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0 Important

0.1 Key Formulas

• Entropy:

H(X) =
∑

p(x) log
1

p(x)

• Entropy Change of Base Formula:

Hb(X) = logb aHa(X)

• Joint Entropy:

H(X,Y ) =
∑
x

∑
y

p(x, y) log
1

p(x, y)

= H(X) +H(Y |X) = H(Y ) +H(X|Y )

• Conditional Entropy:

H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log
1

p(y|x)

= H(X,Y )−H(X)

• Relative Entropy:

D(p||q) =
∑

p(x) log
p(x)

q(x)

– D(p||q) ≥ 0, with equality iff p = q

• Mutual Information:

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X) = I(Y ;X)

• Conditional Mutual Information:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= H(Y |Z)−H(Y |X,Z)

• Chain Rules

– Entropy:

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1, . . . , Xn)
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– Information:

I(X1, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + . . .+ I(Xn;Y |X1, . . . , Xn−1)

=

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1)

• Information Can’t Hurt:

H(X) ≥ H(X|Y )

– Corollary - Independence Bound on Entropy:

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi)

• Bound on Entropy:

– H(X) ≤ log |X | ⇔ for a fixed alphabet size, the uniform distribution has the largest entropy.

• Weak Law of Large Numbers:

1

n

n∑
i=1

Xi → E[X]

• Entropy Rate:

H(X ) = lim
n→∞

1

n
H(X1, . . . , Xn)

H ′(X ) = lim
n→∞

H(Xn|X1, . . . , Xn−1)

• Kraft Inequality ∑
D−li ≤ 1

• Channel Capacity:

C = max
p(x)

I(X;Y )

– Capacity of a Weakly Symmetric Channel:

C = log |X | −H(row of transition matrix)

• Differential Entropy:

h(X) =

∫
S
f(x) log

1

f(x)
dx
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– Uniform Distribution: x ∼ µ(0, a) ⇒ h(X) = log a (See Example 8.2)

– Normal (Gaussian) Distribution: x ∼ N (µ, σ2) ⇒ h(X) = 1
2 log 2πeσ2 (See Example 8.3)

• Capacity of a Gaussian Channel:

C =
1

2
log

(
1 +

P

N

)
where P is the power constraint and N is the noise variance.
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1 Introduction and Preview

Remark 1.1. 2 Main Questions of Information Theory
page 1 and Notes 3/28/11

1. What is the ultimate data compression? (Answer: the entropy H)

2. What is the ultimate transmission rate of communication? (Answer: the channel capacity C)

Remark 1.2. 3 Main Concepts
Notes 3/28/11

1. Entropy

2. Relative Entropy

3. Mutual Information

Remark 1.3.
Notes 3/28/11

How do we measure information?

• Reduction of uncertainty

– Flip a coin, heads shows up

– Roll a die, it is an even number

How do we measure uncertainty?

Remark 1.4. Notation
Notes 3/28/11

Rather than writing pX(x) and pY (y), the terms p(x) and p(y) shall be used.

Unless otherwise stated, logs are base 2. (Recall: logb(x) = loga(x)
loga(b) )

Capital letters denote variables, lowercase letters denote realizations.

The units of entropy are bits.
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2 Entropy, Relative Entropy, and Mutual Information

2.1 Entropy

Definition 2.1. Entropy
page 13 and Notes 3/28/11

Entropy is a measure of the uncertainty of a random variable. Let X be a discrete random variable
with alphabet X and probability mass function p(x). The entropy is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x) = Ep log
1

p(x)
= −Ep log p(x)

where E(g(x)) =
∑
x
p(x)g(x). If the base of the entropy is b 6= 2, then we write Hb(X).

Remark 2.2.
pages 14 & 15 and Notes 3/28/11

1. We use the convention that 0 log 0 ≡ 0. (Note: lim
ε→0

ε log ε = 0.) This means that adding any

terms of zero probability does not change the entropy.

2. Entropy is a function of the distribution of X. It does not depend on the values taken by X.

3. H(X) ≥ 0

4. Hb(X) = logb a Ha(X)

Example 2.3.
page 15 and Notes 3/28/11

Let

X =

{
1 with probability p
0 with probability 1− p

Then
H(X) = −p log p− (1− p) log(1− p) ≡ H(p)

In particular, when p = 1
2 then H(X) = 1 bit.
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Example 2.4.
page 15 and Notes 3/28/11

Let

X =


a with probability 1

2
b with probability 1

4
c with probability 1

8
d with probability 1

8

Then

H(X) =
7

4
bits

7
4 is the minimum expected number of binary questions required to determine the value of X. This
scheme could be stored as

a↔ 0 b↔ 10 c↔ 110 d↔ 111

Note that − log p(x) is approximately the number of bits we want to assign to x.

2.2 Joint Entropy and Conditional Entropy

Definition 2.5. Joint Entropy
page 16 and Notes 3/28/11

The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) with a joint distribution
p(x, y) is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) = −Ep log
1

p(x, y)

Definition 2.6. Conditional Entropy
page 17 and Notes 3/28/11

If (X,Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −Ep(x,y) log p(Y |X)

8



Theorem 2.7. Chain Rule
page 17 and Notes 3/28/11

H(X,Y ) = H(X) +H(Y |X)

= H(Y ) +H(X|Y )

Remark 2.8.
page 18 and Notes 3/28/11

H(X|Y ) 6= H(Y |X)

H(X)−H(X|Y ) = H(Y )−H(Y |X)

The second line says that the reduction in the uncertainty (achieved via correlation) is the same.

2.3 Relative Entropy and Mutual Information

Definition 2.9. Relative Entropy
page 19 and Notes 3/28/11

Relative entropy is a measure of the distance between two distributions. Specifically, the relative
entropy D(p||q) is a measure of the inefficiency of assuming that the distribution is q when the true
distribution is p. It is also known as the Kullback-Leibler distance/divergence. It is given by

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep log

p(X)

q(X)

Remark 2.10.
Notes 3/28/11

The number of bits is on the order of
∑
x∈X

p(x) log 1
q(x) based on the incorrect coding scheme q.

∑
x∈X

p(x) log
1

q(x)
=
∑
x∈X

p(x) log
1

p(x)
+D(p||q)

9



Remark 2.11.
page 19 and Notes 3/28/11

1. p log p
0 =∞. If there is any x such that p(x) > 0 but q(x) = 0 then D(p||q) =∞.

Next class we will show:

2. D(p||q) ≥ 0 with equality iff p = q.

3. Relative entropy is not a true distance function between distributions because D(p||q) 6=
D(q||p), and it also doesn’t satisfy the triangle inequality.

Definition 2.12. Conditional Relative Entropy
Notes 3/28/11

Given p(x, y) and q(x, y), the conditional relative entropy D
(
p(y|x)||q(y|x)

)
is the average entropy

between p(y|x) and q(y|x) averaged over p(x).

D
(
p(y|x)||q(y|x)

)
=
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x)
=
∑
x

∑
y

p(x, y) log
p(y|x)

q(y|x)

Definition 2.13. Mutual Information
page 19 and Notes 3/28/11

Consider 2 random variables X and Y with a joint probability mass function p(x, y) and marginal
probability mass functions p(x) and p(y). The mutual information I(X,Y ) is the relative entropy
between the joint distribution p(x, y) and the product distribution p(x)p(y).

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D

(
p(x, y)||p(x)p(y)

)
= Ep(x,y) log

p(X,Y )

p(X)p(Y )

10



2.4 Relationship Between Entropy and Mutual Information

Remark 2.14.
page 21 and Notes 3/28/11

We can prove that:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y )

= I(Y ;X)

I(X;X) = H(X)

This last identity is why entropy is sometimes called self-information.

2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information

Theorem 2.15. Chain Rule for Entropy
page 22 and Notes 3/30/11

Given: X1, . . . , Xn ∼ p(x1), . . . , p(xn)
Then:

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + . . .+H(Xn|X1, . . . , Xn)

=
n∑
i=1

H(Xi|X1, . . . , Xi−1)

Definition 2.16. Conditional Mutual Information
page 23

The conditional mutual information of random variables X and Y given Z is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

= Ep(x,y,z) log
p(X,Y |Z)

p(X|Z)p(Y |Z)

Theorem 2.17. Chain Rule for Information
page 24 and Notes 3/30/11

I(X1, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1)
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Proof.

I(X1, . . . , Xn;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y )

=

n∑
i=1

H(Xi|X1, . . . , Xi−1)−
n∑
i=1

H(Xi|X1, . . . , Xi−1, Y )

=

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1

Theorem 2.18. Chain Rule for Relative Entropy
page 24 and Notes 3/30/11

D
(
p(x, y)||q(x, y)

)
= D

(
p(x)||q(x)

)
+D

(
p(y|x)||q(y|x)

)

2.6 Jensen’s Inequality and Consequences

Definition 2.19. Convex, Concave
page 25 and Notes 3/30/11

A function f is convex if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

i.e. the function lies below every chord. If the inequality is strict then it is strictly convex. A
function g is concave if −g is convex.

Theorem 2.20. Jensen’s Inequality
page 27 and Notes 3/30/11

If f is convex, then
E[f(X)] ≥ f(E[X])

If f is strictly convex then X is a constant, i.e. X = E[X].

If f is concave, then
E[f(X)] ≤ f(E[X])

Theorem 2.21. Information Inequality
page 28 and Notes 3/30/11

D(p||q) ≥ 0, with equality iff p = q.

12



Proof.

−D(p||q) = −
∑
x

p(x) log
p(x)

q(x)

=
∑
x

log
q(x)

p(x)

≤ log
∑
x

p(x)
q(x)

p(x)
(2.1)

≤ log 1 ≤ 0

where (2.1) follows from Jensen’s Inequality (Theorem 2.20), since log is concave.

Corollary 2.22. Nonnegativity of Mutual Information
page 28 and Notes 3/30/11

I(X;Y ) ≥ 0, with equality iff X and Y are independent ⇒ p(x, y) = p(x)p(y).

Theorem 2.23. Conditioning Reduces Entropy ⇔ Information Can’t Hurt
page 29 and Notes 3/30/11

H(X|Y ) ≤ H(X)

with equality iff X and Y are independent.

Proof. 0 ≤ I(X;Y ) = H(X)−H(X|Y )

Remark 2.24.
page 30 and Notes 3/30/11

H(X|Y = y) may actually be bigger than H(X). For example, consider

HHH
HHHY

X
1 2

1 0 3
4

2 1
8

1
8

H(X) = H

(
1

8
,
1

8

)
= 0.544

H(X|Y = 2) = 1

H(X|Y = 1) = 0

H(X|Y ) =
3

4
· 0 +

1

4
· 1 =

1

4
< H(X)

13



Theorem 2.25. Independence Bound on Entropy
page 30 and Notes 3/30/11

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi)

Proof. By the chain rule for entropies (Theorem 2.15),

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|X1, . . . , Xi−1)

≤
n∑
i=1

H(Xi)

Remark 2.26.
Notes 3/30/11

For a fixed alphabet size, the uniform distribution has the largest entropy. Given X with a finite
alphabet X , then H(X) ≤ log |X | and

0 ≤ D(p||u) =
∑
x

p(x) log
p(x)

1
|X |

=
∑
x

p(x) log p(x) + log |X | = log |X | −H(X)

2.7 Log Sum Inequality and its Applications

Theorem 2.27. Log Sum Inequality
page 31 and Notes 3/30/11

For nonnegative numbers a1, . . . , an and b1, . . . , bn,

n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log

n∑
i=1

ai

n∑
i=1

bi

with equality if ai = cbi for some constant c.

The proof of this uses Jensen’s Inequality (Theorem 2.20).
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Theorem 2.28. Convexity of Relative Entropy
page 32 and Notes 3/30/11

D(p||q) is convex in the pair (p, q). That is, if (p1, q1) and (p2, q2) are two pairs of probability mass
functions, then

D
(
λp1 + (1− λ)p2||λq1 + (1− λ)q2

)
≤ λD(p1||q1) + (1− λ)D(p2||q2)

Proof. Applying the log sum inequality (Theorem 2.27) to the LHS of the above equation, we get(
λp1(x) + (1− λ)p2(x)

)
log

λp1(x) + (1− λ)p2(x)

λq1(x) + (1− λ)q2(x)
≤ λp1(x) log

λp1(x)

λq1(x)
+ (1− λ)p2(x) log

(1− λ)p2(x)

(1− λ)q2(x)

Summing over all x, we get the desired result.

Theorem 2.29. Concavity of Entropy
page 32 and Notes 4/4/11

H(p) is a concave function of p.

Proof.
H(p) = log |X | −D(p||u)

This is because

D(p||u) =
∑
x

p(x) log
p(x)

u(x)
=
∑
x

p(x) log |X |+
∑
x

p(x) log p(x)

= log |X | −H(X)

D(p||u) is convex in p, so the negative makes H(p) concave.

Example 2.30.
Notes 4/4/11

Let p1 = {1
2 ,

1
4 ,

1
8 ,

1
8} and p2 = {1

4 ,
1
4 ,

1
4 ,

1
4}.

Then H(p1) = 7
4 and H(p2) = 2

If we take λ = 1
4 , then

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2)

2.8 Data-Processing Inequality

Definition 2.31. Markov Chain
page 34 and Notes 4/4/11

Random variables X,Y, Z are said to form a Markov chain, denoted X → Y → Z, if

p(x, y, z) = p(x)p(y|x)p(z|y)

15



Remark 2.32.
page 34 and Notes 4/4/11

1. X → Y → Z iff X and Z are conditionally independent given Y

2. If X → Y → Z then Z → Y → X

3. If Z = f(Y ), then X → Y → Z

4. If X → Y → Z, then I(X;Z|Y ) = 0

Theorem 2.33. Data Processing Inequality
page 34 and Notes 4/4/11

If X → Y → Z, then I(X;Y ) ≥ I(X;Z)

Proof. By the chain rule,

I(X;Y |Z) = I(X;Z) + I(X;Y |Z)︸ ︷︷ ︸
≥0

= I(X;Y ) + I(X;Z|Y )︸ ︷︷ ︸
=0

where I(X;Z|Y ) = 0 because X and Z are conditionally independent given Y . Since I(X;Y |Z) ≥ 0, we
have

I(X;Y ) ≥ I(X;Z)

with equality iff I(X;Y |Z) = 0, i.e. X → Z → Y forms a Markov chain.

Corollary 2.34.
page 35 and Notes 4/4/11

If Z = f(Y ) then I(X;Y ) ≥ I(X; f(Y ))

Remark 2.35.
page 35 and Notes 4/4/11

It is possible that I(X;Y |Z) > I(X;Y ) when X,Y, Z do not form a Markov chain. For example,
let X and Y be independent binary random variables and set Z = X + Y . Then I(X;Y ) = 0 and

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(X|Z) = P (Z = 1)H(X|Z = 1) =
1

2
bit
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2.9 Sufficient Statistics

2.10 Fano’s Inequality

Theorem 2.36. Fano’s Inequality
page 38 and Notes 4/4/11

Suppose that we want to estimate the value of a random variable X using a correlated random
variable Y . Let X̂ = f(Y ). We define the probability error

Pe = Pr[X̂ 6= X]

Fano’s Inequality tells us that for any estimator X̂ such that X → Y → X̂, with Pe = Pr[X̂ 6= X],
we have

H(Pe) + Pe log |X | ≥ H(X|Y ) if X̂ 6= X
H(Pe) + Pe log(|X | − 1) ≥ H(X|Y ) if X̂ = X

and thus

Pe ≥
H(X|Y )− 1

log |X |︸ ︷︷ ︸
or log(|X |−1)

Proof. Let

E =

{
1 if X̂ 6= X

0 if X̂ = X

Then Pr[E = 1] = Pe and

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂)︸ ︷︷ ︸
=0

= H(E|X̂)︸ ︷︷ ︸
≤H(Pe)

+H(X|E, X̂)︸ ︷︷ ︸
≤Pe log |X |

We can show that
H(X|X̂) ≤ H(Pe) + Pe log |X |

and it follows from the data-processing inequality that

H(X|X̂) ≥ H(X|Y )

17



Remark 2.37.
Notes 4/4/11

Fano’s Inequality is sharp, as seen in these 2 cases:

1. If X = g(Y ) then H(X|Y ) = 0 and Pe = 0 because X̂ = g(Y )

2. No observation (no knowledge of Y )
X ∈ {1, . . . ,m}, p1 ≥ p2 ≥ . . . ≥ pm
X̂ = 1, Pe = 1 − p1, and equality in Fano’s Inequality is achieved when the probabilities are(
p, 1−p

m−1 , . . . ,
1−p
m−1

)
This is found by setting H(Pe) + Pe log(m− 1) = H(X)

Remark 2.38. Review of Key Concepts
Notes 4/6/11

H(X) = H(p) = −E[log p(X)] =
∑
x

p(x) log
1

p(x)

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

I(X;Y ) = D
(
p(x, y)||p(x)p(y)

)
= H(X)−H(X|Y ) = H(Y )−H(Y |X)

Jensen’s Inequality: If f is convex, then E[f(X)] ≥ f(E[X]).
It follows that D(p||q) ≥ 0, I(X;Y ) ≥ 0, H(X|Y ) ≤ H(X), H(X) ≤ log |X |, H(X1, . . . , Xn) ≤∑
i
H(Xi).

Log-Sum Inequality:
n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log

∑
i
ai∑
bi

D(p||q) is convex, H(p) is concave, I(X;Y ) is concave in p(x) for fixed p(y|x) and convex in p(y|x)
for fixed p(x).

Data Processing Inequality:

If X → Y → Z, then I(X;Y ) ≥ I(X;Z)

Fano’s Inequality: For any estimator X̂ such that X → Y → X̂, we have

H(Pe) + Pe log |X |︸ ︷︷ ︸
Pe log(|X |−1)

≥ H(X|Y )

Pe ≥
H(X|Y )− 1

log |X |︸ ︷︷ ︸
log(|X |−1)

18



Lemma 2.39.
page 40 and Notes 4/6/11

Let X,X ′ be two independent random variables, X ∼ p, X ′ ∼ p′. Then

Pr [X = X ′] ≥ 2−H(p)−D(p||p′)

Pr [X = X ′] ≥ 2−H(p′)−D(p′||p)

}
not necessarily the same value

If X and X ′ are independent identically distributed random variables (i.i.d.), meaning that p = p′,
then

Pr [X = X ′] ≥ 2−H(p)

Proof.

2−H(p)−D(p||p′) = 2

∑
x
p(x) log p(x)−

∑
x
p(x) log

p(x)

p′(x)

= 2

∑
x
p(x) log p′(x)

= 2E[log p′(x)]

≤ Ep
[
2log p′(x)

]
= Ep[p′(x)] =

∑
x

p(x)p′(x) = Pr [X = X ′]
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3 Asymptotic Equipartition Property

3.1 Asymptotic Equipartition Property Theorem

Theorem 3.1. Weak Law of Large Numbers
Notes 4/6/11

If X1, X2, . . . are i.i.d. random variables drawn from p, then

1

n

n∑
i=1

Xi → Ep[X] in probability

(Xn
in prob−→ X means that Pr [|Xn −X| > ε]→ 0.)

Theorem 3.2. Asymptotic Equipartition Property (AEP) Theorem
page 58 and Notes 4/6/11

If X1, . . . , Xn are i.i.d. ∼ p(x), then

− 1

n
log p(X1, . . . , Xn)→ H(X) in probability

Proof. The LHS:

− 1

n

∑
i

log p(Xi)→ −E[log p(X)] = H(X)

Definition 3.3. Typical Set
page 59 and Notes 4/6/11

For any ε > 0, the typical set A
(n)
ε with respect to p(x) is the set of all sequences (x1, . . . , xn)

satisfying
2−n[H(X)+ε] ≤ p(x1, . . . , xn) ≤ 2−n[H(X)−ε]

Properties of A
(n)
ε :

1. Pr [A
(n)
ε ] > 1− ε for n sufficiently large

2. |A(n)
ε | ≤ 2n[H(X)+ε]

3. |A(n)
ε | ≥ (1− ε) · 2n[H(X)−ε]
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Remark 3.4. Number of Typical Sequences
Notes 4/6/11

The number of typical sequences ≈
(
n
np

)
∼ 2nH(X).

To see this, recall Stirling’s formula: n! ∼
√

2πn
(
n
e

)n
M =

(
n

np

)
∼

√
2πn

(
n
e

)n
√

2πnp
(np
e

)np√
2πnq

(nq
e

)nq =
1√

2πnpqpnpqnq

logM ∼ −1

2
log(2πnpq)− np log p− nq log q

∼ n

[
H(X)−

1
2 log(2πnpq)

n

]

3.2 Consequences of the AEP: Data Compression

Remark 3.5. Code Word Length
Notes 4/6/11

For sequences in A
(n)
ε , the code word length is n(H + ε) + 2 bits.

For atypical sequences, the code word length is n log |X |+ 2 bits.

Theorem 3.6. Average Code Word Length
page 61 and Notes 4/6/11

L =
∑

xn1∈A
(n)
ε

p(xn1 )l1 +
∑

xn1 6∈A
(n)
ε

p(xn1 )l2

= n(H + ε)
∑

xn1∈A
(n)
ε

p(xn1 ) + n log |X |
∑

xn1 6∈A
(n)
ε

p(xn1 ) + 2

≤ n(H + ε) + n log |X |ε+ 2

≤ n[H(X) + ε′]

where ε′ = ε+ ε log |X |+ 2
n .
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Example 3.7.
Notes 4/11/11

Consider a biased coin with p(heads) = 0.9. The Asymptotic Equipartition Property (Theorem 3.2)
says that if we flip it enough times then

− 1

n
log p(X1, . . . , Xn)

i.p.−→H(X)

Definition 3.8. High-Probability Set
page 62 and Notes 4/11/11

For each n = 1, 2, . . ., define the high-probability set B
(n)
δ ⊂ X n to be the smallest set with

Pr {B(n)
δ } ≥ 1− δ

Remark 3.9. Typical Sequence 6= Most Likely Sequence
Notes 4/11/11

(From Example 3.7) Typical sequences have 90% heads. The most likely sequence is all heads.

Theorem 3.10.
page 63 and Notes 4/11/11

Let X1, . . . , Xn be i.i.d. ∼ p(x). Then for every δ′ > 0,

1

n
log |B(n)

δ | > H − δ′

|B(n)
δ | > 2n(H−δ′)

Proof.

Pr {A(n)
ε ∩B

(n)
δ } =

∑
xn1∈A

(n)
ε ∩B

(n)
δ

Pr (xn1 ) =
∑

xn1∈A
(n)
ε

p(xn1 ) +
∑

xn1∈B
(n)
δ

p(xn1 )−
∑

xn1∈A
(n)
ε ∪B

(n)
δ

p(xn1 )

> (1− ε) + (1− δ)− 1

> 1− ε− δ (3.1)

We also get

Pr {A(n)
ε ∩B

(n)
δ } =

∑
xn1∈A

(n)
ε ∩B

(n)
δ

Pr (xn1 )

≤
∑

xn1∈A
(n)
ε ∩B

(n)
δ

2−n(H−ε) = |A(n)
ε ∩B

(n)
δ |2

−n(H−ε)

≤ |B(n)
δ |2

−n(H−ε) (3.2)
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Combining (3.1) and (3.2) gives

|B(n)
δ |2

−n(H−ε) ≥ 1− ε− δ

|B(n)
δ | ≥ 2n(H−ε)(1− ε− δ)

1

n
log |B(n)

δ | > H − ε+
log(1− ε− δ)

n︸ ︷︷ ︸
δ′

= H − δ′

Remark 3.11. Notation:
.
=

page 63 and Notes 4/11/11

an
.
= bn denotes that an and bn are equal to the first order exponent. That is,

lim
n→∞

1

n
log

an
bn

= 0

For example:

an = 2
n
(
H+

√
n
n

)
, bn = 2n(H+ logn

n ), cn = 2nH

It is easily seen that an
.
= bn

.
= cn.
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4 Entropy Rates of a Stochastic Process

4.1 Markov Chains

Definition 4.1. Stochastic Process, Stationary
page 71 and Notes 4/11/11

A stochastic process {Xi} is an indexed sequence of random variables that is characterized by the
joint distribution p(x1, x2, . . . , xn). A stochastic process is said to be stationary if it is invariant
with respect to shifts in the time index; that is,

Pr {X1 = x1, X2 = x2, . . . , Xn = xn} = Pr {X1+l = x1, X2+l = x2, . . . , Xn+l = xn}

4.2 Entropy Rate

Definition 4.2. Entropy Rate
page 74 and Notes 4/11/11

The entropy rate of a stochastic process is

H(X ) = lim
n→∞

1

n
H(X1, . . . , Xn)

provided the limit exists. A second definition is given by

H ′(X ) = lim
n→∞

H(Xn|X1, . . . , Xn−1)

provided the limit exists.
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Example 4.3. Entropy Rate Examples
Notes 4/11/11

1. Given: X1, X2, . . . , Xn are i.i.d. random variables. Then H(X ) = H(X) = H ′(X ).

2. Given: Xi are binary random variables with pi = Pr [Xi = 1] independent.

pi =

{
0.5 if dlog ie is odd⇒ H(Xi) = 1

0 if dlog ie is even⇒ H(Xi) = 0

i 1 2 3 4 5 6 7 8 9

H(Xi) 0 1 0 0 1 1 1 1 0

H(X2r−1+1) = H(X2r) =

{
1 if r odd
0 if r even

2r∑
i=1

H(Xi) =

{
1 + 22 + 24 + . . .+ 2r−1 = 2r+1−1

3 r odd

1 + 22 + . . .+ 2r = 2r−1−1
3 r even

2r∑
i=1

H(Xi)

2r
=

{
2
3 −

1
3·2r r odd

1
3 −

1
3·2r r even

⇒ no limit

H ′(X ) = lim
n→∞

H(Xn|X1, . . . , Xn)⇒ does not exist

Theorem 4.4.
page 75 and Notes 4/11/11

For a stationary stochastic process, H(X ) and H ′(X ) are defined and equal.

Proof. First show H ′(X ) is defined.

H(Xn|X1, . . . , Xn−1) ≤ H(Xn|X2, . . . , Xn−1) = H(Xn−1|X1, . . . , Xn−2)

because it is stationary. The sequence is nonincreasing and nonnegative, so the limit exists. Computing
H(X ) we get that

1

n
H(X1, . . . , Xn) =

1

n
(H(X1) +H(X2|X1) + . . .+H(Xn|X1, . . . , Xn−1)→ H ′(X )

by the Cesáro Mean Theorem (Theorem 4.5).

Theorem 4.5. Cesáro Mean
page 76 and Notes 4/11/11

If an → a and bn = 1
n

n∑
i=1

ai, then bn → a.
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Theorem 4.6. Shannon-McMillan-Breiman Theorem (AEP)
page 77 and Notes 4/11/11

For any stationary ergodic process, we have

− 1

n
log p(X1, . . . , Xn)

i.p.−→H(X )

with probability 1. The proof uses the law of large numbers for ergodic processes.

Example 4.7. Markov Chain, Time-Invariant, Probability Transition Matrix, Irreducible, Aperi-
odic, Stationary Distribution
page 73 and Notes 4/11/11

Consider a Markov chain X1, . . . , Xn. Each random variable depends only on the one preceding it
and is conditionally independent of all the other preceding random variables; that is,

Pr [Xn|X1, . . . , Xn−1] = Pr [Xn|Xn−1]

If Pr [Xn|Xn−1] = constant for all n, then the Markov chain is time-invariant and we write

Pr [Xn|Xn−1] ≡ Pi,j

We form the probability transition matrix P = [Pij ], i, j ∈ {1, 2, . . . ,m} by setting

Pij = Pr [Xn = j|Xn−1 = i]

If it is possible to go with positive probability from any state of the Markov chain to any other state
in a finite number of steps then the Markov chain is said to be irreducible. If the largest common
factor of the lengths of different paths from a state to itself is 1, the Markov chain is aperiodic.

If there exists a state π = [P1, . . . , Pn] such that the distribution at the next time step is identical,
i.e. π = Pπ, then π is a stationary distribution. If Pr [X1] = π then we will stay there forever and
the Markov chain is a stationary process, and

H(X ) = lim
n→∞

H(Xn|X1, . . . , Xn−1)

= lim
n→∞

H(Xn|Xn−1)

= H(X2|X1)

=
M∑
i=1

πiH(X2|X1 = i)

=

M∑
i=1

πi

M∑
j=1

Pij log
1

Pij

In other words, we have (at least for a 2 state Markov chain, see HW3 Problem 4.7)

H(X ) = µ1H(Prow 1) + µ2H(Prow 2).

If we have a finite, irreducible Markov chain with finite space, then it has a limiting distribution
(the unique stationary distribution).
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5 Data Compression

5.1 Examples of Codes

Definition 5.1. Source Code
page 103 and Notes 4/13/11

A source code C for a random variable X is a mapping from X to D∗, the set of finite-length strings
from a D-ary alphabet. Let C(x) denote the codeword corresponding to x and let l(x) denote the
length of C(x).

Definition 5.2. Expected Length
page 104 and Notes 4/13/11

The expected length L(C) of C(x) is given by

L(C) =
∑
x

p(x)l(x)

Definition 5.3. Nonsingular
page 105 and Notes 4/13/11

A code is nonsingular if every element in X is mapped to a different codeword. In other words,
x 6= x′ implies that C(x) 6= C(x′).

Definition 5.4. Extension, Uniquely Decodable
page 105 and Notes 4/13/11

The extension C∗ of a code C is the mapping from finite-length strings of X to finite-length strings
in D∗ given by

C(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn)

A code is uniquely decodable if its extension is nonsingular.

Definition 5.5. Instantaneous Code, Prefix Code
page 106 and Notes 4/13/11

A code is called a prefix code or an instantaneous code if no codeword is a prefix of any other
codeword.

Remark 5.6.
page 106 and Notes 4/13/11

All codes ⊃ Nonsingular ⊃ Uniquely Decodable ⊃ Instantaneous
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Example 5.7.
page 107 and Notes 4/13/11

X Singular Nonsingular, Uniquely decodable, Instantaneous
not uniquely decodable not instantaneous

1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111

5.2 Kraft Inequality

Theorem 5.8. Kraft Inequality
page 107 and Notes 4/13/11

For any prefix code over an alphabet of size D ≥ 2, the codeword lengths l1, l2, . . . , lm must satisfy∑
i

D−li ≤ 1

Conversely, given a set of codeword lengths satisfying this inequality, there exists a prefix code with
those codeword lengths.

Theorem 5.9. Extended Kraft Inequality
page 109 and Notes 4/13/11

For any countably infinite set of codewords that form a prefix code (or a uniquely decodable code),
the codeword lengths satisfy

∞∑
i=1

D−li ≤ 1

Conversely, given any l1, l2, . . . satisfying the above inequality, we can construct a prefix code with
these codeword lengths.

Theorem 5.10. Kraft Inequality (McMillan)
page 116 and Notes 4/18/11

The codeword lengths of any uniquely decodable D-ary code must satsify the Kraft inequality∑
D−li ≤ 1

Proof. Consider Ck, the kth extension of the code. By the definition of unique decodability, the kth extension
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of the code is nonsingular. Then(∑
x∈X

D−l(x)

)k
=
∑
x1∈X

∑
x2∈X

. . .
∑
xk∈X

D−l(x1)D−l(x2) . . . D−l(xk)

=
∑

x1,x2,...,xk∈Xk
D−l(x1)D−l(x2) . . . D−l(xk)

=
∑
xk∈Xk

D−l(x
k)

and somehow this leads to the desired result.

5.3 Optimal Codes

Remark 5.11.
page 110 and Notes 4/18/11

We want to minimize
L =

∑
pili

while satisfying ∑
D−li ≤ 1.

We do this using Lagrange multipliers. We set

J =
∑

pili + λ
(∑

d−li
)

∂J

∂li
= pi − λD−li logeD = 0

D−li =
pi

λ logeD

λ =
1

logeD

pi = D−li

l∗i = − logD pi

where l∗i is the optimal code length for xi.

Theorem 5.12.
page 111 and Notes 4/18/11

The expected length L of any prefix D-ary code for a random variable X satisfies

L ≥ HD(X)

with equality iff logD
1
pi

is an integer for all i.
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Proof.

L−HD(X) =
∑

pili −
∑

pi logD
1

pi

= −
∑

pi logDD
−li +

∑
pi logD pi

Let

c =
∑

D−li and ri =
D−li∑
D−li

=
D−li

c

Then continuing from above, we have

L−HD(X) =
∑

pi logD ric+
∑

pi logD pi

=
∑

pi logD
pi
ric

=
∑

pi logD
pi
ri
−
∑

pi logD c

= D(p||r) + logD
1

c
≥ 0

Definition 5.13. D-adic
page 112 and Notes 4/18/11

A probability distribution is D-adic if each probability equals D−n for some integer n.

5.4 Bounds on the Optimal Code Length

Definition 5.14. Shannon-Fano Coding
page 112 and Notes 4/18/11

Choose code lengths by

li =

⌈
logD

1

pi

⌉
This is a prefix code because∑

i

D−li =
∑
i

D
−
⌈
logD

1
pi

⌉
≤
∑
i

D
− logD

1
pi =

∑
pi = 1

We can bound the expected codeword length by

L =
∑
i

pi

⌈
logD

1

pi

⌉
≤
∑
i

pi

(
logD

1

pi
+ 1

)
= HD(X) + 1
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Theorem 5.15.
page 113 and Notes 4/18/11

Let L∗ be the associated expected length of the optimal prefix code. Then

HD(X) ≤ L∗ ≤ HD(X) + 1

Remark 5.16. Approaching the Entropy
page 113 and Notes 4/18/11

Let Ln be the expected codeword length per input symbol; that is,

Ln =
1

n

∑
(x1,...,xn)∈Xn

p(x1, . . . , xn)l(x1, . . . , xn)

Then by Theorem 5.15,

HD(X1, . . . , Xn) ≤ nLn ≤ HD(X1, . . . , Xn) + 1

Because X1, . . . , Xn are i.i.d., H(X1, . . . , Xn) =
∑
H(Xi) = nH(X). Thus, we get

HD(X) ≤ Ln ≤ HD(X) +
1

n

If we have a stochastic process that is stationary, then

Ln → H(X )

Theorem 5.17.
page 114 and Notes 4/18/11

The minimum expected codeword length per symbol satisfies

H(X1, . . . , Xn)

n
≤ L∗n ≤

H(X1, . . . , Xn)

n
+

1

n

Moreover, if X1, . . . , Xn is a stationary stochastic process then

L∗n → H(X )

Theorem 5.18. Wrong Code
page 115 and Notes 4/18/11

If the true distribution is p(x) and our code is designed for q(x) with l(x) =
⌈
log 1

q(x)

⌉
, then

H(p) +D(p||q) ≤ Epl(X) ≤ H(p) +D(p||q) + 1
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Proof.

Epl(X) =
∑
x

p(x)

⌈
log

1

q(x)

⌉
<
∑
x

p(x)

(
log

1

q(x)
+ 1

)
=
∑
x

p(x) log
1

q(x)
· p(x)

p(x)
+ 1

<
∑
x

p(x) log
p(x)

q(x)
+
∑
x

p(x) log
1

p(x)
+ 1

< H(p) +D(p||q) + 1

5.6 Huffman Codes

Example 5.19. Huffman Code (D = 2)
page 118 and Notes 4/20/11

Construction of Huffman code for D = 2, X = {1, 2, 3, 4, 5}, p = {0.25, 0.25, 0.2, 0.15, 0.15}

1 0.25⇒ 01 0.3⇒ 00 0.45⇒ 1 0.55⇒ 0
2 0.25⇒ 10 0.25⇒ 01 0.25⇒ 10 0.2⇒ 11
3 0.2⇒ 11 0.25⇒ 10 0.25⇒ 01
4 0.15⇒ 000 0.2⇒ 11
5 0.15⇒ 001

Example 5.20. Huffman Code (D = 3)
page 119 and Notes 4/20/11

Construction of Huffman code for D = 2, X = {1, 2, 3, 4, 5}, p = {0.25, 0.25, 0.2, 0.15, 0.15}

1 0.25 0.5⇒ 0
2 0.25 0.25⇒ 1
3 0.2 0.2⇒ 2
4 0.15
5 0.15

Example 5.21. Huffman Code (D = 4)
page 119 and Notes 4/20/11

Construction of Huffman code for D = 2, X = {1, 2, 3, 4, 5}, p = {0.25, 0.25, 0.2, 0.15, 0.15}

1⇒ 1 0.25 0.3⇒ 0
2⇒ 2 0.25 0.25⇒ 1
3⇒ 3 0.2 0.25⇒ 2
4⇒ 00 0.15 0.2
5⇒ 01 0.15
6 0
7 0
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Remark 5.22.
page 119 and Notes 4/20/11

• The total number of symbols should be 1 + k(D − 1)

• It is possible to have 2 optimal codes with different codeword lengths, but the same expected
codeword length

• The codeword lengths of optimal codes are not unique

Example 5.23.
Notes 4/20/11

Let D = 2, X = {1, 2, 3, 4}, p =
{

1
3 ,

1
3 ,

1
4 ,

1
12

}
.

1⇒ 1 1
3

1
3

2
3

2⇒ 00 1
3

1
3

1
3

3⇒ 010 1
4

1
3

∗

4⇒ 011 1
12

1⇒ 00 1
3

1
3

∗ 2
3

2⇒ 01 1
3

1
3

1
3

3⇒ 10 1
4

1
3

4⇒ 11 1
12

5.7 Some Comments on Huffman Codes

Remark 5.24. Huffman vs. Shannon
page 122 and Notes 4/20/11

For Shannon code,
⌈
log 1

pi

⌉
, choose pi small, e.g. p = {0.999, 0.001}. Then for Huffman code,

li ≤
⌈

log
1

pi

⌉

5.8 Optimality of Huffman Codes

Lemma 5.25.
page 123 and Notes 4/20/11

For any distribution, there exists an optimal prefix code that satisfies

1. the lengths of the codeword are ordered inversely with probability, i.e. pj ≥ pk ⇒ lj ≤ lk.
2. the two longest codewords have the same length.

3. two of the longest codewords differ only in the last bit
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Proof. Consider C ′ with codewords j and k interchanged from C∗. Then

L(C ′)− L(C∗) = pjlk + pklj − pjlj − pklk
= (pj − pk)︸ ︷︷ ︸

≥0

(lk − lj)

Definition 5.26. Canonical Codes
page 125 and Notes 4/20/11

Canonical codes are codes that satisfy the 3 properties in Lemma 5.25.

Definition 5.27. Huffman Reduction
page 125 and Notes 4/20/11

|X | = m, P = (p1, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm
|X ′| = m− 1, P = (p1, . . . , pm−2, pm−1 + pm)

Remark 5.28.
Notes 4/20/11

Let C∗m−1(P′) be the optimal code for P′.
Let C∗m(P) be the optimal code for P.
From C∗m−1(P′) we can construct an extension code for |X | = m. To do this, take the codeword in
C∗m−1 for pm−1 + pm and extend it by adding 1 more bit at the end. The average length

∑
i
lipi is:

L(P) = L∗(P′) + pm−1 + pm

Start from a canonical code for |X | = m. We can construct a code for P′ by throwing away the last
bit of the two codewords for pm−1 and pm. Then we have

L(P′) = L∗(P)− pm−1 − pm
(
L∗(P) = pm−1lmax + pmlmax

)
L(P) + L(P′) = L∗(P) + L∗(P′)

[L(P′)− L∗(P′)]︸ ︷︷ ︸
0

+ [L(P)− L∗(P)]︸ ︷︷ ︸
0

= 0
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7 Channel Capacity

7.1 Examples of Channel Capacity

Definition 7.1. Discrete Channel
page 183 and Notes 4/25/11

A discrete channel consists of

• A discrete alphabet X (input alphabet)

• A discrete alphabet Y (output alphabet)

• A conditional probability p(yn|xn) for each n

xn = (x1, . . . , xn) ∈ X n

yn = (y1, . . . , yn) ∈ Yn

Definition 7.2. Memoryless Channnel
page 184 and Notes 4/25/11

A memoryless channel satisfies

p(yn|xn) =

n∏
i=1

p(yi|xi)

Remark 7.3.
Notes 4/25/11

A channel can be given by a matrix, P, with rows corresponding to x and columns corresponding
to y.

Definition 7.4. Operational Channel Capacity
page 184 and Notes 4/25/11

Operational channel capacity is the highest rate at which information can be sent (with arbitrarily
low probability of error).

Definition 7.5. Information Channel Capacity
page 184 and Notes 4/25/11

We define the information channel capacity as

C = max
p(x)

I(X;Y )
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Example 7.6. Noisy Channel with Nonoverlapping Outputs
page 185 and Notes 4/25/11

0 7→ 0

1 7→ 1, 2 with equal probability

2 7→ 3

P =

 1 0 0 0
0 1

2
1
2 0

0 0 0 1


There is no ambiguity (nonoverlapping output).

C = max
p(x)

I(X;Y ) = max
p(x)

H(X)−H(X|Y ) = max
p(x)

H(X)

= log 3

Example 7.7. Noisy Typewriter
page 186 and Notes 4/25/11

A 7→ A,B with equal probability, B 7→ B,C with equal probability, . . ., Z 7→ Z,A with equal
probability.

I(X;Y ) = H(Y )−H(Y |X) = H(Y )− 1

≤ log 26− 1

C = max
p(x)

H(Y )− 1 = log 26− 1

= log 13

Example 7.8. Binary Symmetric Channel
page 187 and Notes 4/25/11

P =

[
1− p p
p 1− p

]

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(p)

≤ 1−H(p)

C = 1−H(p), achieved when p(x) is uniform
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Example 7.9. Binary Erasure
page 188 and Notes 4/25/11

0 7→
{

0 with probability 1− α
e with probability α

1 7→
{
e with probability α
1 with probability 1− α

Define

E =

{
0 if Y = e
1 if Y 6= e

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(α)

H(Y ) = H(Y,E) = H(E) +H(Y |E) = H(α)

H(Y |E) = Pr [E = 0]H(Y |E = 0)

+ Pr [E = 1]H(Y |E = 1)

≤ 1− α
C = max

p(x)
[H(E) +H(Y |E)−H(α)]

= 1− α

Example 7.10.
Notes 4/25/11

P =


1 0 0 0
0 0.8 0.2 0
0 0 0 1
0 0 0 1


Define a probability distribution for X: p(0, 1, 2, 3) ∼ (p0, p1, p2, p3).

I(X;Y ) = H(X)−H(X|Y )

H(X|Y ) =
∑
y

H(X|Y = y)p(y) = H(X|Y = 3)Pr (Y = 3)

=���
��(p2 + p3)

[
p2

���
�p2 + p3

log
p2 + p3

p2
+

p3

���
�p2 + p3

log
p2 + p3

p3

]
= p2 log

p2 + p3

p2
+ p3 log

p2 + p3

p3

I(X;Y ) = p0 log
1

p0
+ p1 log

1

p1
+ p2 log

1

p2
+ p3 log

1

p3
− p2 log

p2 + p3

p2
− p3 log

p2 + p3

p3

= p0 log
1

p0
+ p1 log

1

p1
+ (p2 + p3) log

1

p2 + p3

C = log 3, achieved with p0 = p1 = p2 + p3

7.2 Symmetric Channels

Definition 7.11. Weakly Symmetric
page 190 and Notes 4/27/11

A channel is weakly symmetric if the rows of P are permutations of each other and all the column
sums are equal.
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Definition 7.12. Symmetric
page 190 and Notes 4/27/11

A channel is symmetric if the rows and columns are permutations of each other.

Theorem 7.13.
page 191 and Notes 4/27/11

For a weakly symmetric channel (X ,P,Y),

C = max
p(x)

I(X;Y ) = log |Y| −H(row of transition matrix)

Proof.

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(row of P)

max
p(x)

I(X;Y ) = log |Y| −H(row of P)

which is achieved for p(x) = uniform distribution.

7.3 Properties of Channel Capacity

Remark 7.14.
page 191 and Notes 4/27/11

1. C ≥ 0 (since mutual information is nonnegative)

2. C ≤ log |X |
3. C ≤ log |Y|
4. I(X;Y ) is a continuous and concave function of p(x), so C = max

p(x)
I(X;Y ), and a local maxi-

mum is a global maximum
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7.5 The Communication System

Definition 7.15. The Communication System
page 193 and Notes 4/27/11

W (message)−−−−−−−→ Encoder
Xn

−−→ Channel p(y|x)
Y n−−→ Decoder

Ŵ (estimate of message)−−−−−−−−−−−−−−→

A message W , drawn from {1, 2, . . . ,M}, results in the signal Xn(W ). Xn(i) denotes the codeword
for message i.

The receiver receives the message as Y n ∼ p(yn|xn).

The receiver guesses the message using a decoding rule Ŵ = g(Y n).

If Ŵ 6= W then the receiver has made an error.

Definition 7.16. (M,n) Codebook
page 193 and Notes 4/27/11

An (M,n) code for the channel (X , p(y|x),Y) consists of the following:

1. An index set {1, 2, . . . ,M}.
2. An encoding function Xn : {1, 2, . . . ,M} → X n. The set of codewords xn(1), xn(2), . . . , xn(M)

is called the codebook .

3. A decoding function g : Yn → {1, 2, . . . ,M}.

Definition 7.17. Conditional Probability of Error
page 194 and Notes 4/27/11

The conditional probability of error given that message i is sent is

λi = Pr
[
g(Y n) 6= i

∣∣ xn = xn(λ)
]

Definition 7.18. Maximal Probability of Error
page 194 and Notes 4/27/11

The maximal probability of error is
λ(n) = max

i=1,...,M
λi
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Definition 7.19. Average Probability of Error
page 194 and Notes 4/27/11

The average probability of error is

P (n)
e =

1

M

M∑
i=1

λi

Definition 7.20. Rate, Achievable
page 195 and Notes 4/27/11

The rate R of an (M,n) code is

R =
logM

n

A rate is said to be achievable if there exists a sequence of
(
d2nRe, n

)
codes such that the max

probability of error λ(n) → 0.

7.6 Jointly Typical Sequences

Definition 7.21. Jointly Typical Sequence
page 195 and Notes 4/27/11

Let n be a positive integer and set ε > 0. The set A
(n)
ε of jointly typical sequences with respect to

p(x, y) is given by

A(n)
ε =

{
(xn, yn) ∈ X n × Yn

∣∣ ∣∣∣∣1− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε,∣∣∣∣1− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε,∣∣∣∣1− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ < ε
}

Theorem 7.22. Joint AEP Theorem
page 196 and Notes 4/27/11

Let Xn, Y n be sequences of length n drawn according to p(xn, yn) =
∏
p(xi, yi).

1. Pr [(Xn, Y n) ∈ A(n)
ε ]→ 1 as n→∞

2. |A(n)
ε | ≤ 2n[H(X,Y )+ε]

3. |A(n)
ε | ≥ 2n[H(X,Y )−ε]

4. If (X̃n, Ỹ n) ∼ p(xn)p(yn), then

Pr [(Xn, Y n) ∈ A(n)
ε ] ≤ 2−n[I(X;Y )−3ε]

Pr [(Xn, Y n) ∈ A(n)
ε ] ≥ 2−n[I(X;Y )−3ε]
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Proof. By the weak law of large numbers,

− 1

n
log p(Xn)→ −E[log p(X)] = H(X)

− 1

n
log p(Y n)→ H(Y )

− 1

n
log p(Xn, Y n)→ H(X,Y )

For n large,

Pr

[∣∣∣∣− 1

n
log p(Xn)−H(X)

∣∣∣∣ ≥ ε] < ε

3

Pr

[∣∣∣∣− 1

n
log p(Y n)−H(Y )

∣∣∣∣ ≥ ε] < ε

3

Pr

[∣∣∣∣− 1

n
log p(Xn, Y n)−H(X,Y )

∣∣∣∣ ≥ ε] < ε

3

For the rest of the proof see pages 197 and 198.

7.7 Channel Coding Theorem

Theorem 7.23. Channel Coding Theorem
page 200 and Notes 5/2/11

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for ev-
ery rate R < C there exists a sequence of (2nR, n) codes with maximum probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must have R < C.

(See the Channel Coding Theorem Converse, Theorem 7.27.)

Proof. Fix p(x) = p∗(x) that minimizes I(X;Y ). Generate each codebook according to p(x). Fix R < C.
Our (2nR, n) codebook is a wnR × n matrix:

Xn(1)
Xn(2)

...
Xn(2nR)

 =


X1(1), X2(1), . . . , Xn(1)
X1(2), X2(2), . . . , Xn(2)

...
...

. . .
...

X1(2nR), X2(2nR), . . . , Xn(2nR)


All 2nR × n elements are i.i.d. ∼ p(x).

Assume: all messages are equally likely.

Optimal decoder: Ŵ = arg max Pr [Y n|Xn(i)], Xn(i) ∈ codebook.

We consider the jointly typical decoder: when we receive a sequence Y n, if there exists a unique codeword
Xn(i) that is jointly typical with Y n, then Ŵ = i.
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Pr (ε) =
∑

C (codebooks)

Pr (CP (n)
e (C)

=
∑
C

Pr (C) · 1

2nR

2nR∑
W=1

λW (C) (W is the index of the message)

=
1

2nR

2nR∑
W=1

∑
C

Pr (C)λW (C)

= Pr [ε|W = 1]

Define the event Ei, i = 1, 2, . . . , 2nR, as

Ei =
{

(Xn(i), Y n) ∈ A(n)
ε

}
where Y n is generated by Xn(1). Then

ε = EC1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR

Pr [ε|W = 1] = Pr [EC1 ∪ E2 ∪ · · · ∪ E2nR |W = 1]

≤ Pr [EC1 ] +
2nR∑
i=2

Pr [Ei]

Pr [EC1 ] ≤ ε for n sufficiently large

To bound Pr [Ei],
Pr [Ei] ≤ 2−n[I(X;Y )−3ε]

Pr [ε] = Pr [E|W = 1]

≤ ε+

2nR∑
i=1

2−n[I(X;Y )−3ε]

≤ ε+
(
2nR − 1

)
· 2−n[I(X;Y )−3ε]

≤ ε+ 2−n[I(X;Y )−R] · 23nε

≤ 2ε for n sufficiently large

Make C − R > 3ε ⇒ ε < C−R
3 ⇒ I(X;Y ) − R − 3ε > 0. There exists a codebook C∗ with average

probability of error P
(n)
e (C∗) ≤ 2ε, i.e.

P (n)
e (C∗) =

1

2nR

2nR∑
i=1

λi(C∗)︸ ︷︷ ︸
≤2nR·2ε

≤ 2ε

At least half of the messages have λi(C∗) ≤ 4ε. Consider a codebook containing only these “good” codewords.
We have 2nR−1 = 2nR

′
codewords, where R′ = R− 1

n , each with probability of error ≤ 4ε.
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7.8 Zero-Error Codes

Remark 7.24.
Notes 5/4/11

For any (2nR, n) code with zero probability of error, we have R < C.

Pr [Ŵ = W ] = 1 ⇒ H(W |Y n) = 0

Assume W is uniformly distributed.

nR = H(W ) = H(W |Y n)︸ ︷︷ ︸
0

+I(W ;Y n)

≤ I(Xn;Y n)

≤ nC R ≤ C

W → Xn → Y n

Y n → Xn →W

Recall Fano’s Inequality (Theorem 2.36): If X̂ is an estimate of X based on Y (i.e. X̂ = g(Y )),
then Pe ≡ Pr [X̂ 6= X].

Pe = Pr [X̂ 6= X] ≤ 1 + Pe log |X |
H(W |Y n) ≤ 1 + P (n)

e log 2nR = 1 + nRP (n)
e

where P
(n)
e is the average probability of error.

7.9 Fano’s Inequality and the Converse to the Coding Theorem

Lemma 7.25. Fano’s Inequality
page 206

For a discrete memoryless channel, we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR

Lemma 7.26.
page 206 and Notes 5/4/11

For a discrete memoryless channel,
I(Xn;Y n) ≤ nC
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Proof.

I(Xn;Y n) ≤ H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑
i=1

H(Yi|Xn, Y1, . . . , Yi−1)

= H(Y n)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

I(Xi;Yi)

≤ nC

Theorem 7.27. Converse of the Channel Coding Theorem
page 207 and Notes 5/4/11

Any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C.

(See the Channel Coding Theorem, Theorem 7.23.)

Proof. λ(n) → 0, so P
(n)
e → 0 for any distribution of W . Consider the uniform distribution for W .

nR = H(W ) = H(W |Y n) + I(W ;Y n)

≤ 1 + nRP (n)
e + I(Xn;Y n) (Fano’s & data-processing inequalities)

≤ 1 + nRP (n)
e + nC (Lemma 7.26

P (n)
e ≥ nR− nC − 1

nR
= 1− C

R
− 1

nR

If R > C then P
(n)
e 6→ 0 as n→∞.
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7.10 5-9-11

Theorem 7.28. Converse to Channel Coding Theorem (Review)

If we have (2nR, n) codes with λ(n) → 0, then R ≤ C.

Proof. Assume W is uniformly distributed over these 2nR possible messages.
W → Xn → Y n → Ŵ .

nR = H(W ) = H(W |Ŵ )︸ ︷︷ ︸
bound

by Fano

+I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(Xn;Y n) (by Data Processing Inequality)

nR ≤ 1 + P (n)
e nR+ nC

P (n)
e ≥ 1− C

R
− 1

nR
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Remark 7.29.

So far our channel has looked like:

W−→→ Encoder
Xn

−−→ p(y|x)
Y n−−→ Decoder

Ŵ−→

C ≡ max
p(x)

I(X;Y )

What if our channel has feedback? In other words, the receiver can communicate with the
transmitter. Feedback is always immediate and error-free. Can we transmit at a higher rate than
without feedback?

With feedback, out channel looks like:

W−→→ Encoder
Xi(W,Y

i−1)−−−−−−−→ p(y|x)
Yi−→︸ ︷︷ ︸

←

− Decoder
Ŵ−→

(2nR, n) feedback code: a sequence of mapping xi(W,Y
i−1) for each i = 1, . . . , n.

Decoder: g : yn → {1, 2, . . . , 2nR}
Probability of Error: P

(n)
e = Pr [g(Y n) 6= W ]

Direct: there exists a sequence of (2nR, n) codes . . .
Converse:

nR = H(W ) = H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(W ; Ŵ ) (Fano’s Inequality)

≤ 1 + P (n)
e nR+ I(W ;Y n) W → Xn → Y n → Ŵ

I(W ;Y n) = H(Y n)−H(Y n|W )

= H(Y n)−
n∑
i=1

H(Yi|Y1, . . . , Yi−1,W )

= H(Y n)−
n∑
i=1

H(Yi|Y1, . . . , Yi−1,W,Xi)

= H(Y n)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)
?
=I(X;Y ) ≤ nC

This says that for a discrete memoryless channel, feedback doesn’t get you anything extra.
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Remark 7.30.

Source, V︸ ︷︷ ︸
stationary,

ergodic

→ H(V )︸ ︷︷ ︸
R≥H(V )

We have nH(V ) messages and 2nH(V ) codes. We can transmit a source provided that H(V ) < C.

Source, V → Encoder→ p(y|x)→

n outputs→ Source Code→ Channel Code

Theorem 7.31. Source-Channel Coding Theorem

If V1, V2, . . . , Vn is a finite alphabet stochastic process satisfying AEP (stationary and ergodic) with
H(V ) < C, then there exists a source-channel code with

Pr [V̂ n 6= V n]→ 0

Conversely, for any source with H(V ) > C, the probability of error is bounded away from zero.

Definition 7.32. Source-Channel Code

vn={V1,...,Vn}−−−−−−−−−→ Source Coding→ Channel Coding
xn(V n)−−−−→ p(y|x)

Y n−−→ Channel Coding→ Source Coding
V̂ n−−→

V n={V1,...,Vn}−−−−−−−−−→ Encoder
xn(V n)−−−−→ p(y|x)

Y n−−→ Decoder
V̂ n−−→
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Remark 7.33.

Need to show:
Pr [V̂ n 6= V n]→ 0 implies H(V ) ≤ C

xn(V n) can be viewed as a function:

xn(V n) : V n → X n

From Fano’s Inequality we know the following:

H(vn|V̂ n) ≤ 1 + Pr [V̂ n 6= V n]n log |V|

H(V) = lim
n→∞

H(V1, . . . , Vn)

n
= lim

n→∞
H(Vn|V1, . . . , Vn−1)

≤ H(V1, . . . , Vn)

n
=
H(V n)

n
=
H(V n|V̂ n) + I(V n; V̂ n)

n

≤ 1

n
(1 + Pen log |V|) +

1

n
V n → Xn → Y n → V̂ n

H(V ) ≤ 1

n
n+ Pe log |V|+ C → Pe log |V| ≥ H(V )− C − 1

n
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7.11 5-11-11

Example 7.34.

# of information bits: 4
# of parity check bits: 3

Definition 7.35. Hamming Codes

Codeword length: n = 2m − 1
# of information bits: k = 2m −m− 1
# of parity check bits: m = n− k
Error correcting capability: t = 1 (regardless of m)
Coding rate: k

n = 2m−m−1
2m−1

⇒ enlarging m gives a higher rate, but you can’t correct as effectively
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Example 7.36.

m = 3, n = 23 − 1 = 7, k = 4
The parity check matrix:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


A codeword C = [C1 C2 . . . C7]T is one satisfying

HC =

 0
0
0

 modulo 2

# number of codewords: 24 = 16
List of the codewords:

0000000 0001111 0010110 0011001
0100101 0101010 0110011 0111100
1000011 1001100 1010101 1011010
1100110 1101001 1110000 1111111

The first 4 bits are the information bits, and the last 3 are the parity check bits.

Note that every codeword (except 0000000) has at least 3 ones. Thus, the minimum weight = 3. We
cannot have 1 or 2 ones because all of the columns of H are different, and thus no two columns can
add up to [0 0 0]T . The minimum distance (the # of bits that differ) between any two codewords
is d = 3. Note that the distance between any 2 codewords is also a codeword:

HC1 = 0

HC2 = 0

H(C1 − C2) = 0

Suppose that a codeword c is transmitted with an error:

c→ r = c+ ei where ei = [0 · · · 1︸︷︷︸
i

0 · · · 0]

Hr =��Hc+Hei = ith column of H

The column of H that we end up with corresponds to the location of the error.
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8 Differential Entropy

8.1 5-11-11

Definition 8.1. Differential Entropy

For a discrete r.v. X, H(X) = −
∑

x p(x) log p(x)
For a continuous r.v. with PDF f(x),

h(x) = −
∫
S
f(x) log f(x) dx

where S = {x
∣∣ f(x) > 0} = supp x

Example 8.2. Uniform Distribution

A random variable distributed uniformly from 0 to a, X ∼ µ(0, a), is given by

f(x) =

{
1
a x ∈ (0, a)
0 otherwise.

Its entropy is given by

h(x) = −
∫ a

0

1

a
log

1

a
dx = log a.

Example 8.3. Normal (Gaussian) Distribution

A normally distributed random variable is given by

X ∼ 1√
2πσ2

e−
x2

2σ2 = φ(x).

We calculate its entropy as

h(x) = −
∫ ∞
−∞

φ(x) lnφ(x) dx = −
∫ ∞
−∞

φ(x)

(
− x2

2σ2
− ln
√

2πσ

)
dx

=

∫ ∞
−∞

φ(x)
x2

2σ2
dx+ ln

√
2πσ2

∫ ∞
−∞

φ(x) dx

=
1

2
+ ln
√

2πσ2

=
1

2
ln 2πσ2e nats

=
1

2
log 2πσ2e bits.
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Remark 8.4.

For a fixed variance, a Gaussian distribution has the largest differential entropy.
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8.2 5-18-11

Definition 8.5. Differential Entropy (Review)

x ∼ f, support S ⊂ R such that f(x) > 0

h(X) = h(f) = −
∫
S
f(x) log f(x) dx

Uniform Distribution: x ∼ µ(0, a) ⇒ h(X) = log a
Normal Distribution: x ∼ N (µ, σ2) ⇒ h(X) = 1

2 log(2πeσ2)

Theorem 8.6. AEP for Continuous Random Variables

Let X1, X2, . . . be a sequence of i.i.d. random variables ∼ f . By the weak law of large numbers,

− 1

n
log f(X1, . . . , Xn)→ E[− log f(x)] = h(X) in probability

Definition 8.7. Typical Set A
(n)
ε

For ε > 0 and n, the typical set is

A(n)
ε =

{
(x1, . . . , xn) ∈ Sn

∣∣ ∣∣∣∣− 1

n
log f(x1, . . . , xn)− h(X)

∣∣∣∣ ≤ ε}
where f(x1, . . . , xn) = f(x1) · · · f(xn).

Theorem 8.8.

The typical set has the following properties:

1. Pr (A
(n)
ε ) > 1− ε for n sufficiently large

2. Vol (A
(n)
ε ) ≡

∫
A

(n)
ε
dx1 · · · dxn ≤ 2n[h(X)+ε] for all n (this is the volume of the typical set)

3. Vol (A
(n)
ε ) ≥ (1− ε)2n[h(X)−ε] for n sufficiently large

Theorem 8.9.

The set A
(n)
ε is the smallest volume set with probability > 1 − ε to the first order in the exponent

(i.e. the nh(X) term).
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Remark 8.10.

Differential entropy can be negative. For example, x ∼ µ(0, a), a < 0.

Remark 8.11.

The sequences in A
(n)
ε are roughly equally likely, i.e. uniformly distributed.

Remark 8.12.

The differential entropy can be thought of as the log of the side length of the n-dimensional cube
that is the typical set, where the volume of the typical set is

(2h(X))n ≈ 2nh(X)

Remark 8.13. Relationship Between Differential Entropy and Discrete Entropy

We can quantize a differential random variable by dividing the range of X into intervals of length
∆. By the Mean Value Theorem, there exists xi ∈ [i∆, (i+ 1)∆] such that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x) dx

Consider the quantized random variable x∆ defined as

x∆ = xi if x ∈ [i∆, (i+ 1)∆]

Then Pr [x∆ = xi] =
∫ (i+1)∆
i∆ f(x) dx = f(xi)∆.

H(X∆) = −
∞∑

i=−∞
pi log pi =

∑
i

f(xi)∆ log(f(xi)∆) = −
∑
i

f(xi)∆ log f(xi)−
∑
i

f(xi)∆ log ∆

∆→0−−−→ −
∫
x
f(x) log f(x) dx−

∑
i

(∫ (i+1)∆

i∆
f(x) dx

)
log ∆

= h(X)− log ∆

h(X) ≈ H(X∆) + log ∆
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Definition 8.14. Joint Entropy

Given X1, . . . , Xn ∼ f(x1, . . . , xn), the joint entropy is

h(X1, . . . , Xn) = −
∫
f(x1, . . . , xn) log f(x1, . . . , xn) dx1 . . . dxn

Definition 8.15. Conditional Differential Entropy

Given p(x|Y = y),

h(X|Y = y) = −
∫
y
f(y)

∫
x
f(x|y) log f(x|y) dx

= −
∫

(x,y)
f(x, y) log f(x|y) dx dy

Definition 8.16. Relative Entropy (K-L Divergence)

D(f ||g) =

∫
x
f(x) log

f(x)

g(x)
dx

Definition 8.17. Mutual Information

I(X;Y ) = D(f(x, y)||f(x)f(y))

=

∫
f(x, y) log

f(x, y)

f(x)f(y)
dx dy

= h(Y )− h(Y |X)

= lim
∆→0

I(X∆, Y ∆)

= sup
P,Q

I([X]P ; [Y ]Q)
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Example 8.18. Mutual Information between 2 Gaussian r.v.’s

(X,Y ) ∼ N (0,k) where

k =

[
σ2 ρσ2

ρσ2 σ2

]
Then

I(X;Y ) = h(X) + h(Y )− h(X,Y )

h(X) =
1

2
log 2πeσ2 = h(Y )

h(X,Y ) =
1

2
log(2πe)2|k|

=
1

2
log 2πeσ2 +

1

2
log 2πeσ2 − 1

2
(2πe)2σ4(1− ρ2)

= −1

2
log(1− ρ2)

Proposition 8.19.

Properties:

• D(f ||q) ≥ 0

• I(X;Y ) ≥ 0 with equality iff X,Y are independent

• h(X1, . . . , Xn) =
n∑
i=1

h(Xi|X1, . . . , Xi−1) ≤
∑n

i=1 h(Xi)

• h(X + c) = h(X)

• h(αX) = h(X) + log |α|
• h(AX) = h(X) + log |det A|

Definition 8.20. Jointly Gaussian

X1, . . . , Xn are jointly Gaussian if

f(x1, . . . , xn) =
1

(
√

2π)n|k|1/2
e−

1
2

(x−µ)TK−1(x−µ)

where
µ = [µ1 · · · µn]T = [E(x1) · · · E(xn)]T

and
K = E[(x− µ)(x− µ)T ] = {Ki,j}1≤i,j≤n

where Ki,j = E[(xi − µi)(xj − µj)].
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Theorem 8.21.

h(N (µ,k)) =
1

2
log((2πe)n|k|)

Proof.

N (µ,k)) = −
∫
f(x) log f(x) dx

=

∫
f(x)

(
1

2
(x− µ)Tk−1(x− µ)

)
dx + log

(
(
√

2π)n|k|1/2
)

=
1

2
E
[
(X− µ)Tk−1(X− µ)

]
=

1

2
E

∑
i,j

(xi − µi)(k−1)i,j(xj − µj)

+ log((
√

2π)n|k|1/2)

=
1

2

∑
i,j

E [(xi − µi)(xj − µj)] (k−1)i,j + log((
√

2π)n|k|1/2)

=
1

2

∑
i,j

(k)−1
i,j + log((

√
2π)n|k|1/2)

=
1

2

∑
j

∑
i

kj,i(k
−1)i,j + log((

√
2π)n|k|1/2)

=
1

2

∑
j

(kk−1)jj + log((
√

2π)n|k|1/2)

=
n

2
+ log((

√
2π)n|k|1/2)

=
1

2
log ((2πe)n|k|)

Remark 8.22. Connection to Linear Algebra

Hadamad’s Inequality tells us that

|k| ≤
n∏
i=1

ki,i

Proof.

h(X1, . . . , Xn) =
1

2
log((2πe)n|k|)

≤
n∑
i=1

h(Xi) =
∑
i

1

2
log 2πeki,i

|k| ≤
∑
i

ki,i
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Theorem 8.23.

The Gaussian distribution maximizes entropy over all densities with the same variance. Specifically,
if we have an n-dimensional vector x with µ,k, then

h(X) ≤ 1

2
log((2πe)n|k|)

with equality iff x ∼ Nn(µ,k).

Proof. Let x ∼ g, φ ∼ N (µ, ‖). Then∫
g(x) log φ(x) dx =

∫
φ(x) log φ(x) dx

We compute the K-L divergence between g and φ:

0 ≤ D(g||φ) =

∫
g log

g

φ
dx

= −h(g)−
∫
g log φdx

= −h(g) + h(φ)

h(g) ≤ h(φ)
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9 Gaussian Channel

9.1 5-23-11

Definition 9.1. Gaussian Channel

The Gaussian channel accepts a sequence X1, X2, . . . of real numbers and produces and output of
Yi’s.

Yi = Xi + Zi, Zi ∼ N (0, N)

Zi’s are independent of each other and Xi’s.

Remark 9.2. Power Constraint

For any codeword (X1, X2, . . . , Xn) transmitted over the channel,

1

n

n∑
i=1

x2
i (w) ≤ P

Example 9.3. One Way To Use Gaussian Channel

x =

{ √
p Pr 1

2
−√p Pr 1

2

, x̂ =

{ √
p Y > 0

−√p Y < 0

Pr (error) =
1

2
Pr {Y ≤ 0

∣∣ x =
√
p}+

1

2
Pr {Y ≥ 0

∣∣ x = −√p}

=
1

2
Pr {Z ≤ −√p}+

1

2
Pr {Z ≥ √p}

= Pr {Z ≥ √p}

= 1− Φ

(√
p

n

)
where

Φ(x) =

∫ x

−∞

1√
2π
e−t

2/2 dt
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Definition 9.4. Capacity (Continuous)

The capacity (continuous) of the Gaussian channel with power constraint P is

C = max
fx(·),E·x2≤P

I(X;Y )

where

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Y −X︸ ︷︷ ︸
Z

|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z)

h(Z) =
1

2
log(2πeN)

EY 2 = E(X + Z)2 = EX2 + 2���
�E(XZ) + EZ2︸︷︷︸

N

≤ P +N

I(X;Y ) ≤ 1

2
log(2πe(P +N))− 1

2
log(2πeN)

≤ 1

2
log

(
P +N

N

)
=

1

2
log

(
1 +

P

N

)
Thus,

C = max
fx,EX2≤P

I(X;Y )

=
1

2
log

(
1 +

P

N

)
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Definition 9.5.

An (M,n) code for the Gaussian channel with power constraint P consists of

• An encoding function x : {1, 2, . . . ,M} → Rn yielding codewords Xn(1), Xn(2), . . . , Xn(M)
satisfying the power constraint P , i.e. for every xn(w) = (x1(w), . . . , xn(w)),

1

n

n∑
i=1

x2
1(w) ≤ P, w = 1, 2, . . . ,M

• A decoding function g : Rn → {1, 2, . . . ,M}. The rate of the code is

R =
logM

n
bits per transmission

The probability of error given message W is

λw = Pr {g(Y n) 6= W
∣∣ Xn = Xn(w)}

The average probability of error is

Pe(n) =
1

n

M∑
w=1

λw

The maximum probability of error is

λ(n) = max
w=1,2,...,M

λw

Definition 9.6. Achievable

The rate R is achievable if there exists a sequence of (2nR, n) codes such that

λ(n) n→∞−−−→ 0

Theorem 9.7. Capacity of a Gaussian Channel

The capacity of a Gaussian channel with power constraint P and noise variance N is:

C =
1

2
log

(
1 +

P

N

)
bits per transmission

Proof. (Achievability)
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Given ε > 0, we have the jointly typical set A
(n)
ε with respect to the density of f(x, y):

A(n)
ε =

{
(xn, yn) ∈ Rn × Rn :

∣∣∣∣− 1

n
log fXn(xn)− h(X)

∣∣∣∣ < ε∣∣∣∣− 1

n
log fY n(yn)− h(Y )

∣∣∣∣ < ε∣∣∣∣− 1

n
log fXn,Y n(xn, yn)− h(X,Y )

∣∣∣∣ < ε

}
where fXn,Y n(xn, yn) =

n∏
i=1

f(xi, yi).

Let C be a (2nR, n) code, and Xn(W ) = (X1(W ), . . . , Xn(W )) be the codeword corresponding to message

W . If Y is received and there is a unique W ∗ for which (Xn(W ∗), Y n) ∈ A(n)
ε , then the decoder’s estimate

is W ∗. An error occurs if:

• Xn(W ) does not satisfy the power constraint P

• (Xn(W ), Y n) is not jointly typical

• (Xn(W ∗), Y n) is jointly typical and W ∗ 6= W

We define the events

E0 =

{
1

n

n∑
i=1

x2
i (1) > P

}
EW =

{
(Xn(W ), Y n) ∈ A(n)

ε

}
Thus, the average probability of error is

Pe = Pr
{
E0 ∪ EC1 ∪ E2 ∪ · · · ∪ E2nR

}
By the Law of Large Numbers, for large n we have that

P (E0) ≤ ε

where X2
1 (1), X2

2 (1), . . . , X2
n(1) are i.i.d. with mean P − ε if we choose Xi(W ) ∼ N (0, P − ε). By property

(1) of A
(n)
ε , we have that Pr {EC1 } ≤ ε for large n. (Pr {E1} ≥ 1 − ε, Theorem 7.69.) By property (2) of

A
(n)
ε ,

P (EW ) ≤ 2−n[I(X;Y )−3ε], w ≥ 2

Thus,

P (n)
e ≤ ε+ ε+

2nR∑
w=2

2−n[I(X;Y )−3ε]

≤ 2ε+ (2nR − 1)2−n[I(X;Y )−3ε]→−n[I(X;Y )−R−3ε]

≤ 2ε+ (2nR − 1)2−n[I(X;Y )−R−3ε]

This probability will go to zero if

−(R+ 3ε) + I(X;Y ) > 0

R < I(X;Y )− 3ε

R < I(X;Y )

Thus, R < I(X;Y ) ⇒ P
(n)
e → 0.

To show that the maximum probability of error, we use the “throw half of the codes away” trick that we
have used in the past.
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9.2 5-25-11

Continuing from last time, we want to prove that if R > C then P
(n)
e 6→ 0. Equivalently, we want to prove

that P
(n)
e → 0 implies that R ≤ C.

Proof. Assume that we have a (2nR, n) codebook that satisfies the power constraint:

1

n

n∑
i=1

x2
i (u) ≤ P ∀ w

Our scheme looks like:
W → Xn(W )→ Y n(W )→ Ŵ

Fano’s Inequality gives us that

H(W |Ŵ ) ≤ 1 + nRP (n)
e = nεn

where εn → 0 because P
(n)
e → 0.

nR = H(W ) = I(W ; Ŵ ) +H(W |Ŵ )

≤ I(W ; Ŵ ) + nεn

≤ I(W ;Y n) + nεn

≤ I(Xn;Y n) + nεn

= h(Y n)− h(Y n|Xn) + nεn

= h(Y n)− h(Zn) + nεn

≤
n∑
i=1

(h(Yi)− h(Zi)) + nεn

We have that

Pi = Ex2
i =

1

2nR

2nR∑
w=1

x2
i (w)

Also,
1

n

∑
Pi ≤ P

We compute the expectation value of Y 2
i :

EY 2
i = EX2

i︸︷︷︸
→Pi

+���
�2EXiZi + εZ2︸︷︷︸

→N

= Pi +N

nR ≤
n∑
i=1

(
1

2
log

(
1 +

Pi
N

))
+ nεn

R ≤ 1

n

n∑
i=1

(
1

2
log

(
1 +

Pi
N

))
+ εn (9.1)

The power constraint is that:

EiX2 < P ∀ W
EWEiX2 < P

EiEWX2︸ ︷︷ ︸
Pi

< P
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Continuing from (9.1), we have

R ≤ 1

2
log

(
1 +

1

n

n∑
i=1

Pi
N

)
+ εn

≤ 1

2
log

(
1 +

P

N

)
︸ ︷︷ ︸

C

+εn

Thus, R ≤ C + εn. Therefore, if εn → 0 then R ≤ C.

9.2.1 Shannon Limit for Gaussian Channel

Definition 9.8. SNR for a Code Symbol

P

2N
, SNR for a Code Symbol

γG(R) =
P

2NR
= Source-bit SNR

Remark 9.9.

For reliable communication, we know that

R ≤ C =
1

2
log

(
1 +

P

N

)
=

1

2
log (1 + 2RγG)

R ≤ 1

2
log (1 + 2RγG)

γG ≥
22R − 1

2R
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9.2.2 Parallel Gaussian Channels

Remark 9.10.

Yj = Xj + Zj , j = 1, 2, . . . , k, Zj ∼ N (0, Nj)

E
k∑
j=1

X2
j ≤ P

C = max
f(·)EX2≤P

I(X1, . . . , Xk;Y1, . . . , Yk)

= h(Y1, . . . , Yk)− h(Y1, . . . , Yk|X1, . . . , Xk)

= h(Y1, . . . , Yk)− h(Z1, . . . , Zk)

≤
k∑
i=1

h(Yi)− h(Zi)

≤
k∑
i=1

1

2
log

(
1 +

Pi
Ni

)

where Pi = EX2
i and

k∑
i=1

Pi ≤ P (power constraint). For the optimization problem, Lagrangian

multipliers give us

J(P1, . . . , Pk) =
k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
+ λ

(
k∑
i=1

Pi − P

)
1

2

1

Pi +Ni
+ λ = 0

Pi = ν −Ni

This is sometimes referred to as water-filling .

Definition 9.11. Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be used to verify that

Pi = (ν ·Ni)
+

is the solution that maximizes capacity (where the superscript “+” denotes nonnegative), with ν
chosen so that

k∑
i=1

(ν −Ni)
+ = P.

This means that we favor channels with lower noise (see Figure 9.4 on page 277 (303)).
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Remark 9.12.

Consider the following optimization problem: maximize f(x) subject to gj(x) ≤ 0, j = 1, . . . , k,
where f : Rn → R is concave and gj : Rn → R is convex.

Theorem 9.13. The Lagrangian

L(x) = f(x)−
k∑
j=1

λjgj(x)

Let x∗ be a feasible point (satisfies the constraint g). Suppose λ1, . . . , λk:

∇L(x∗) = 0

λj ≥ 0 ∀ j and λj = 0 if gj(x
∗) < 0. Then x∗ solves the maximization problem.

Lemma 9.14.

If f : Rn → R is concave and X,Y ∈ Rn, then

f(x) ≤ f(y) +∇f(y)(x− y)T

For a convex function g, we have

g(x) ≥ g(y) +∇g(y)(x− y)T

Proof. (of Theorem 9.13)
Assume x is a feasible point, i.e. g(x) ≤ 0 ∀ j. Then from Lemma 9.14,

f(x) ≤ f(x∗) +∇f(x∗)(x− x∗)T

gj(x) ≥ gj(x∗) +∇g(x∗)(x− x∗)T

L(x∗) = f(x)−
∑

λjgj(x
∗)

∇L(x∗) = 0

∇f(x∗) =
∑

λj∇gj(x∗)

f(x) ≤ f(x∗) +∇f(x∗)(x− x∗)T

≤ f(x∗) +
∑

λj(gj(x)− gj(x∗))

≤ f(x∗)−
∑

λj︸︷︷︸
↘0

gj(x
∗) ≤ f(x∗)
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Remark 9.15.

f(P) =
1

2

∑
log

(
1 +

Pi
N

)
g0(P) =

∑
Pj − P ≤ 0

gj(P) = −Pj ≤ 0, j = 1, . . . , k
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9.3 6-1-11

Remark 9.16. Course & Final Info

We can pick up the homework on Friday outside her office.

Office hours Tuesday 5-6.

2.5 standard problems (capacity, entropy, Huffman code, etc.), 1.5 tricky problems.

Remark 9.17. Review of the Gaussian System

Y = X + Z, Z ∼ N (0, N)

For the problem to be well-posed, we have the constraint

E[X2] ≤ P

We know that the capacity is

C =
1

2
log

(
1 +

P

N

)
P
N = SNR = Signal to Noise Ratio
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Remark 9.18. Review of Parallel Gaussian Channels

We have k independent channels:

Y1 = X1 + Z1, · · · , Yk = Xk + Zk, Zi ∼ N (0, Ni)

The power constraint here is

E
k∑
i=1

X2
i ≤ P

For any given power allocation P1, . . . , Pk with P1 + · · ·+ Pk = P , then

C(P1, . . . , Pk) =
k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
We want to maximize C(P1, . . . , Pk) subject to the constraint

∑
Pi ≤ P . We can do this with

Lagrange multipliers:

J(P1, . . . , Pk) =

k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
+ λ

k∑
i=1

Pi

∂J

∂Pi
= 0

0 =
1

2
· 1

Pi +Ni
+ λ

Pi +Ni = ν

Pi = (ν −Ni)
+
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Definition 9.19. Bandlimited Channel

A bandlimited channel cuts out all frequencies greater than its bandwidth, W .

X(t)︸︷︷︸
P Watts

→
Z(t)︷︸︸︷
⊕ → H(f)︸ ︷︷ ︸

bandpass
filter

→ Y (t)

We can model the bandpass filter as a convolution with h(t), giving us:

Y (t)︸︷︷︸
bandlimited

time-limited in T

= (X(t) + Z(t)) ∗ h(t) = X(t) ∗ h(t)︸ ︷︷ ︸
bandlimited

time-limited in T

+ Z(t) ∗ h(t)︸ ︷︷ ︸
bandlimited

time-limited in T

We can convert this to a discrete signal with 2WT samples (Nyquist). Thus, we have

Yi = Xi +Ni

1

2
log

(
1 +

Psample

Nsample

)
where

Psample =
PT

2TW
=

P

2W

Nsample =
N0WT

2TW
=
N0

2

power spectral density ,
N0

2
watts/hertz

bandwidth ,W hertz

So the capacity of a bandlimited channel is

C =
P

N0

WN0

P
log

(
1 +

P

N0W

)
= W log

(
1 +

P

N0W

)
bits/second
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Index

achievable, 40
AEP for continuous random variables, 53
aperiodic, 26
Asymptotic Equipartition Property, 20
average probability of error, 40

bandlimited channel, 70
bandwidth, 70

canonical codes, 34
capacity (continuous), 60
capacity of a Gaussian channel, 61
channel capacity, 35
channel coding theorem, 41
channel coding theorem converse, 44
codebook, 39
concave, 12
conditional differential entropy, 55
conditional entropy, 8
conditional mutual information, 11
conditional probability of error, 39
conditional relative entropy, 10
convex, 12

D∗, 27
D-adic, 30
Data Processing Inequality, 16
differential entropy, 51
discrete channel, 35

entropy, 7
entropy rate, 24
expected length, 27
Extended Kraft Inequality, 28
extension, 27

Fano’s Inequality, 17
Fano’s Inequality (discrete), 43
feedback code, 46

Gaussian channel, 59

Hamming code, 49
high-probability set, 22
Huffman code, 32

i.i.d., 19
in probability, 20
independent, 13
information channel capacity, 35
instantaneous code, 27

irreducible, 26

Jensen’s Inequality, 12
joint entropy, 8
joint entropy (differential), 55
jointly Gaussian, 56
jointly typical sequence, 40

Kraft Inequality, 28
Kraft Inequality (McMillan), 28
Kuhn-Tucker conditions, 65
Kullback-Leibler distance/divergence, 9

Lagrangian, 66
Log Sum Inequality, 14

Markov chain, 15
Markov chain (2), 26
maximal probability of error, 39
memoryless channel, 35
minimum distance, 50
minimum weight, 50
(M,n) code, 39
mutual information, 10
mutual information (differential), 55

normal (Gaussian) distribution, 51

operational channel capacity, 35

power constraint, 59
prefix code, 27
probability error, 17
probability mass function, 7
probability transition matrix, 26

rate, 40
relative entropy, 9
relative entropy (differential), 55

self-information, 11
SNR (signal-to-noise ratio), 64
source code, 27
source-channel code, 47
stationary, 24
stationary distribution, 26
stochastic process, 24
symmetric, 38

time-invariant, 26
typical set, 20
typical set (differential), 53
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uniform distribution (differential), 51
uniquely decodable, 27

volume, 53

water-filling, 65
weakly symmetric, 37
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