − 1

)m
.

Then

Tm(1 + 2η) ≥ 1

2

(
1 + 2η +

√
(1 + 2η)2 − 1

)m

=
1

2

(
1 + 2η + 2

√
η(η + 1)

)m

.

Now notice that

1 + 2η + 2
√
η(η + 1) = (

√
η +

√
η + 1)2 =

(
√
λmin +

√
λmax)

2

λmax − λmin

=

√
λmax +

√
λmin√

λmax −
√
λmin

=

√
κ+ 1√
κ− 1

where κ is the condition number of A, κ = λmax
λmin

. Substituting into the inequality (6)
yields

‖x∗ − xm‖A ≤ 2

(√
κ− 1√
κ+ 1

)m

‖x∗ − x0‖A.

This bound is similar to that of the steepest descent algorithm except that the condition
number of A is now replaced by its square root. CG method could be of order of
magnitudes faster than the steepest descent algorithm. For example, let κ = 103, if one
wants (

k − 1

k + 1

)m1

=

(√
k − 1√
k + 1

)m2

= 10−2

then it means that the steepest descent algorithm needs to take m1 ≈ 2300 iterations to
reach the same level of accuracy as m2 ≈ 73 iterations of the CG method.

(c) The above analysis using the condition number may not explain all the convergence
behavior of CG. In fact, the entire distribution of eigenvalues of A is important, not just
the ratio of the largest to the smallest one. If the largest and smallest eigenvalues of
A are few in number (or clustered closely together), then CG will converge much more
quickly than the above analysis based just on A’s condition number would indicate.
Any important fact is that the behavior of CG in floating point arithmetic can differ
significantly from its behavior in exact arithmetic4.

4A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
H. van der Vorst, Iterative methods for large linear systems, Cambridge University Press, 2003
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12 5-2-12

12.1 Linear Systems

CG Kernels

x1 = x0 + α0p0 p0 = r0 = b−Ax0
r1 = r0 + α0Ap0 by rT1 r0 = 0

α0 = − rT0 r0

rT0 Ap0

p1 = r1 + β0p0 pT1Ap0 = 0

β0 = −p
T
0Ar1

pT0Ap0

Alternative derivation: “geometric way” ← J. Shewchuk

Linear system Ax = b ⇔ Minimization problem minx
1
2x

TAx− xT b

Implementation Issues

1. Matrix-vector multiplication: p → A → q = Ap, where A is usualy large and sparse ← “Matrix
Market” (NIST)

2. Stopping criterion. xj is the jth approximation of x∗ (the exact solution).

Ax∗ = b

rj = b−Axj
‖rj‖ ≤ tol = 10−16? ⇒ ‖xj − x∗‖ ≤ ?

rj = b−Axj
Axj = b− rj = b+ ∆b “backward error”

Axj + rj = b
(
A+

rjx
T
j

xTj xj

)
xj = b

(A+ ∆A)xj = b

Computed x̂ satisfies

(A+ ∆A)x̂ = b+ ∆b, ‖∆A‖, ‖∆b‖ ≈ ‖rj‖
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So we have a backward stable algorithm. Forward error:

‖x̂− x∗‖
‖x∗‖

≤ ?

Ax∗ = b

Ax̂+ ∆Ax̂ = b+ ∆b

A(x̂− x∗) + ∆Ax̂ = ∆b

x̂− x∗ = A−1(∆b−∆Ax̂)

‖x̂− x∗‖ ≤ ‖A−1‖(‖∆b‖+ ‖∆A‖‖x̂‖)
‖x̂− x∗‖
‖x∗‖

≤ ‖A
−1‖
‖x∗‖

(‖∆b‖+ ‖∆A‖‖x̂‖)

≤ ‖A−1‖‖A‖︸ ︷︷ ︸
condition number

(‖∆b‖
‖b‖ +

‖∆A‖
‖A‖

‖x̂‖
‖b‖ ‖A‖

)

︸ ︷︷ ︸
relative backward error

Rule of Thumb

relative forward error
<∼(condition #)× (relative backward error)

The condition number is an intrinsic property of the problem, whereas the relative backward error is
user controlled.

12.2 Preconditioning

The problem Ax = b has condition number κ(A) = ‖A‖‖A−1‖. The equivalent problem MAx = Mb has
condition number κ(MA), which is hopefully good. The idea of preconditioning is to modify the system in
this way to obtain a good condition number.
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1. By the convergence analysis of CG and GMRES algorithms, we learn that the convergence
rate strongly depends on the condition number of the coefficient matrix A of the linear system
Ax = b, and the distribution of A’s eigenvalues. Other Krylov subspace methods share the
similar property.

2. Preconditioning means replacing the system Ax = b with the modified systems

M−1Ax = M−1b. (1)

or
AM−1x̂ = b, x = M−1x̂. (2)

These are referred to as left and right preconditioning, respectively.

If the preconditioner M is SPD, then one can precondition symmetrically and solve the
modified linear system

L−1AL−T y = L−1b, x = L−T y, (3)

where M = LLT . The matrix L could be the Cholesky factor of M or any other matrix
satisfying M = LLT .

3. The desired preconditioner M should be chosen so that

(a) M−1A or L−1AL−T is “well-conditioned” or approximates “the identity matrix”,

(b) linear systems with coefficient matrix M are easy to solve.

A careful choice of M can often make the condition number of the modified system much
smaller than the condition number of the original one, and thus accelerate convergence dra-
matically. Indeed, a good preconditioner is often necessary for an iterative method to converge
at all, and much past and current research in iterative methods is directed at finding better
preconditioners.

4. We now show that a preconditioner can be easily incorporated into the CG method, and lead
to a Preconditioned Conjugate Gradient method, PCG for short.

If the CG algorithm is applied directly to the symmetric preconditioned system (3), the
iterative kernels satisfy

yj+1 = yj + α̂j p̂j

r̂j+1 = r̂j − α̂jL
−1AL−T p̂j

p̂j+1 = r̂j+1 + β̂j p̂j

with

α̂j =
r̂Tj r̂j

p̂Tj L
−1AL−T p̂j

and β̂j =
r̂Tj+1r̂j+1

r̂Tj r̂j
.

Defining
xj = L−T yj , rj = Lr̂j , pj = L−T p̂j .

The iterative kernels become

xj+1 = xj + αjpj

rj+1 = rj − αjApj

pj+1 = M−1rj+1 + βjpj

1



with

αj =
rTj M

−1rj

pTj Apj
and βj =

rTj+1M
−1rj+1

rTj M
−1rj

.

We obtained the following preconditioned CG algorithm for solving Ax = b using the precon-
ditioner M = LLT .

Preconditioned Conjugate Gradient (PCG)
1. compute r0 = b−Ax0, solve Mz0 = r0 and p0 := z0
2. for j = 0, 1, 2, . . . , until convergence do
3. αj = (rTj zj)/(p

T
j Apj)

4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. solve Mzj+1 = rj+1

7. βj = (rTj+1zj+1)/(r
T
j zj)

8. pj+1 = zj+1 + βjpj
9. endfor

5. Similarly, a preconditioner can be easily incorporated into the GMRES method, and lead to
a Preconditioned GMRES method, PGMRES for short.

Preconditioned GMRES
1. compute r0 = M−1(b−Ax0), β = ‖r0‖2 and v1 := r0/β
2. for j = 0, 1, 2, . . . ,m do
3. solve Mw = Avj
4. for i = 1, 2, . . . , j do
5. hij = vTi w
6. w := w − hijwi

7. end do
8. compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. end do

10. let ym be the solution of miny ‖βe1 − Ĥmy‖2
11. xm = x0 + Vmym
12. If satisfied, Stop, else set x0 := xm and GOTO 1.

Note that in the above algorithm, Vm = [v1, v2, . . . , vm] and Ĥm is a (m + 1) × m upper
triangular matrix with the entries hij computed at steps 4 and 8.

6. Preconditioning Techniques.

The reliability and robustness of iterative techniques, when dealing with various applications,
often depends much more on the quality of the preconditioner than on the particular Krylov
subspace methods used. Finding a good preconditioner to solve a given sparse linear system
is oftne viewed as a combination of art and science. Preconditioners can be divided roughly
into three categories:

I. Preconditioners designed for general classes of matrices; e.g. Jacobi, Gauss-Seidel, SOR,
incomplete LU factorization, incomplete Cholesky decomposition, approximate inverse.

II. Preconditioners designed for broad classes of underlying problems; e.g. elliptic partial
differential equations (such as Poisson equation). Examples are multigrid and domain
decomposition preconditioners.

2



III. Preconditioners designed for a specific matrix or underlying problem; e.g. for the trans-
port equation.

The best choice of a preconditioner is generally application problem-dependent, and also
depends on the iterative method being used.

• For CG and related methods to solve a symmetric positive definite system, one would
like the condition number of the symmetrically preconditioned matrix L−1AL−T to be
close to one, in order for the error bound based on the Chebyshev polynomial to be
small, or alternatively, has few extreme eigenvalues.

• For GMRES, a preconditioned matrix that is close to normal and whose eigenvalues
are tightly clustered around some point away from the origin would be good, but other
properties might also suffice to define a good preconditioner.

7. ILU Factorization Preconditioners.

Except for diagonal matrices, the solution of the linear system with coefficient matrix M
requires that we have a suitable decomposition of M . In many instances this will be an LU
decomposition. The idea of an incomplete LU preconditioner is to perform an abbreviated
(sparse) form of Gaussian elimination of A and to declare the production of the resulting
factors to be M . Since M is by construction already factorized, system involving M will be
easy to solve.

Let us first introduce a sparsity set Z to control the patterns of zeros. Specifically, let Z be
a set of ordered pairs of integers from {1, 2, . . . , n} containing no pairs of the form (i, i). An
incomplete LU factorization of A is a decomposition of the form

A = LU + E, (4)

where L is unit lower triangular, and U is upper triangular, and L, U and E have the following
properties

(a) If (i, j) ∈ Z with i > j, then ℓij = 0,

(b) If (i, j) ∈ Z with i < j, then uij = 0,

(c) If (i, j) /∈ Z, then eij = 0.

In other words, the elements of L and U are zero on the sparsity set Z, and off the sparsity
set the decomposition reproduces A.

It is instructive to consider two extreme cases. (1) If the sparsity Z set is empty, we get
the LU decomposition of A, i.e., we are using A as a preconditioner. (2) If Z is everything
except diagonal pairs of the form (i, i), then we are effectively using the diagonal of A as a
preconditioner.

Let us consider an ILU algorithm to generate L and U rowwise. Suppose we have computed
the first k − 1 rows of L and U , and we wish to compute the kth row. Write the first k rows
of (4) in the form

[
A11 A1k

aTk1 aTkk

]
=

[
L11 0
lT1k 1

] [
U11 U1k

0 uTkk

]
+

[
E11 E1k

eTk1 eTkk

]
.

we need to compute lT1k and uTkk. Multiplying out, we find that

lT1kU11 + eTk1 = aTk1 (5)

3



and
uTkk + eTkk = aTkk − lT1kU1k

We then can solve these two systems in order:

ℓk1, ℓk2, . . . , ℓk,k−1︸ ︷︷ ︸
lT
1k

, νkk, νk,k+1, . . . , νk,n︸ ︷︷ ︸
uT
kk

.

Suppose that we have computed ℓk1, ℓk2, . . . , ℓk,j−1. If (k, j) ∈ Z, then set ℓkj = 0. If
(k, j) /∈ Z, then ekj = 0, and the equation (5) gives

αkj =
k−1∑

i=1

ℓkiνij + ℓkjνjj ,

from which we get

ℓkj =
αkj −

∑k−1
i=1 ℓkiνij
νjj

.

The key observation here is that it does not matter how the values of the preceding ℓ’s and ν’s
were determined. If ℓkj is defined in this way, then when we compute LU , its (k, j)-element
will be αkj . Thus we set ℓ’s and ν’s to zero on the sparsity set without interfering with
the values of LU off the sparsity set. A similar procedure applies to the determination of
νkk, νk,k+1, . . . , νk,n.

Incomplete LU Factorization(A,Z)
1. for k = 1 to n
2. for j = 1 to k − 1
3. if ((k, j) ∈ Z)
4. L(k, j) = 0
5. else
6. L(k, j) = (A(k, j)− L(k, 1 : j − 1) ∗ U(1 : j − 1, j))/U(j, j)
7. end if
8. end for j
9. for j = k to n
10. if ((k, j) ∈ Z)
11. U(k, j) = 0
12. else
13. U(k, j) = (A(k, j)− L(k, 1 : k − 1) ∗ U(1 : k − 1, j)
14. end if
15. end for j
16. end for k

The algorithm can be carried to completion provided the quantities U(j, j) are all nonzero, in
which case the decomposition is unique. Whether or not the U(j, j) are nonzero will depend
on the matrix in question.

The following figure compares the sparsity of LU and ILU factorizations of a sparse 20 by 20
matrix:

4



The sparsity of LU

0 5 10 15 20

0

5

10

15

20

nz = 72

matrix A

0 5 10 15 20

0

5

10

15

20

nz = 93

matrix L ("dense LU") 

0 5 10 15 20

0

5

10

15

20

nz = 82

matrix U ("dense LU")

The sparsity of ILU and E-factor

0 5 10 15 20

0

5

10

15

20

nz = 72

matrix A

0 5 10 15 20

0

5

10

15

20

nz = 42

matrix L ("sparse LU")

0 5 10 15 20

0

5

10

15

20

nz = 50

matrix U ("sparse LU")

0 5 10 15 20

0

5

10

15

20

nz = 44

matrix A − LU

8. Not all matrices can have an ILU factorization. The following two classes of matrices, the
algorithm always works.

(a) If A is nonsingular diagonally dominant matrix, then A has an incomplete LU factoriza-
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tion for any sparsity set Z.

Note: A matrix A of order n is diagonally dominant if

|aii| ≥
n∑

j=1,j 6=i

|aij |, for i = 1, 2, . . . , n.

It is strictly diagonally dominant if strictly inequality holds for all j.

It can be shown that A strictly diagonally dominant matrix is nonsingular. Be aware
that diagonal dominance alone does not imply either nonsingularity or singularity. For
examples, let

A =




2 −1 0
−1 2 −1
0 −1 2


 , B =




1 1 0
1 2 1
0 1 1


 .

Then A is nonsingular. On the other hand, B is singular.

(b) The incomplete LU factorization also exists for any M-matrix.

Note: A matrix is said to be an M-matrix if it satisfies the following properties:

(1) aii > 0 for i = 1, . . . n,

(2) aij ≤ 0 for i 6= j, i, j = 1, . . . n,

(3) A is nonsingular and

(4) A−1 is a nonnegative matrix (all entries are nonnegative).

9. Block preconditioner is a popular technique for block-tridiagonal matrices arising from the
discretization of elliptic problems, such as Poisson’s equation. It can be also be generalized to
other sparse matrices. For example, the matrix arises in the solution of 2D Poisson’s equation
has the form

A =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T




where T is a symmetric tridiagonal matrix, with diagonal entres all 4, and off diagonal entries
all −1. In this case, a natural preconditioner is

M = diag(T, T, . . . , T ).

10. The following figure shows the convergence history of GMRES with and without precon-
ditioning for solving a linear system of equations arising from a discretization of a model
convection-diffusion equation. The preconditioner used here is ILU(0), i.e., ILU factorization
with the same sparsity pattern of A.
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11. Iterative methods in Matlab

functions methods

pcg Preconditioned Conjugate Gradients Method.
gmres Generalized Minimum Residual Method.

bicg BiConjugate Gradients Method.
bicgstab BiConjugate Gradients Stabilized Method.
cgs Conjugate Gradients Squared Method.
minres Minimum Residual Method.
qmr Quasi-Minimal Residual Method.
symmlq Symmetric LQ Method.

Preconditioners

functions preconditioners

luinc Incomplete LU factorization.
cholinc Incomplete Cholesky factorization.

12. Further Reading

• Yousef Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003

• H. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Univ.
Press, 2003

• R. Barrett et al, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, SIAM, 1994
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13 5-4-12

13.1 Large Scale Eigenvalue Computations

Given an n× n matrix A.
Ax = λx

We call λ an eigenvalue and x an eigenvector. Together, they are an eigenpair.

Methods

• single-vector (one-dimensional search) The Power Method

• Subspace projection methods: Arnoldi method, Lanczos method, Steepest Descent/Conjugate gradient
method

13.2 The Power Method

Note that A has n-eigenpairs (λi, si) where (λ1, s1) is the dominant pair. We make an initial guess x0. We
know we can represent

x0 = γ1s1 + γss2 + · · ·+ γnsn.

Applying A to both sides yields

Ax0 = γ1As1 + · · ·+ γnAsn = γ1λ1s1 + · · ·+ γnλnsn.

Do this repeatedly. Then for large k, since λ1 is dominant, we see

Akx0 ≈ γ1λk1s1.

This is a simple idea, but there are lots of problems:

• Computation and normalization (dealing with overflow)

• Only get convergence in theory

• Stopping criteria = ?

• “Spectral transformation” (how do I find the second largest eigenvalue?

• Effect of rounding errors.

Ways to fix this:

1. ûi+1 = Aui; ui+1 = ûi+1/‖ui+1‖. This fixes overflow.

2. To fix computation, notice that

ui =
Aui−1
‖Aui−1

=
A2ui−2
‖A2ui−2‖

=
Aix0
‖Aix0‖

=
γ1λ

i
1s1 + · · ·

‖γ1λk1s1 + · · · ‖
We see for large i, this converges to ±s1/‖s1‖, or the normalized first eigenvector and prevents over-
flow/underflow issues.
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Theory

1. Let A ∈ Cn×n.

(a) A scalar λ is an eigenvalue of an n×n A and a nonzero vector x ∈ Cn is a corresponding
right eigenvector if

Ax = λx.

A nonzero vector y such that yHA = λyH is a left eigenvector.

(b) LA,λ
def
= {x : Ax = λx} is an eigenspace of A corresponding to the eigenvalue λ.

(c) The set λ(A) of all eigenvalues of A is called the spectrum of A.

(d) pA(λ)
def
= det(λI −A), a polynomial of degree n, is called characteristic polynomial of A.

2. The following is a list of basic properties straightforwardly from the definition

(a) λ is A’s eigenvalue ⇔ λI −A is singular ⇔ det(λI −A) = 0 ⇔ pA(λ) = 0.

(b) There is at least one eigenvector x associated with A’s eigenvalue λ; in the other word,
the dimension dim(LA,λ) ≥ 1.

(c) LA,λ is a subspace, i.e., it has the following two properties:

(1) x ∈ LA,λ ⇒ αx ∈ LA,λ for all α ∈ C.
(2) x1, x2 ∈ LA,λ ⇒ x1 + x2 ∈ LA,λ.

(d) Suppose A is real. λ is A’s eigenvalue ⇔ conjugate λ̄ is also A’s eigenvalue.

(e) A is singular ⇔ 0 is A’s eigenvalue.

(f) If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

3. A ∈ Cn×n is simple if it has n linearly independent eigenvectors; otherwise it is defective.

Examples

(a) I and any diagonal matrices is simple. e1, e2, . . . , en are n linearly independent eigen-
vectors.

(b)

(
1 2
4 3

)
is simple. It has two different eigenvalues −1 and 5. By the fact that each

eigenvalue corresponds to at least one eigenvector, it must have 2 linearly independent
eigenvectors.

(c) If A ∈ Cn×n has n different eigenvalues, then A is simple.

(d)

(
2 1
0 2

)
is defective. It has two repeated eigenvalues 2, but only one eigenvector

e1 = (1, 0)T .

1



4. Let λ1, λ2, . . . , λn be the eigenvalues of A, and x1, x2, . . . , xn be a set of corresponding eigen-
vectors, then

AX = XΛ

where X = [x1, x2, . . . , xn] and Λ = diag(λ1, λ2, . . . , λn).

If A is simple, namely the eigenvectors are linearly independent, then X−1 exists and

A = XΛX−1

This is known as the eigenvalue decomposition of the matrix A.

5. An invariant subspace of A is a subspace V of Rn, with the property that v ∈ V implies that
Av ∈ V . We also write this as AV ⊆ V .
Examples:

(1) The simplest, one-dimensional invariant subspace is the set span(x) of all scalar multiples
of an eigenvector x.

(2) Let x1, x2, . . . , xm be any set of independent eigenvectors with eigenvalues λ1, λ2, . . . , λm.
Then X = span({x1, x2, . . . , xm}) is an invariant subspace.

6. Let A be n-by-n, let V = [v1, v2, . . . , vm] be any n-by-m matrix with linearly independent
columns, and let V = span(V ), the m-dimensional space spanned by the columns of V . Then
V is an invariant subspace if and only if there is an m-by-m matrix B such that

AV = V B.

In this case the m eigenvalues of B are also eigenvalues of A.

7. Similarity transformations: n × n matrices A and B are similar if there is an n × n non-
singular matrix P such that B = P−1AP . We also say A is similar to B, and likewise B is
similar to A; P is a similarity transformation. A is unitarily similar to B if P is unitary.

8. Suppose that A and B are similar: B = P−1AP .

(a) A and B have the same eigenvalues. In fact pA(λ) ≡ pB(λ).

(b) Ax = λx ⇒ B(P−1x) = λ(P−1x).

(c) Bw = λw ⇒ A(Pw) = λ(Pw).

9. Schur decomposition. Let A be of order n. Then there is an n×n unitary matrix U (UHU = I)
such that

A = UTUH ,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which are the
diagonal elements of T , may be made to appear in any order.

10. Real Schur Decomposition. If A is real, there is an orthogonal matrix Q such that

A = QTQT ,

where T is block triangular with 1 × 1 and 2 × 2 blocks on its diagonal. The 1 × 1 blocks
contain the real eigenvalues of A, and the eigenvalues of the 2× 2 blocks are pairs of complex
conjugate eigenvalues.
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The power method

1. The power method is based on the following simple analysis:

Assume that A = XΛX−1 with X = [x1, x2, . . . , xn] and Λ = diag(λ1, λ2, . . . , λn), and
eigenvalues λj are ordered such that |λ1| > |λ2| ≥ . . . ≥ |λn|.
Let u0 be a vector such that u0 = γ1x1 + γ2x2 + · · · + γnxn and γ1 6= 0. Then we can show
that

(a) uj =
Aju0

‖Aju0‖ → ± x1
‖x1‖ as j → ∞.

(b) θj = uHj Auj → λ1 as j → ∞.

(c) |λ2|
|λ1| is the rate of convergence.

2. Pseudocode:

Given an initial vector u0,
for j = 1, 2, . . . until convergence

w = Auj−1

uj = w/‖w‖2
θj = uHj Auj

3. Example. Let

A =




−261 209 −49
−530 422 −98
−800 631 −144




Then λ(A) = {λ1, λ2, λ3} = {10, 4, 3}. Let u0 = e1, by the power method, we have

i 1 2 3 · · · 10

θi 994.49 13.0606 10.07191 · · · 10.0002

4. The drawback of the power method is that if |λ2|
|λ1| is close to 1, then the power method could

be very slow convergent or doesn’t converge at all.

The method of inverse iteration

1. The method of Inverse iteration has two purposes:

(a) overcome the drawbacks of the power method (slow convergence).

(b) find an eigenvalue closest to a particular given number σ, referred to as a shift).

2. Spectral transformation: if λ is an eigenvalue of A, then

(a) λ− σ is an eigenvalue of A− σI,

(b) 1
λ−σ is an eigenvalue of (A− σI)−1.

This is referred to as shift-and-invert spectral transformation.

3



The following plot illustrates the transformation of eigenvalues:

1/(\lambda-\sigma)

\sigma

3. By applying the power method to the shift-and-invert eigenvalue problem

(A− σ)−1x = µx,

we derive the follow algorithm, which is referred to as the inverse iteration:

Given an initial vector u0 and a shift σ
for j = 1, 2, . . . until convergence

w = (A− σI)−1uj−1

uj =
w

‖w‖2 (approximate eigenvector)

µj = uHj Auj (approximate eigenvalue)

end for
Returen approximate eigenpair of A; (θj , σ + 1

µj
)

4. Assume λk is the eigenvalue cloest to the shift σ. It can be shown that

(a) uj converges to xk/‖xk‖, where sk = Sek j → ∞.

(b) θj converges to λk as j → ∞.

(c) maxj 6=k
|λk−σ|
|λj−σ| is the convergence rate.

5. The advantages of inverse iteration over the power method is the ability to converge to any
desired eigenvalue (the one nearest to the shift σ). By choosing σ very close to a desired
eigenvalue, the method converges very quickly and thus not be as limited by the proximity
of nearby eigenvalues as is the power method. The method is particularly effective when we
have a good approximation to an eigenvalue and want only its corresponding eigenvector.

However, the inverse iteration is expensive in general. It requires solving (A − σI)w = jj
for u. One (sparse) LU factorization of A− σI is required, which could be very expensive in
memory requirements.

4



14 5-11-12

14.1 Large Scale Eigenvalue Computations

Rule: A is available through matrix-vector multiplication only!

14.1.1 Method 1: The Power Method

Idea:

u0 = γ1x1 + γ2x2 + · · ·+ γnxn

Aku0 = γ1λ
k
1x1 + γ2λ

k
2x2 + · · ·+ γnλ

k
nxn

k→∞−−−→ γ1λ
k
1x1

Eigenpairs (λi, xi), with
|λ1| > |λ2| ≥ · · ·

So λ1 is the dominant eigenvalue.

Practical algorithm:

u0



û1 = Au0
u1 = û1

‖u1‖
θ1 = uT1Au1

Facts:

1. uk → ± x1
‖x1‖ as k →∞, θk → λ1

2. Rate: r = |λ1|
|λ1| < 1

“Open” issues:

1. What if we need to compute more than one eigenpairs? What if r ≈ 1 ⇒ slow convergence?

2. What if I am interested in an eigenvalue λ, which is closest to σ (a user-specified point)?
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15 5-14-12

15.1 Large Scale Eigenvalue Computations

Methods:

1. The power method

2. Spectrum transformation → inverse iteration (inner-outer loops)

3. Simultaneous iterations ⇐ slow convergence

15.1.1 (Krylov) Subspace Projection Methods

Let K ⊆ Rn. Find x̃ ∈ K and λ̃ ∈ C such that Ax̃− λ̃x̃ ⊥ K. Let V =
[
v1 · · · vm

]
be a basis of K. So

x̃ = V z

V T (Ax̃− λ̃x̃) = 0

V t
︸︷︷︸
m×n

A︸︷︷︸
n×n

V︸︷︷︸)n×mz = λ̃ V TV︸ ︷︷ ︸
=I

z

V TAV z = λ̃z

This is the reduced eigenproblem.

Algorithm: (Rayleigh-Ritz procedure)

1. Select/construct V

2. Solve V TAV z = λ̃z

3. Approximate eigenpairs (λ̃, V z) → a Rayleigh-Ritz pair

4. Test for convergence

Lanczos method → a realization of the Rayleigh-Ritz subspace projection method for a symmetric matrix.

K = Kyrlov subspace

=
{
x0, Ax0, A

2x0, . . . , A
m−1x0

}

↓
= V =

[
v1 v2 · · · vm

]
(orthogonal)

AVj = VjTj + βj+1vj+1e
T
j

Vj =
[
v1 v2 · · · vj

]

Tj =




α1 β2

β2
. . .

. . .
. . .

. . . βj
βj αj




V T
j AVj = V T

j (VjTj + βj+1vj+1e
T
j )

= Tj +
��������
βj+1V

T
j vj+1e

T
j = Tj

Solve

Tjz = λ̃z → (λ̃, z)
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The approximate eigenvalue is λ̃, and the approximate eigenvector is x̃ = Vjz.

residual = Ax̃− λ̃x̃ = AVjz − λ̃vjz
= (VjTj + βj+1vj+1e

T
j )z − λ̃Vjz

= Vj Tjz︸︷︷︸
=λ̃z

+βj+1vj+1e
T
j z − λ̃Vjz = βj+1vj+1(e

T
j z)

‖residual‖ = |eTj z| · |βj+1| ← free by-product of Lanczos process
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Rayleight-Ritz procedure

1. Rayleight-Ritz procedure is a framework of the orthogonal projection methods for solving
large scale eigenvalue problems

Let A be an n × n real matrix and K be an m-dimensional subspace of Rn. An orthogonal
projection technique seeks an approximate eigenpair

(λ̃, ũ) with λ̃ ∈ C and ũ ∈ K.

by imposing the following so-called Galerkin condition:

Aũ− λ̃ũ ⊥ K , (1)

or, equivalently,
vT (Aũ− λ̃ũ) = 0, ∀ v ∈ K. (2)

To translate this into a matrix problem, assume that an orthonormal basis {v1, v2, . . . , vm}
of K is available. Denote V = [v1, v2, . . . , vm], and let ũ = V y. Then, equation (2) becomes

V T (AV y − λ̃V y) = 0

Therefore, y and λ̃ must satisfy the following reduced eigenvalue problem:

Bmy = λ̃y (3)

with Bm = V HAV . The eigenvalues λ̃i of Bm are called Ritz value values, and the vectors
V yi are called Ritz vector.

2. This procedure is known as the Rayleigh-Ritz procedure:

Rayleigh-Ritz Procedure

(a) Compute an orthonormal basis {vi}i=1:m of the subspace K;

(b) Compute Bm = V TAV , where V = [v1, v2, . . . , vm];

(c) Compute the eigenvalues of Bm and select the k desired ones λ̃i, i = 1 : k,
where k ≤ m.

(d) Compute the eigenvectors yi of Bm associated with λ̃i.

(e) return (λi, ũi = V yi) as approximate eigenvectors of A.

The numerical solution of the m×m eigenvalue problem in steps (c) and (d) can be treated by
standard algorithms for solving small dense eigenvalue problems. An important note is that
in step (d) one can replace eigenvectors by Schur vectors to get approximate Schur vectors
ũi instead of approximate eigenvectors. Schur vectors yi can be obtained in a numerically
stable way and, in general, eigenvectors are more sensitive to rounding errors than are Schur
vectors.

1



Further reading

3. Optimality. Consider the case where A is real and symmetric. Let Q = [Qk, Qu] be any
n-by-n orthogonal matrix, where Qk is n-by-k, and Qu is n-by-(n− k). Let

T = QTAQ = [Qk, Qu]
TA[Qk, Qu] =

[
QT

kAQk QT
kAQu

QT
uAQk QT

uAQu

]
≡

[
Tk Tuk

Tku Tu

]

When k = 1, Tk is just called the Rayleigh quotient. So far k > 1, Tk is called a generalization
of the Rayleigh quotient.

The Rayleigh-Ritz procedure is to approximate the eigenvalues of A by the eigenvalues of
Tk = QT

kAQk. These approximations are called the Ritz values. Let Tk = V ΛV T be the
eigendecomposition of Tk. The corresponding eigenvector approximations are the columns of
QkV and are called Ritz vectors.

The Ritz values and Ritz vectors are considered optimal approximations to the eigenvalues
and eigenvectors of A as justified by the following theorem.

Theorem. The minimum of ‖AQk−QkR‖2 over all k-by-k symmetric matrices R is attained
by R = Tk, in which case, ‖AQk −QkTk‖2 = ‖Tku‖2.
Proof: Let R = Tk +Z, to proof the theorem, we just want to show that ‖AQk −QkR‖2 is
minimized when Z = 0. This is shown by the following sequence of derivation:

‖AQk −QkR‖22 = λmax

[
(AQk −QkR)T (AQk −QkR)

]

= λmax

[
(AQk −Qk(Tk + Z))T (AQk −Qk(Tk + Z))

]

= λmax

[
(AQk −QkTk)

T (AQk −QkTk)− ((AQk −QkTk)
T (QkZ)

−(QkZ)T (AQk −QkTk) + (QkZ)T (QkZ)
]

= λmax

[
(AQk −QkTk)

T (AQk −QkTk)− (QT
kAQk − Tk)Z

−ZT (QT
kAQk − Tk) + ZTZ

]

= λmax

[
(AQk −QkTk)

T (AQk −QkTk) + ZTZ
]

≥ λmax

[
(AQk −QkTk)

T (AQk −QkTk)
]

= ‖AQk −QkTk‖22
Furthermore, it is easy to compute the minimum value

‖AQk −QkTk‖2 = ‖(QkTk +QuTku)−QkTk‖2 = ‖QuTku‖2 = ‖Tku‖2.

Corollary. Let Tk = Y ΛY T be the eigendecomposition of Tk. The minimum of ‖APk−PkD‖
over all n-by-k orthogonal matrices Pk where span(Pk) = span(Qk) and over all diagonal D
is also ‖Tku‖2 and is attained by Pk = QkY and D = Λ.

Proof: If we replace Qk with QkU in the above proof, where U is another orthogonal matrix,
then the columns of Qk and QkU span the same space, and

‖AQk −QkR‖2 = ‖AQkU −QkRU‖2 = ‖A(QkU)− (QkU)(UTRU)‖2.

These quantities are still minimized when R = Tk, and by choosing U = Y so that UTTkU is
diagonal.

2



Lanczos algorithm

1. The Lanczos algorithm combines the Lanczos process for building a Krylov subspace with the
Raleigh-Ritz procedure for for finding a few eigenpairs of a symmetric matrix A. First, let us
recall that the Lanczos process will generate an orthonormal basis of a Krylov subspace:

Kk(A, v)
def
= span{v,Av, . . . , Ak−1v} = span{q1, q2, . . . , qk},

and yield a fundamental relation

AQk = QkTk + fke
T
k , fk = βkqk+1 (4)

where Tk = QT
kAQk = tridiag(βj , αj , βj+1). Let µ be an eigenvalue of Tk and y be a corre-

sponding eigenvector y, i.e.,
Tky = µy, ‖y‖2 = 1.

Apply y to the right of (4) to get

A(Qky) = QkTky + fk(e
T
k y) = µ(Qky) + fk(e

T
k y).

{µ} are Ritz values, and {Qky} are Ritz vectors.

2. Convergence

• If fk(e
T
k y) = 0 for some k, then the associated Ritz value µ is an eigenvalue of A with

the corresponding eigenvector Qky.

• In general, it is unlikely that fk(e
T
k y) = 0, but we hope that the residual norm ‖fk(eTk y)‖2

may be small; and when this happens we expect that µ is going to be a good approximate
to A’s eigenvalue. Indeed, we have

Lemma 1 Let H be (real) symmetric, and Hz − µz = r and z 6= 0. Then

min
λ∈λ(H)

|λ− µ| ≤ ‖r‖2/‖z‖2.

Proof: Let H = UΛUT be the eigen-decomposition of H. Then Hz − µz = r yields

(H − µI)z = r ⇒ U(Λ− µI)UT z = r ⇒ (Λ− µI)(UT z) = UT r.

Notice that Λ− µI is diagonal. Thus

‖r‖2 = ‖UT r‖2 = ‖(Λ− µI)(UT z)‖2 ≥ min
λ∈λ(H)

|λ− µ| ‖UT z‖2 = min
λ∈λ(H)

|λ− µ|‖z‖2,

as expected.

The following corollary is a consequence of above Lemma 1.

Corollary 1 There is an eigenvalue λ of A such that

|λ− µ| ≤ ‖fk(eTk y)‖2 = |βk| · |eTk y|.

3



3. In summary, we have the following Lanczos algorithm in the simplest form:

Lanczos Algorithm for finding eigenvalues and eigenvectors of A = AT :
1. q1 = v/‖v‖2, β0 = 0; q0 = 0;
2. for j = 1 to k, do
3. w = Aqj ;
4. αj = qTj w;

5. w = w − αjqj − βj−1qj−1;
6. βj = ‖w‖2;
7. if βj = 0, quit;
8. qj+1 = w/βj ;
9. Compute eigenvalues and eigenvectors of Tj

10. Test for convergence
11. EndDo

Caveat: All the discussion in this lecture is under the assumption of exact arithmetic. In
the presence of finite precision arithmetic, the numerical behaviors of the Lanczos algorithm
could be significantly different. For example, in finite precision arithmetic, the orthogonality
of the computed Lanczos vectors {qj} is lost when j is as small as 10 or 20. The simplest
remedy (and also the most expensive one) is to implement the the full reorthogonalization,
namely after the step 5, do

w = w −
j−1∑

i=1

(wT qi)qi.

This is called the Lanczos algorithm with full reorthogonalization. (Sometimes, it may be
needed to execute twice). A more elaborate scheme, necessary when convergence is slow and
several eigenvalues are sought, is to use the selective orthogonalization.

4. Example. We illustrate the Lanczos algorithm by a running an example, a 1000-by-1000
diagonal matrix A, most of whose eigenvalues were chosen randomly from a normal Gaussian
distribution. To make the plot easy to understand, we have also sorted the diagonal entries
of A from largest to smallest, so λi(A) = aii with the corresponding eigenvector ei. There are
a few extreme eigenvalues, and the rest cluster near the center of the spectrum. The starting
Lanczos vector v has all equal entries.

There is no loss in generality in experimenting with a diagonal matrix, since running the
Lanczos algorithm on A with starting vector q1 = v/‖v‖2 is equivalent to running the Lanczos
algorithm on QTAQ with starting vector QT q1.

The following figure illustrates convergence of the Lanczos algorithm for computing the eigen-
values of A. In this figure, the eigenvalues of each Tk are shown plotted in column k, for
k = 1, 2, 3, . . . , 30, with the eigenvalues of A plotted in an extra column at the rightmost
column. The column k has k “+”s, one marking each eigenvalues of Tk.
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We observe that:

• Extreme eigenvalues, i.e., the largest and smallest ones, converge first, and the interior
eigenvalues converge last.

• Convergence is monotonic, with the ith largest (smallest) eigenvalues of Tk increasing
(decreasing) to the ith laregst (smallest) eigenvalue of A, provided that the Lanczos
algorithm does not stop prematurely with some βk = 0.

5. An excellent reference to study the observation in theory is the book by B. N. Parlett, “The
Symmetric Eigenvalue Problem”, reprinted by SIAM, 1998.
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16 5-16-12

16.1 Large Scale Eigenvalue Computations

Ax = λx,

A is a sparse n × n matrix. Dimension reduction/subspace projection ⇒ find x̃ ∈ K ⊂ Rn and λ̃ ∈ C such
that Ax̃− λ̃x̃ ⊥ K.

In practice:

K = Krylov subspace

= {x0, Ax0, A2x0, . . . , A
m−1x0}

↓
= Vm =

[
v1 v2 · · · vm

]
, V T

mVm = I

• Gram-Schmidt

– Lanczos for AT = A

– Arnoldi for AT 6= A
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Arnoldi algorithm

1. The power method is the simplest algorithm suitable for computing just the largest eigenvalue
in absolute value, along with its eigenvector. Starting with a given x0, k iterations of the
power method produce a sequence of vectors x0, x1, x2, . . . , xk. It is easy to see that these
vectors span a Krylov Subspace:

span{x0, x1, x2, . . . , xk} = Kk+1(A, x0) = span{x0, Ax0, A2x0, . . . , A
kx0}.

Now, rather than taking xk as out approximate eigenvector, it is natural to ask for the “best”
approximate eigenvector in Kk+1(A, x0) using the Rayleigh-Ritz procedure. We will see that
the best eigenvector (and eigenvalue) approximations from Kk+1(A, x0) are much better than
xk alone.

2. The Arnoldi algorithm for finding a few eigenpairs of a general matrix A combines the Arnoldi
process for building a Krylov subspace with the Raleigh-Ritz procedure.

First, let us recall that the following Arnoldi process generates an orthonormal basis of a
Krylov subspace Kk(A, v):

[Vm+1, Ĥm] = arnoldi(A, v, k)
1. v1 = v/‖v‖2
2. for j = 1, 2, . . . , k
3. compute w = Avj
4. for i = 1, 2, . . . , j
5. hij = vTi w
6. w := w − hijvi
7. end for
8. hj+1,j = ‖w‖2
9. If hj+1,j = 0, stop
10. vj+1 = wj/hj+1,j

11. endfor

The Arnoldi process yields the fundamental relation, referred to as an Arnoldi decomposition
of length k:

AVk = VkHk + hk+1,kvk+1e
T
k , (1)

where Hk is Hessenberg, V H
k Vk = I, and V H

k vk+1 = 0. If Hk is unreduced and hk+1,k 6= 0,
the decomposition is uniquely determined by the starting vector v (This is commonly called
implicit Q-Theorem).

3. Since V H
k vk+1 = 0, we have

Hk = V T
k AVk.

Let µ be an eigenvalue of Hk and y be a corresponding eigenvector y, i.e.,

Hky = µy,

1



Then the corresponding Ritz pair is (µ,Qky). Applying y to the right of (1), the residual
vector of (µ, Vky) is given by

A(Vky)− µ(Vky) = hk+1,kvk+1(e
T
k y).

Using the backward error interpretation, we know that (µ, Vky) is an exact eigenpair of A+E,
where ‖E‖2 = |hk+1,k| · |eTk y|.

4. This gives us a criterion for accepting the Ritz pair (µ, Vky) as approximate eigenpair1 of A.

Arnoldi’s Method
1. Choose a starting vector v
2. Generate the Arnoldi decomposition of length k by the Arnoldi process
3. Compute the Ritz pairs and decide which are acceptable
4. If necessary, increase k and repeat

5. Example. We illustrate the above simplest Arnoldi algorithm by a running a 100-by-100
random sparse matrix A with approximately 1000 normally distributed nonzero entries, A =
sprandn(100,100,0.1). All entries of the starting vector v are 1. The following figure illus-
trates typical convergence behavior of the Arnoldi algorithm for computing the eigenvalues.
In the figure, “+” are the eigenvalues of matrix A (computed by eig(full(A))). and the “◦′′
are the eigenvalues of upper Hessenberg matrix H30 (computed by eig(H30)).

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Real Part

Im
ag

in
ar

y 
P

ar
t

Eigenvalues of A in "+" and H
30

 in "o"

We observe that Exterior eigenvalues converge first. This is the typical convergence phe-
nomenon of the Arnoldi algorithm (in fact, all Krylov subspace based methods). There is a
general theory for the convergence analysis of the Arnoldi algorithm.

6. The Arnoldi algorithm has two nice aspects:

1Note that because of non-symmetry of A, we generally do not have the nice forward error estimation as discussed
in the Lanczos algorithm for symmetric eigenproblem. But a similar error bound involving the condition number of
the corresponding eigenvalue exists.
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(a) The matrix Hk is already in Hessenberg form, so that we can immediately apply the QR
algorithm to find its eigenvalues.

(b) After we increase k, say k + p, we only have to orthogonalize p vectors to compute the
(k+p)th Arnoldi decomposition. The work we have done previously is not thrown away.

Unfortunately, the algorithm has its drawbacks:

• If A is large we cannot increase k indefinitely, since Vk requires n× k memory locations
to store.

• We have little control over which eigenpairs the algorithm finds. In a given application,
we will be interested in a certain set of eigenpairs. For example, eigenvalues lying near
the imaginary axis. There is nothing in the algorithm to force desired eigenvectors into
the subspace or the discard undesired ones.

These issues have been successfully addressed to some extent by a so-called implicitly restart
scheme, see

• D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., Vol. 13, pp.357–385, 1992.

• Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, editors, Templates for
the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia,
2000 Available at http://www.cs.ucdavis.edu/∼bai/ET/contents.html
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18 6-1-12

18.1 Fast Solvers

18.1.1 Poisson’s Equation

1-D:

−d
2v

dt2
= f(t), 0 < t < 1

v(0) = v(1) = 1

2-D:

−∂
2v

∂x2
− ∂2v

∂y2
= f(x, y)

−∆u = f

18.2 Kronecker (“Tensor”) Product of Matrices

Given matrices A (m× n) and B (p× q), the Kronecker product is

A⊗B︸ ︷︷ ︸
(mp)×(nq)

= (aijB) = kron(A,B)

Properties

• (A⊗B) · (C ⊗D) = (AC)⊗ (BD)

• (A⊗B)−1 = A−1 ⊗B−1

• (A⊗B)T = AT ⊗BT

18.3 Vectorization

A︸︷︷︸
m×n

→ vec(A)

A =
(
a1 a2 · · · an

)
→




a1
a2
...
an



mn×1

= vec(A)

Properties

• vec(AX) = (I ⊗A) · vec(X)
This enables us to rewrite the matrix equation AX = B as a vector equation: (I⊗A)·vec(X) = vec(B)

• vec(AB) = (BT ⊗ I) · vec(X)
Applications

• Sylvester matrix equation.

A︸︷︷︸
n×n

X︸︷︷︸
n×m

+X B︸︷︷︸
m×m

= C

vec(AX+XB) = vec(C)

(I ⊗A)vec(X) + (BT ⊗ I)vec(X) = vec(C)

(I ⊗A+BT ⊗ I)︸ ︷︷ ︸
Â

vec(X)︸ ︷︷ ︸
x̂

= vec(C)︸ ︷︷ ︸
b̂

A special case are Lyapunov equations, where B = AT .
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Kronecker product.

1. Let A = (aij) be m × n and B = (bij) be p × q, then the Kronecker product of A and B are
defined as

A⊗B = (aijB) =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB



.

C = A⊗B is a (mp)× (nq) matrix.

2. Kronecker product has the following basic properties:

• Assume AC and BD are well defined, then

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D)

• If A and B are invertible, (A⊗B)−1 = A−1 ⊗B−1.

• (A⊗B)T = AT ⊗BT

3. Let vec(X) be defined to be a column vector of length m · n made of the columns of an m × n
matrix X stacked atop one another from left to right, i.e.,

vec(X) = vec([x1, x2, . . . , xn]) =




x1
x2
· · ·
xn


 ,

then we have

• vec(AX) = (In ⊗A) · vec(X)

• vec(XB) = (BT ⊗ Im) · vec(X)

Discretization of Poisson’s equations by finite differences.

1. One-dimensional Poisson’s equation takes the form

−d2v(x)

dx2
= f(x), 0 < x < 1 (1)

with Dirichlet boundary conditions:

v(0) = v(1) = 0, (2)

where f(x) is a given function and v(x) is the unknown function to be computed. The Pos-
sion equation models the displacement of an elastic bar or cord in continuum mechanics, the
temperature distribution in a heat conducting bar.

1



(a) Let us discretize Poisson’s equation by trying to compute an approximate solution N + 2
evenly spaced point xi between 0 and 1:

0 = x0 < x1 < x2 < · · · < xN < xN+1 = 1

and

xi = x0 + ih = ih, h =
1

N + 1
.

The points x0 and xN+1 are called boundary points, and are known. xi for i = 1, 2, . . . , N
are called interior points and are unknown.

Denoting vi = v(xi) and fi = f(xi) and using the 3-point centered difference approximation,
at x = xi, we have

−d2v(x)

dx2
=

−vi−1 + 2vi − vi+1

h2
+ τi,

where the truncation error τi = O(h2) (assuming v(x) is smooth enough). Therefore at
x = xi, 0 < i < N + 1, we have

−vi−1 + 2vi − vi+1 = h2fi + h2τi

and v0 = vN+1 = 0.

In matrix notation, let

v =




v1
v2
...
vN



, τ̄ =




τ1
τ2
...
τN




and TN =




2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2



,

then we have
TN v = h2f + h2τ̄ (3)

To solve this equation, let us ignore τ̄ , since it is expected to be small compared to f , then
we have the linear system of equations

TN v̂ = h2f, (4)

where v̂ is an approximation of v.

(b) The tridiagonal matrix TN = tridiag(−1, 2,−1) has the following explicit eigenvalue de-
composition

TN = ZNΛNZT
N ,

where ZN = [z1, z2, . . . , zN ] and ΛN = diag(λ1, λ2, . . . , λN ),

• λj = 2(1− cos πj
N+1) for j = 1, 2, . . . , N are the eigenvalues of TN .

• zj are the eigenvectors for j = 1, 2, . . . , N . The kth entry of zj is given by zj(k) =√
2

N+1 sin(
πkj
N+1) for k = 1, 2, . . . , N .

• Since λj > 0 for all j, TN is symmetric positive definite.

• Z is orthogonal.
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The largest eigenvalue of TN is λN and for large N ,

λN = 2(1− cos
Nπ

N + 1
) ≈ 4

and the smallest eigenvalue is λ1 and for large N ,

λ1 = 2(1− cos
π

N + 1
) ≈ 2

(
1−

(
1− π2

2(N + 1)2

))
=

π2

(N + 1)2
.

Therefore, the condition number of TN is

cond(TN ) = ‖TN‖2‖T−1
N ‖2 =

λN

λ1
≈ 4(N + 1)2

π2
= O(h−2) for large N.

(c) Now we can bound the error v − v̂, subtracting equation (4) from equation (3), we have

v − v̂ = h2T−1
N τ̄ .

By taking norm and assuming that v is sufficient smooth (the required derivatives are
bounded), we have

‖v − v̂‖2 ≤ h2‖T−1
N ‖2‖τ̄‖2 ≈ h2

(N + 1)2

π2
‖τ̄‖2 = O(‖τ̄‖2) = O(h2).

In the rest of this note, we will not distinguish between v and its approximation v̂ and so
will simplify notation by letting

TN v = h2f.

2. Two-dimensional Poisson’s equation takes the form

−∇2v(x, y) = −
(

∂2

∂x2
+

∂2

∂y2

)
v(x, y) = f(x, y) for (x, y) ∈ Ω,

v(x, y) = φ(x, y) for (x, y) ∈ ∂Ω,

where Ω = (0, 1)× (0, 1), the unit square and ∂Ω is its boundary.

(a) To discretize the differential equation, the domain Ω is covered with a grid of step size
h = 1/(N + 1) as follows.

✇
♠
♠
♠
♠
♠
✇

✇
♠
♠
♠
♠
♠
✇

✇
♠
♠
♠
♠
♠
✇

✇
♠
♠
♠
♠
♠
✇

✇
♠
♠
♠
♠
♠
✇

✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇ ✇

✇ ✇

✇ ✇
This is an example grid
with N = 5. The values
v(x, y) at the boundary
grid points ✇ is given
by φ(x, y), and the val-
ues v(x, y) at interior

grid points ♠ are
to be sought.
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Each grid point (xi, yj) have the representation

xi = ih and yj = jh for i, j = 0, 1, . . . , N + 1.

Those points with one of i and j being i = 0 or N+1 are the boundary grid points; all other
points are the interior grid points. We seek approximations to v(xi, yj) for all the interior
grid points. Write

vij = v(xi, yj), fij = f(xi, yj), and φij = φ(xi, yj).

To this end, we do approximately at each interior grid point:

−∂2v

∂x2

∣∣∣∣∣
at (xi, yj)

≈ −vi−1 j + 2vij − vi+1 j

h2
,

−∂2v

∂y2

∣∣∣∣∣
at (xi, yj)

≈ −vi j−1 + 2vij − vi j+1

h2
.

Adding these approximations we have

−∂2v

∂x2
− ∂2v

∂y2

∣∣∣∣∣
at (xi, yj)

=
−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1

h2
+ τij

where τij is a truncation error. By Taylor expansion, it is easy to show that it is at the
order of h2, O(h2). Ignoring the truncation errors, we arrive at the linear equations in the
unknowns vij ,

−vi−1 j − vi j−1 + 4vij − vi+1 j − vi j+1 = h2fij , (5)

for 1 ≤ i, j ≤ N . The left-hand side of which is 4 times the v at the point subtracting the
v at the four neighbor points. This is called 5-point centered difference or 5-point stencil.

Notice that the boundary points

v0j = φ0j , v0N+1 = φ0N+1, vi0 = φi0, viN+1 = φiN+1

are known and the unknowns are for 0 < i, j < N+1; so there are N2 of them. By collecting
all vij to form an N ×N matrix V whose (i, j)th entry is vij :

V = (vij)

and define an N ×N matrix F̃ by

h2(F̃ )ij =





h2fij , for 2 ≤ i, j ≤ N − 1,
h2fij + φi j−1, for 2 ≤ i ≤ N − 1 and j = 1,
h2fij + φi j+1, for 2 ≤ i ≤ N − 1 and j = N,
h2fij + φi−1 j , for i = 1 and 2 ≤ j ≤ N − 1,
h2fij + φi+1 j , for i = N and 2 ≤ j ≤ N − 1,
h2fij + φi j−1 + φi−1 j , for (i, j) = (1, 1),
h2fij + φi j−1 + φi+1 j , for (i, j) = (N, 1),
h2fij + φi−1 j + φi j+1, for (i, j) = (1, N),
h2fij + φi j+1 + φi+1 j , for (i, j) = (N,N).

then it can be verified that the (5) becomes

TN · V + V · TN = h2F̃ , (6)

where TN = tridiag(−1, 2,−1). Note that care should be taken for the grid points that are
neighbors of boundary grid points.
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(b) Lexicographic (natural) ordering: the system (6) is not in the familiar form “Ax = b” of
linear system of equations because all the unknowns are compactly stored into a matrix.
To reorganize equations (5) in a way that leads to the Ax = b form, we need to arrange
vij into a column vector. A natural way would be arranging one column of V on top of
another, i.e., defining a N2-dimensional vector v as (in MATLAB-like notation)

v = [V (:, 1);V (:, 2); . . . ;V (:, N)] ≡ vec(V ).

Such an ordering of vij is best described by the following picture in the case of N = 5.

✇
♠
♠
♠
♠
♠
✇

1

2

3

4

5

✇
♠
♠
♠
♠
♠
✇

6

7

8

9

10

✇
♠
♠
♠
♠
♠
✇

11

12

13

14

15

✇
♠
♠
♠
♠
♠
✇

16

17

18

19

20

✇
♠
♠
♠
♠
♠
✇

21

22

23

24

25

✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇ ✇

✇ ✇

✇ ✇

Define also N2-dimensional vector f̃ from the matrix F̃ analogously. The system (6) be-
comes

Av = h2f̃ , (7)

where

A =




TN + 2IN −IN
−IN TN + 2IN −IN

. . .
. . .

. . .

−IN TN + 2IN −IN
−IN TN + 2IN



.

In fact, A is the Kronecker products of TN and IN :

A = IN ⊗ TN + TN ⊗ IN ≡ TN×N .

(c) Using the Kronecker product and the eigenvalue decomposition of the tridiagonal matrix
TN , we immediately derive the eigenvalue decomposition of the matrix TN×N :

Let TN = ZNΛNZT
N be the eigendecomposition of the tridiagonal matrix TN . Then

the eigendecomposition of TN×N is given by

TN×N = IN ⊗ TN + TN ⊗ IN

= (ZN ⊗ ZN )(IN ⊗ ΛN + ΛN ⊗ IN )(ZN ⊗ ZN )T .

By the eigenvalue decomposition of TN×N , we know that eigenvalues λij of the Poisson
matrix TN×N are given by

λi j
def
= λi + λj = 2(2− cos iπh− cos jπh) (8)

i, j = 1, 2, . . . , N , where λi and λj are the eigenvalues of TN . Note that h = 1/(N + 1).
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(d) Red-black Ordering: first color all nodes by either red or black in such a way that no
neighbor nodes share the same color; and then enumerate all nodes with one color and then
all nodes with the other. Such an ordering of vij is best described by the following picture
in the case of N = 5.

✇
♠
♠
♠
♠
♠
✇

r

b

r

b

r

✇
♠
♠
♠
♠
♠
✇

b

r

b

r

b

✇
♠
♠
♠
♠
♠
✇

r

b

r

b

r

✇
♠
♠
♠
♠
♠
✇

b

r

b

r

b

✇
♠
♠
♠
♠
♠
✇

r

b

r

b

r

✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇ ✇

✇ ✇

✇ ✇

✇
♠
♠
♠
♠
♠
✇

1

14

2

15

3

✇
♠
♠
♠
♠
♠
✇

16

4

17

5

18

✇
♠
♠
♠
♠
♠
✇

6

19

7

20

8

✇
♠
♠
♠
♠
♠
✇

21

9

22

10

23

✇
♠
♠
♠
♠
♠
✇

11

24

12

25

13

✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇ ✇

✇ ✇

✇ ✇

Let vrb and f̃rb be the N2-dimensional vectors obtained from V and F̃ with this red-black
ordering. The system (6) becomes

Arbvrb = h2f̃rb, Arb =

(
Dr B
BT Db

)
, (9)

both Dr and Db are diagonal matrices with all diagonal entries being 4. B is a sparse
matrix with nonzero entries −1 (the details of the structure of B is not important for us
now).

Notice that Arb is consistently ordered and has eigenvalues given by (8).

3. Three-dimensional Poisson’s equations takes the form

−∇2v(x, y, z) = −
(

∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
v(x, y, z) = f(x, y, z) for (x, y, z) ∈ Ω,

v(x, y, z) = φ(x, y, z) for (x, y, z) ∈ ∂Ω,

where Ω = (0, 1)× (0, 1)× (0, 1), the unit cubic and ∂Ω is its boundary

Using a 7-point centered finite difference on a cubic grid of step size h = 1/(N +1), with natural
ordering, it leads to the linear system of equations Av = b, where the coefficient matrix

A = TN×N×N = TN ⊗ IN ⊗ IN + IN ⊗ TN ⊗ IN + IN ⊗ IN ⊗ TN

It can be shown that A’s eigenvalues are all possible triple sum of the eigenvalues of TN and the
eigenvector matrix is ZN ⊗ ZN ⊗ ZN .

4. Poisson’s equation in higher dimensions is represented analogously.

6



19 6-4-12

19.1 Fast Solvers

• O(n3)

– LU Factorization

∗ If AT = A > 0, use Cholesky

• O(n3/2)

– CG/Krylov subspace iterative methods

∗ Matrix-vector product: 5n

• Fast solvers

– Block Cyclic Reduction (BCR) ⇒ O(n log n)

– Fast Fourier Transform (FFT) ⇒ O(n log n)

– Multi-grid ⇒ O(n)

19.2 Block Cyclic Reduction

A︸︷︷︸
N2×N2

= I ⊗ T + T ⊗ I

=




T
T

. . .

T


+




2I −I
−I 2I −I

. . .
. . .

. . .

2I




=




T + 2I −I
−I . . .

. . .

−I
−I T + 2I




A




x1
x2
...

xN


 =




b1
b2
...

bN




Let N = q, C = T + 2I. Then

A =




C −I
−I C −I

. . .
. . .

. . .

−I C I




BCR = divide and conquer

(1) cx1 − x2 = b1

(2) +) c · (−x1 + cx2 − x3 = b2)

(3) +) − x2 + cx3 − x4 = b+ 3

(c2 − 2I)x2 − x4 = b2 + cb2 + b3
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Fast solvers for Poisson’s equation

Block cyclic reduction.

1. Block cyclic reduction (BCR) is a fast method for the Poisson model problem. The fastest
algorithms on vector and parallel computers are often a hybrid of block cyclic reduction and
FFT. BCR has also be extendned to solve many other types of structured matrix computation
problems. In this note, we describe a simple but numerically unstable version of the BCR
algorithm. A stable implementation is given in the reference at the end of this note.

2. Recall 2-D Poisson’s model problem is given by

(IN ⊗ TN + TN ⊗ IN ≡ TN×N ) · vec(V ) = vec(h2F ).

Write it as the standard form of the linear system of equations, we have




A −I

−I A
. . .

. . .
. . . −I
−I A







x1
x2
...

xN



=




b1
b2
...
bN



,

where A = TN + 2I and I is an N ×N identity matrix. xi and bi are N -vectors.

For simplicity we assume that N is odd. We use block Gaussian elimination to combine three
consecutive sets of equations

[ −xj−2 +Axj−1 −xj = bj−1 ],
+A [ −xj−1 +Axj −xj+1 = bj ],
+ [ −xj +Axj+1 −xj+2 = bj+1 ],

Thus eliminating xj−1 and xj+1

−xj−2 + (A2 − 2I)xj − xj+2 = bj−1 +Abj + bj+1.

Doing this for every set of three consecutive equations yields two sets of equations:

• one for the xj with j even




A(1) −I

−I A(1) . . .
. . .

. . . −I

−I A(1)







x2
x4
...

xN−1



=




b1 +Ab2 + b3
b3 +Ab4 + b5

...
bN−2 +AbN−1 + bN



, (1)

where

A(1) = A2 − 2I ≡
(
A(0)

)2
− 2I,

1



• one set of equations for the xj with j odd,




A
A

. . .

A







x1
x3
...

xN



=




b1 + x2
b3 + x2 + x4

...
bN + xN−1



. (2)

This set of equations can be solved directly after solving the equation (1) for xj with j even.

Note that equation (1) has the same form as the original problem, so we may repeat this process
recursively. For example, at the next step we get




A(2) −I

−I A(2) . . .
. . .

. . . −I

−I A(2)







x4
x8
...
...



=




...

...

...

...



, (3)

where

A(2) =
(
A(1)

)2
− 2I,

and



A(1)

A(1)

. . .

A(1)







x2
x6
...
...



=




...

...

...

...



. (4)

We repeat this until only one equation is left, which we solve another way.

In summary, the BCR algorithm consists of three steps, where for simplicity, assume that N =
2k+1 − 1.

(a) Block reduction (see equations (1) and (3) )

(b) Solve A(k)x(k) = b(k)

(c) Back solve (see equations (2) and (4))

3. Complexlity: O(N2 log2N)

4. The simple BCR approach has two drawbacks:

(a) It is numerically unstable because A(r) grows quickly:

‖A(r)‖ ∼ ‖A(r−1)‖ ≈ 42
r
,

so in computing b
(r+1)
j , the b

(r)
2j±1 are lost in roundoff.

(b) A(r) has bandwidth 2r + 1 if A(0) = A is tridiagonal, so it can be dense and thus more
expensive to multiply or solve.

5. A numerically stable and efficient algorithm can be found in

• B. Buzbee, G. Golub and C. Nielson , On the direct method for solving Poisson’s equation,
SIAM J. Numer. Anal. Vol. 7, pp.627–656, 1970.
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• W. Gander and G.H. Golub, Cyclic Reduction - History and Applications, Proceedings
of the Workshop on Scientific Computing: 10-12 March, 1997, edited by F. T. Luk, R.
Plemmons. Springer Verlag, New York, 1997. Also appeared as Technical Report SCCM
97-02, Stanford University, 1997.

FFT (fast Fourier fransform) method.

1. Let us learn how to solve the 2D Poisson’s model problem using the matrix-matrix multiplications
involving the eigenvector matrix of TN . A straightforward implementation of the matrix-matrix
would cost O(N3). We will show how this multiplication can be implemented using the fast
Fourier transform (FFT) in only O(N2log2N) operation. Note that if N = 220 = 1, 048, 576,
then log2N = 20.

2. Recall that the formulation of the 2D Poisson’s equation in the matrix equation form

TN · V + V · TN = h2F.

Let TN = ZΛZT be the eigenvalue decomposition of TN . Then the previous equation becomes

Λ · Ṽ + Ṽ · Λ = h2F̃ .

where Ṽ = ZTV Z and F̃ = ZTFZ. It is easy to see that the (j, k) entry of this equation is

λj ṽjk + ṽjkλk = h2f̃jk,

which can be solved for ṽjk to get

ṽjk =
h2f̃jk
λj + λk

.

This yields the first version of our algorithm:

(a) Compute F̃ = ZTFZ

(b) For all j and k, compute ṽjk =
h2f̃jk
λj+λk

(c) Compute V = ZṼ ZT

The cost of step (b) is 3N2, and the cost of steps (a) and (b) is four matrix-matrix multiplications
by Z and ZT (= Z), which is 8N3 using a conventional algorithm. In the following, we show how
multiplication by Z is essentially the same as computing a discrete Fourier transform, which can
be done in O(N2log2N) operation.

3. Using the language of Kronecker product, we have

v = vec(V ) = (TN×N )−1 · vec(h2F )

=
(
(ZN ⊗ ZN )(IN ⊗ ΛN + ΛN ⊗ IN )(ZN ⊗ ZN )T

)−1
· vec(h2F )

= (ZN ⊗ ZN ) (IN ⊗ ΛN + ΛN ⊗ IN )−1 (ZT
N ⊗ ZT

N ) · vec(h2F )

It is easy to see that doing the indicated matrix-vector multiplications from right to left is
mathematically the same as the algorithm described in Item 1. This also shows how to extend
the algorithm to Poisson’s equation in higher dimension.
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4. The Discrete Fourier Transform (DFT) of an N -vector a is the vector

b = Φa,

where Φ = (φjk) is N -by-N matrix defined as follows:

φjk = ωj×k, for j, k = 0, 1, . . . , N − 1

where

ω = exp

(−2πi

N

)
= cos

2π

N
− i sin

2π

N
, i =

√
−1

a principal Nth root of unity, ωN = 1.

The Inverse Discrete Fourier Transform (IDFT) of b is the vector

a = Φ−1b.

Therefore, both the DFT and IDFT are just matrix-vector multiplications and can be straight-
forwardly implemented in 2N2 operations. The DFT and IDFT are closely related the Fourier
transform and its inverse in continuous case.

5. Properties of DFT:

(a) 1√
N
Φ is a complex symmetric and unitary matrix, i.e.,

Φ−1 =
1

N
ΦH =

1

N
Φ̄.

(Exercise: verify that ΦH = (Φ̄)T = Φ̄ and 1
NΦ · ΦH = I.)

(b) Let a = [a0, a1, . . . , aN−1], then the kth component of the DFT b = Φa is

bk =
N−1∑

j=0

ajω
kj .

This can be viewed as the value of the polynomial pa(x) =
∑N−1

j=0 ajx
j at x = ωk:

bk = (Φa)k = pa(ω
k).

In other words,

the DFT is polynomial evaluation at the points ω0, ω1, . . . , ωN−1.

Conversely,

the IDFT is polynomial interpolation, producing the coefficients of a polynomial
given its values at ω0, ω1, . . . , ωN−1.

(c) If a = [a0, . . . , aN−1, 0, . . . , 0]
T and b = [b0, . . . , bN−1, 0, . . . , 0]

T are 2N -vectors, then the
discrete convolution of a and b, denoted as a ∗ b, is defined as

a ∗ b ≡ c = [c0, c1, . . . , c2N−1]
T ,

where ck =
∑k

j=0 ajbk−j .

To illustrate the use of the discrete convolution, consider the polynomial multiplication.
Let pa(x) =

∑N−1
k=0 akx

k and pb(x) =
∑N−1

k=0 bkx
k be degree-(N − 1) polynomials. Then

their product

pa(x) · pb(x) =
2N−1∑

k=0

ckx
k ≡ pc(x),

where the coefficients ck are given by the discrete convolution.

One purpose of the Fourier transform is to convert the convolution into multiplication.
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Theorem 1 Let a = [a0, . . . , aN−1, 0, . . . , 0]
T and b = [b0, . . . , bN−1, 0, . . . , 0]

T be vectors of
dimension 2N , and let c = a ∗ b = [c0, . . . , c2N−1]

T . Then

(Φc)k = (Φa)k · (Φb)k.

Proof. Recall the property (b), if ã = Φa, then the kth entries of ã is ãk =
∑2N−1

j=0 ajω
kj ,

the value of the polynomial pa(x) =
∑N−1

j=0 ajx
j at x = ωk, i.e.,

ãk = pa(ω
k).

Similarly, b̃ = Φb means that b̃k =
∑N−1

j=0 bjω
kj = pb(ω

k), and c̃ = Φc means that c̃k =
∑2N−1

j=0 cjω
kj = pc(ω

k). Therefore

(Φa)k · (Φb)k = ãk · b̃k = pa(ω
k) · pb(ωk) = pc(ω

k) = c̃k = (Φc)k.

6. Fast Fourier Transform (FFT) is a fast way to multiply by Φ. Instead of 2N2, it will require
only about 3N

2 · log2N operations. We now derive the FFT via its interpretation as polynomial

evaluation. Recall that the goal is to evaluate pa(x) =
∑N−1

k=0 akx
k at x = ωj for 0 ≤ j ≤ N − 1.

For simplicity we will assume N = 2m. The FFT algorithm is based on the following two critical
observations:

(a) By writing

pa(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

= (a0 + a2x
2 + a4x

4 + · · ·) + (a1x+ a3x
3 + a5x

5 + · · ·)
= (a0 + a2x

2 + a4x
4 + · · ·) + x(a1 + a3x

2 + a5x
4 + · · ·)

= paeven(x
2) + xpaodd(x

2),

we see that the evaluation of pa(x) is divided into evaluating two polynomials paeven and
paodd of degree N

2 − 1 at (ωj)2, 0 ≤ j ≤ N − 1.

(b) Since ωN = 1,

ω2j = ω2(j+N
2
).

Therefore, there are really just N
2 points ω2j for j = 0, 1, . . . , N2 − 1.

In summary, evaluating a polynomial of degree N−1 = 2m−1 at all N points ωj (0 ≤ j ≤ N−1)
is the same as evaluating two polynomials of degree N

2 −1 at all N
2 points,1, and then combining

the results with N multiplications and additions. This can be done recursively as shown by the
following pseudo-code:

function ã = FFT(a,N)
if N = 1

return ã = a
else

ãeven = FFT(aeven, N/2)
ãodd = FFT(aodd, N/2)

ω = e−2πi/N

z = [ω0, ω1, . . . , ωN/2−1]
return ã = [ãeven + z. ∗ ãodd, ãeven − z. ∗ ãodd]

end if

1those are the N
2
th roots of the unity.
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where .∗ means componentwise multiplication of arrays (as in MATLAB), and have used the
fact that ωj+N/2 = −ωj .

7. Matlab script

function y = ffttx(x)

%FFTTX Textbook Fast Finite Fourier Transform.

% FFTTX(X) computes the same finite Fourier transform as FFT(X).

% The code uses a recursive divide and conquer algorithm for

% even order and straight matrix-vector multiplication otherwise.

% If length(X) is m*p where m is odd and p is a power of 2, the

% computational complexity of this approach is O(m^2)*O(p*log2(p)).

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer

u = ffttx(x(1:2:n-1));

v = ffttx(x(2:2:n));

k = (0:n/2-1)’;

w = omega .^ k;

y = [u+w.*v; u-w.*v];

else

% The Fourier matrix.

j = 0:n-1;

k = j’;

F = omega .^ (k*j);

y = F*x;

end

8. Let the cost of this algorithm be denoted C(N). Then we see that

C(N) = 2 · C
(
N

2

)
+

3N

2
,

assuming that the powers if ω are precomputed and stored in tables. This recurrence can be
solved as the following:

C(N) = 2 · C
(
N

2

)
+

3N

2

= 22 · C
(
N

4

)
+ 2 · 2N

2

= 23 · C
(
N

8

)
+ 3 · 2N

2
= · · ·
= (log2N) · 3N

2
.

Note that C(1) = 0.
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In conclusion, to compute the FFTs of columns (or rows) of an N -by-N matrix the total costs
N · (log2N) · 3N

2 = 3
2N

2 log2N , which is the complexity of the FFT method for solving the 2D
Poisson’s model problem.

9. We have seen that to solve the discrete Poisson’s model problem by the eigenvalue decomposition
of TN requires the ability to multiply by the N -by-N matrix Z, whose the (j, k) entry is

zjk =

√
2

N + 1
sin

(
π(k + 1)(j + 1)

N + 1

)
,

where for the convenient of notation, we number rows and columns from 0 to N − 1 starting
now.

Now consider the (2N + 2)-by-(2N + 2) DFT matrix Φ, whose j, k entry is

exp

(−2πijk

2N + 2

)
= exp

(−πijk

N + 1

)
= cos

πjk

N + 1
− i sin

πjk

N + 1
.

Thus the N -by-N matrix Z consists of −
√

2
N+1 times the imaginary part of the second through

(N + 1)st rows and columns of Φ. So if we can multiply efficiently by Φ using the FFT, then
we can multiply efficiently by Z. In practice, we can modify the FFT to multiply by Z directly.
This is called the Fast Sine Transform (FST).

10. References:

• C. Van Loan, Computational Framework for the Fast Fourier Transform, SIAM Press, 1992

• A. Edelman, P. McCorquodale, and S. Toledo. The future fast fourier transform? SIAM
Journal on Scientific Computing, Vol.20, pp.1094-1114, 1999.
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