Document: EEC 266 (Spring 2011)
Professor: Zhao
Latest Update: April 2, 2012
Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents

0 Important 3
0.1 Key Formulas 3
1 Introduction and Preview 6
2 Entropy, Relative Entropy, and Mutual Information 7
2.1 Entropy 7
2.2 Joint Entropy and Conditional Entropy 8
2.3 Relative Entropy and Mutual Information 9
2.4 Relationship Between Entropy and Mutual Information 11
2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information 11
2.6 Jensen's Inequality and Consequences 12
2.7 Log Sum Inequality and its Applications 14
2.8 Data-Processing Inequality 15
2.9 Sufficient Statistics 17
2.10 Fano's Inequality 17
3 Asymptotic Equipartition Property 20
3.1 Asymptotic Equipartition Property Theorem 20
3.2 Consequences of the AEP: Data Compression 21
4 Entropy Rates of a Stochastic Process 24
4.1 Markov Chains 24
4.2 Entropy Rate 24
5 Data Compression 27
5.1 Examples of Codes 27
5.2 Kraft Inequality 28
5.3 Optimal Codes 29
5.4 Bounds on the Optimal Code Length 30
5.6 Huffman Codes 32
5.7 Some Comments on Huffman Codes 33
5.8 Optimality of Huffman Codes 33
7 Channel Capacity 35
7.1 Examples of Channel Capacity 35
7.2 Symmetric Channels 37
7.3 Properties of Channel Capacity 38
7.5 The Communication System 39
7.6 Jointly Typical Sequences 40
7.7 Channel Coding Theorem 41
7.8 Zero-Error Codes 43
7.9 Fano's Inequality and the Converse to the Coding Theorem 43
7.10 5-9-11 45
7.11 5-11-11 49
8 Differential Entropy 51
8.1 5-11-11 51
8.2 5-18-11 53
9 Gaussian Channel 59
9.1 5-23-11 59
$9.2 \quad 5-25-11$ 63
9.2.1 Shannon Limit for Gaussian Channel 64
9.2.2 Parallel Gaussian Channels 65
9.3 6-1-11 68

0 Important

0.1 Key Formulas

- Entropy:

$$
H(X)=\sum p(x) \log \frac{1}{p(x)}
$$

- Entropy Change of Base Formula:

$$
H_{b}(X)=\log _{b} a H_{a}(X)
$$

- Joint Entropy:

$$
\begin{aligned}
H(X, Y) & =\sum_{x} \sum_{y} p(x, y) \log \frac{1}{p(x, y)} \\
& =H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
\end{aligned}
$$

- Conditional Entropy:

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =H(X, Y)-H(X)
\end{aligned}
$$

- Relative Entropy:

$$
D(p \| q)=\sum p(x) \log \frac{p(x)}{q(x)}
$$

- $D(p \| q) \geq 0$, with equality iff $p=q$
- Mutual Information:

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X)=I(Y ; X)
\end{aligned}
$$

- Conditional Mutual Information:

$$
\begin{aligned}
I(X ; Y \mid Z) & =H(X \mid Z)-H(X \mid Y, Z) \\
& =H(Y \mid Z)-H(Y \mid X, Z)
\end{aligned}
$$

- Chain Rules
- Entropy:

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n}\right)
$$

- Information:

$$
\begin{aligned}
I\left(X_{1}, \ldots, X_{n} ; Y\right) & =I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+\ldots+I\left(X_{n} ; Y \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- Information Can't Hurt:

$$
H(X) \geq H(X \mid Y)
$$

- Corollary - Independence Bound on Entropy:

$$
H\left(X_{1}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

- Bound on Entropy:
$-H(X) \leq \log |\mathcal{X}| \Leftrightarrow \quad$ for a fixed alphabet size, the uniform distribution has the largest entropy.
- Weak Law of Large Numbers:

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathbb{E}[X]
$$

- Entropy Rate:

$$
\begin{aligned}
H(\mathcal{X}) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right) \\
H^{\prime}(\mathcal{X}) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
\end{aligned}
$$

- Kraft Inequality

$$
\sum D^{-l_{i}} \leq 1
$$

- Channel Capacity:

$$
C=\max _{p(x)} I(X ; Y)
$$

- Capacity of a Weakly Symmetric Channel:

$$
C=\log |\mathcal{X}|-H(\text { row of transition matrix })
$$

- Differential Entropy:

$$
h(X)=\int_{S} f(x) \log \frac{1}{f(x)} d x
$$

- Uniform Distribution: $x \sim \mu(0, a) \quad \Rightarrow \quad h(X)=\log a \quad$ (See Example 8.2)
- Normal (Gaussian) Distribution: $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \Rightarrow \quad h(X)=\frac{1}{2} \log 2 \pi e \sigma^{2} \quad$ (See Example 8.3)
- Capacity of a Gaussian Channel:

$$
C=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

where P is the power constraint and N is the noise variance.

1 Introduction and Preview

Remark 1.1. 2 Main Questions of Information Theory

page 1 and Notes 3/28/11

1. What is the ultimate data compression? (Answer: the entropy H)
2. What is the ultimate transmission rate of communication? (Answer: the channel capacity C)

Remark 1.2. 3 Main Concepts

Notes 3/28/11

1. Entropy
2. Relative Entropy
3. Mutual Information

Remark 1.3.

Notes 3/28/11

How do we measure information?

- Reduction of uncertainty
- Flip a coin, heads shows up
- Roll a die, it is an even number

How do we measure uncertainty?

Remark 1.4. Notation

Notes 3/28/11

Rather than writing $p_{X}(x)$ and $p_{Y}(y)$, the terms $p(x)$ and $p(y)$ shall be used.

Unless otherwise stated, logs are base 2. (Recall: $\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$)

Capital letters denote variables, lowercase letters denote realizations.

The units of entropy are bits.

2 Entropy, Relative Entropy, and Mutual Information

2.1 Entropy

Definition 2.1. Entropy
page 13 and Notes $3 / 28 / 11$

Entropy is a measure of the uncertainty of a random variable. Let X be a discrete random variable with alphabet \mathcal{X} and probability mass function $p(x)$. The entropy is defined as

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)=\mathbb{E}_{p} \log \frac{1}{p(x)}=-\mathbb{E}_{p} \log p(x)
$$

where $\mathbb{E}(g(x))=\sum_{x} p(x) g(x)$. If the base of the entropy is $b \neq 2$, then we write $H_{b}(X)$.

Remark 2.2.

pages $14 \& 15$ and Notes $3 / 28 / 11$

1. We use the convention that $0 \log 0 \equiv 0$. (Note: $\lim _{\epsilon \rightarrow 0} \epsilon \log \epsilon=0$.) This means that adding any terms of zero probability does not change the entropy.
2. Entropy is a function of the distribution of X. It does not depend on the values taken by X.
3. $H(X) \geq 0$
4. $H_{b}(X)=\log _{b} a H_{a}(X)$

Example 2.3.
page 15 and Notes $3 / 28 / 11$

Let

$$
X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Then

$$
H(X)=-p \log p-(1-p) \log (1-p) \equiv H(p)
$$

In particular, when $p=\frac{1}{2}$ then $H(X)=1$ bit.

Example 2.4.
page 15 and Notes $3 / 28 / 11$

Let

$$
X= \begin{cases}a & \text { with probability } \frac{1}{2} \\ b & \text { with probability } \frac{1}{4} \\ c & \text { with probability } \frac{1}{8} \\ d & \text { with probability } \frac{1}{8}\end{cases}
$$

Then

$$
H(X)=\frac{7}{4} \mathrm{bits}
$$

$\frac{7}{4}$ is the minimum expected number of binary questions required to determine the value of X . This scheme could be stored as

$$
a \leftrightarrow 0 \quad b \leftrightarrow 10 \quad c \leftrightarrow 110 \quad d \leftrightarrow 111
$$

Note that $-\log p(x)$ is approximately the number of bits we want to assign to x.

2.2 Joint Entropy and Conditional Entropy

Definition 2.5. Joint Entropy

page 16 and Notes $3 / 28 / 11$

The joint entropy $H(X, Y)$ of a pair of discrete random variables (X, Y) with a joint distribution $p(x, y)$ is defined as

$$
H(X, Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)=-\mathbb{E}_{p} \log \frac{1}{p(x, y)}
$$

Definition 2.6. Conditional Entropy
page 17 and Notes $3 / 28 / 11$

If $(X, Y) \sim p(x, y)$, the conditional entropy $H(Y \mid X)$ is defined as

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x) \\
& =-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y \mid x) \\
& =-E_{p(x, y)} \log p(Y \mid X)
\end{aligned}
$$

Theorem 2.7. Chain Rule
page 17 and Notes $3 / 28 / 11$

$$
\begin{aligned}
H(X, Y) & =H(X)+H(Y \mid X) \\
& =H(Y)+H(X \mid Y)
\end{aligned}
$$

Remark 2.8.

page 18 and Notes 3/28/11

$$
\begin{gathered}
H(X \mid Y) \neq H(Y \mid X) \\
H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
\end{gathered}
$$

The second line says that the reduction in the uncertainty (achieved via correlation) is the same.

2.3 Relative Entropy and Mutual Information

Definition 2.9. Relative Entropy

page 19 and Notes $3 / 28 / 11$

Relative entropy is a measure of the distance between two distributions. Specifically, the relative entropy $D(p \| q)$ is a measure of the inefficiency of assuming that the distribution is q when the true distribution is p. It is also known as the Kullback-Leibler distance/divergence. It is given by

$$
D(p \| q)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}=E_{p} \log \frac{p(X)}{q(X)}
$$

Remark 2.10.

Notes 3/28/11

The number of bits is on the order of $\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{q(x)}$ based on the incorrect coding scheme q.

$$
\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{q(x)}=\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)}+D(p \| q)
$$

1. $p \log \frac{p}{0}=\infty$. If there is any x such that $p(x)>0$ but $q(x)=0$ then $D(p \| q)=\infty$.

Next class we will show:
2. $D(p \| q) \geq 0$ with equality iff $p=q$.
3. Relative entropy is not a true distance function between distributions because $D(p \| q) \neq$ $D(q \| p)$, and it also doesn't satisfy the triangle inequality.

Definition 2.12. Conditional Relative Entropy

Notes 3/28/11

Given $p(x, y)$ and $q(x, y)$, the conditional relative entropy $D(p(y \mid x) \| q(y \mid x))$ is the average entropy between $p(y \mid x)$ and $q(y \mid x)$ averaged over $p(x)$.

$$
D(p(y \mid x) \| q(y \mid x))=\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)}=\sum_{x} \sum_{y} p(x, y) \log \frac{p(y \mid x)}{q(y \mid x)}
$$

Definition 2.13. Mutual Information

page 19 and Notes $3 / 28 / 11$

Consider 2 random variables X and Y with a joint probability mass function $p(x, y)$ and marginal probability mass functions $p(x)$ and $p(y)$. The mutual information $I(X, Y)$ is the relative entropy between the joint distribution $p(x, y)$ and the product distribution $p(x) p(y)$.

$$
I(X ; Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}=D(p(x, y) \| p(x) p(y))=E_{p(x, y)} \log \frac{p(X, Y)}{p(X) p(Y)}
$$

2.4 Relationship Between Entropy and Mutual Information

Remark 2.14.

page 21 and Notes 3/28/11

We can prove that:

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y) \\
& =I(Y ; X) \\
I(X ; X) & =H(X)
\end{aligned}
$$

This last identity is why entropy is sometimes called self-information.

2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information

Theorem 2.15. Chain Rule for Entropy
page 22 and Notes $3 / 30 / 11$

Given: $X_{1}, \ldots, X_{n} \sim p\left(x_{1}\right), \ldots, p\left(x_{n}\right)$
Then:

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{n}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Definition 2.16. Conditional Mutual Information
page 23

The conditional mutual information of random variables X and Y given Z is

$$
\begin{aligned}
I(X ; Y \mid Z) & =H(X \mid Z)-H(X \mid Y, Z) \\
& =E_{p(x, y, z)} \log \frac{p(X, Y \mid Z)}{p(X \mid Z) p(Y \mid Z)}
\end{aligned}
$$

Theorem 2.17. Chain Rule for Information
page 24 and Notes $3 / 30 / 11$

$$
I\left(X_{1}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)
$$

Proof.

$$
\begin{aligned}
I\left(X_{1}, \ldots, X_{n} ; Y\right) & =H\left(X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n} \mid Y\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}, Y\right) \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right.
\end{aligned}
$$

Theorem 2.18. Chain Rule for Relative Entropy
page 24 and Notes 3/30/11

$$
D(p(x, y) \| q(x, y))=D(p(x) \| q(x))+D(p(y \mid x) \| q(y \mid x))
$$

2.6 Jensen's Inequality and Consequences

Definition 2.19. Convex, Concave
page 25 and Notes 3/30/11

A function f is convex if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

i.e. the function lies below every chord. If the inequality is strict then it is strictly convex. A function g is concave if $-g$ is convex.

Theorem 2.20. Jensen's Inequality
page 27 and Notes $3 / 30 / 11$

If f is convex, then

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

If f is strictly convex then X is a constant, i.e. $X=\mathbb{E}[X]$.
If f is concave, then

$$
\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])
$$

Theorem 2.21. Information Inequality page 28 and Notes $3 / 30 / 11$
$D(p \| q) \geq 0$, with equality iff $p=q$.

Proof.

$$
\begin{align*}
-D(p \| q) & =-\sum_{x} p(x) \log \frac{p(x)}{q(x)} \\
& =\sum_{x} \log \frac{q(x)}{p(x)} \\
& \leq \log \sum_{x} p(x) \frac{q(x)}{p(x)} \tag{2.1}\\
& \leq \log 1 \leq 0
\end{align*}
$$

where (2.1) follows from Jensen's Inequality (Theorem 2.20), since log is concave.

Corollary 2.22. Nonnegativity of Mutual Information
page 28 and Notes $3 / 30 / 11$
$I(X ; Y) \geq 0$, with equality iff X and Y are independent $\Rightarrow p(x, y)=p(x) p(y)$.

Theorem 2.23. Conditioning Reduces Entropy \Leftrightarrow Information Can't Hurt
page 29 and Notes $3 / 30 / 11$

$$
H(X \mid Y) \leq H(X)
$$

with equality iff X and Y are independent.

Proof. $0 \leq I(X ; Y)=H(X)-H(X \mid Y)$

Remark 2.24.
page 30 and Notes 3/30/11
$H(X \mid Y=y)$ may actually be bigger than $H(X)$. For example, consider

$$
\begin{aligned}
& H(X)=H\left(\frac{1}{8}, \frac{1}{8}\right)=0.544 \\
& H(X \mid Y=2)=1 \\
& H(X \mid Y=1)=0 \\
& H(X \mid Y)=\frac{3}{4} \cdot 0+\frac{1}{4} \cdot 1=\frac{1}{4}<H(X)
\end{aligned}
$$

Theorem 2.25. Independence Bound on Entropy
page 30 and Notes $3 / 30 / 11$

$$
H\left(X_{1}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

Proof. By the chain rule for entropies (Theorem 2.15),

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{n}\right) & =\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& \leq \sum_{i=1}^{n} H\left(X_{i}\right)
\end{aligned}
$$

Remark 2.26.

Notes 3/30/11

For a fixed alphabet size, the uniform distribution has the largest entropy. Given X with a finite alphabet \mathcal{X}, then $H(X) \leq \log |\mathcal{X}|$ and

$$
0 \leq D(p \| u)=\sum_{x} p(x) \log \frac{p(x)}{\frac{1}{|\mathcal{X}|}}=\sum_{x} p(x) \log p(x)+\log |\mathcal{X}|=\log |\mathcal{X}|-H(X)
$$

2.7 Log Sum Inequality and its Applications

Theorem 2.27. Log Sum Inequality

page 31 and Notes $3 / 30 / 11$

For nonnegative numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},

$$
\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}
$$

with equality if $a_{i}=c b_{i}$ for some constant c.

The proof of this uses Jensen's Inequality (Theorem 2.20).

Theorem 2.28. Convexity of Relative Entropy page 32 and Notes $3 / 30 / 11$
$D(p \| q)$ is convex in the pair (p, q). That is, if $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ are two pairs of probability mass functions, then

$$
D\left(\lambda p_{1}+(1-\lambda) p_{2} \| \lambda q_{1}+(1-\lambda) q_{2}\right) \leq \lambda D\left(p_{1} \| q_{1}\right)+(1-\lambda) D\left(p_{2} \| q_{2}\right)
$$

Proof. Applying the log sum inequality (Theorem 2.27) to the LHS of the above equation, we get

$$
\left(\lambda p_{1}(x)+(1-\lambda) p_{2}(x)\right) \log \frac{\lambda p_{1}(x)+(1-\lambda) p_{2}(x)}{\lambda q_{1}(x)+(1-\lambda) q_{2}(x)} \leq \lambda p_{1}(x) \log \frac{\lambda p_{1}(x)}{\lambda q_{1}(x)}+(1-\lambda) p_{2}(x) \log \frac{(1-\lambda) p_{2}(x)}{(1-\lambda) q_{2}(x)}
$$

Summing over all x, we get the desired result.

Theorem 2.29. Concavity of Entropy
page 32 and Notes 4/4/11
$H(p)$ is a concave function of p.

Proof.

$$
H(p)=\log |\mathcal{X}|-D(p \| u)
$$

This is because

$$
\begin{aligned}
D(p \| u) & =\sum_{x} p(x) \log \frac{p(x)}{u(x)}=\sum_{x} p(x) \log |\mathcal{X}|+\sum_{x} p(x) \log p(x) \\
& =\log |\mathcal{X}|-H(X)
\end{aligned}
$$

$D(p \| u)$ is convex in p, so the negative makes $H(p)$ concave.

Example 2.30.
Notes 4/4/11

Let $p_{1}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$ and $p_{2}=\left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}$.
Then $H\left(p_{1}\right)=\frac{7}{4}$ and $H\left(p_{2}\right)=2$
If we take $\lambda=\frac{1}{4}$, then

$$
H\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \geq \lambda H\left(p_{1}\right)+(1-\lambda) H\left(p_{2}\right)
$$

2.8 Data-Processing Inequality

Definition 2.31. Markov Chain

page 34 and Notes $4 / 4 / 11$

Random variables X, Y, Z are said to form a Markov chain, denoted $X \rightarrow Y \rightarrow Z$, if

$$
p(x, y, z)=p(x) p(y \mid x) p(z \mid y)
$$

1. $X \rightarrow Y \rightarrow Z$ iff X and Z are conditionally independent given Y
2. If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$
3. If $Z=f(Y)$, then $X \rightarrow Y \rightarrow Z$
4. If $X \rightarrow Y \rightarrow Z$, then $I(X ; Z \mid Y)=0$

Theorem 2.33. Data Processing Inequality

 page 34 and Notes $4 / 4 / 11$If $X \rightarrow Y \rightarrow Z$, then $I(X ; Y) \geq I(X ; Z)$

Proof. By the chain rule,

$$
\begin{aligned}
I(X ; Y \mid Z) & =I(X ; Z)+\underbrace{I(X ; Y \mid Z)}_{\geq 0} \\
& =I(X ; Y)+\underbrace{I(X ; Z \mid Y)}_{=0}
\end{aligned}
$$

where $I(X ; Z \mid Y)=0$ because X and Z are conditionally independent given Y. Since $I(X ; Y \mid Z) \geq 0$, we have

$$
I(X ; Y) \geq I(X ; Z)
$$

with equality iff $I(X ; Y \mid Z)=0$, i.e. $X \rightarrow Z \rightarrow Y$ forms a Markov chain.

Corollary 2.34 .

page 35 and Notes $4 / 4 / 11$

If $Z=f(Y)$ then $I(X ; Y) \geq I(X ; f(Y))$

Remark 2.35.

page 35 and Notes $4 / 4 / 11$

It is possible that $I(X ; Y \mid Z)>I(X ; Y)$ when X, Y, Z do not form a Markov chain. For example, let X and Y be independent binary random variables and set $Z=X+Y$. Then $I(X ; Y)=0$ and

$$
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=H(X \mid Z)=P(Z=1) H(X \mid Z=1)=\frac{1}{2} \mathrm{bit}
$$

2.9 Sufficient Statistics

2.10 Fano's Inequality

Theorem 2.36. Fano's Inequality
page 38 and Notes $4 / 4 / 11$

Suppose that we want to estimate the value of a random variable X using a correlated random variable Y. Let $\hat{X}=f(Y)$. We define the probability error

$$
P_{e}=\operatorname{Pr}[\hat{X} \neq X]
$$

Fano's Inequality tells us that for any estimator \hat{X} such that $X \rightarrow Y \rightarrow \hat{X}$, with $P_{e}=\operatorname{Pr}[\hat{X} \neq X]$, we have

$$
\begin{aligned}
H\left(P_{e}\right)+P_{e} \log |\mathcal{X}| \geq H(X \mid Y) & \text { if } \hat{\mathcal{X}} \neq \mathcal{X} \\
H\left(P_{e}\right)+P_{e} \log (|\mathcal{X}|-1) \geq H(X \mid Y) & \text { if } \hat{\mathcal{X}}=\mathcal{X}
\end{aligned}
$$

and thus

$$
P_{e} \geq \frac{H(X \mid Y)-1}{\underbrace{\log |\mathcal{X}|}_{\text {or } \log (|\mathcal{X}|-1)}}
$$

Proof. Let

$$
E= \begin{cases}1 & \text { if } \hat{X} \neq X \\ 0 & \text { if } \hat{X}=X\end{cases}
$$

Then $\operatorname{Pr}[E=1]=P_{e}$ and

$$
\begin{aligned}
H(E, X \mid \hat{X}) & =H(X \mid \hat{X})+\underbrace{H(E \mid X, \hat{X})}_{=0} \\
& =\underbrace{H(E \mid \hat{X})}_{\leq H\left(P_{e}\right)}+\underbrace{H(X \mid E, \hat{X})}_{\leq P_{e} \log |\mathcal{X}|}
\end{aligned}
$$

We can show that

$$
H(X \mid \hat{X}) \leq H\left(P_{e}\right)+P_{e} \log |\mathcal{X}|
$$

and it follows from the data-processing inequality that

$$
H(X \mid \hat{X}) \geq H(X \mid Y)
$$

Remark 2.37.

Notes 4/4/11

Fano's Inequality is sharp, as seen in these 2 cases:

1. If $X=g(Y)$ then $H(X \mid Y)=0$ and $P_{e}=0$ because $\hat{X}=g(Y)$
2. No observation (no knowledge of Y)
$X \in\{1, \ldots, m\}, p_{1} \geq p_{2} \geq \ldots \geq p_{m}$
$\hat{X}=1, P_{e}=1-p_{1}$, and equality in Fano's Inequality is achieved when the probabilities are $\left(p, \frac{1-p}{m-1}, \ldots, \frac{1-p}{m-1}\right)$
This is found by setting $H\left(P_{e}\right)+P_{e} \log (m-1)=H(X)$

Remark 2.38. Review of Key Concepts

Notes 4/6/11

$$
\begin{aligned}
H(X) & =H(p)=-\mathbb{E}[\log p(X)]=\sum_{x} p(x) \log \frac{1}{p(x)} \\
D(p \| q) & =\sum_{x} p(x) \log \frac{p(x)}{q(x)} \\
I(X ; Y) & =D(p(x, y) \| p(x) p(y))=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
\end{aligned}
$$

Jensen's Inequality: If f is convex, then $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$.
It follows that $D(p \| q) \geq 0, I(X ; Y) \geq 0, H(X \mid Y) \leq H(X), H(X) \leq \log |\mathcal{X}|, H\left(X_{1}, \ldots, X_{n}\right) \leq$ $\sum_{i} H\left(X_{i}\right)$.

Log-Sum Inequality:

$$
\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i} a_{i}}{\sum b_{i}}
$$

$D(p \| q)$ is convex, $H(p)$ is concave, $I(X ; Y)$ is concave in $p(x)$ for fixed $p(y \mid x)$ and convex in $p(y \mid x)$ for fixed $p(x)$.

Data Processing Inequality:

$$
\text { If } X \rightarrow Y \rightarrow Z, \text { then } I(X ; Y) \geq I(X ; Z)
$$

Fano's Inequality: For any estimator \hat{X} such that $X \rightarrow Y \rightarrow \hat{X}$, we have

$$
\begin{aligned}
H\left(P_{e}\right)+\underbrace{P_{e} \log |\mathcal{X}|}_{P_{e} \log (|\mathcal{X}|-1)} & \geq H(X \mid Y) \\
P_{e} & \geq \frac{H(X \mid Y)-1}{\underbrace{\log |\mathcal{X}|}_{\log (|\mathcal{X}|-1)}}
\end{aligned}
$$

Lemma 2.39.
page 40 and Notes $4 / 6 / 11$

Let X, X^{\prime} be two independent random variables, $X \sim p, X^{\prime} \sim p^{\prime}$. Then

$$
\left.\begin{array}{l}
\operatorname{Pr}\left[X=X^{\prime}\right] \geq 2^{-H(p)-D\left(p \| p^{\prime}\right)} \\
\operatorname{Pr}\left[X=X^{\prime}\right] \geq 2^{-H\left(p^{\prime}\right)-D\left(p^{\prime} \| p\right)}
\end{array}\right\} \text { not necessarily the same value }
$$

If X and X^{\prime} are independent identically distributed random variables (i.i.d.), meaning that $p=p^{\prime}$, then

$$
\operatorname{Pr}\left[X=X^{\prime}\right] \geq 2^{-H(p)}
$$

Proof.

$$
\begin{aligned}
2^{-H(p)-D\left(p \| p^{\prime}\right)} & =2^{\sum_{x} p(x) \log p(x)-\sum_{x} p(x) \log \frac{p(x)}{p^{\prime}(x)}} \\
& =2^{\sum_{x} p(x) \log p^{\prime}(x)} \\
& =2^{\mathbb{E}\left[\log p^{\prime}(x)\right]} \\
& \leq \mathbb{E}_{p}\left[2^{\log p^{\prime}(x)}\right]=\mathbb{E}_{p}\left[p^{\prime}(x)\right]=\sum_{x} p(x) p^{\prime}(x)=\operatorname{Pr}\left[X=X^{\prime}\right]
\end{aligned}
$$

3 Asymptotic Equipartition Property

3.1 Asymptotic Equipartition Property Theorem

Theorem 3.1. Weak Law of Large Numbers
Notes 4/6/11

If X_{1}, X_{2}, \ldots are i.i.d. random variables drawn from p, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathbb{E}_{p}[X] \text { in probability }
$$

$\left(X_{n} \xrightarrow{\text { in prob }} X\right.$ means that $\left.\operatorname{Pr}\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0.\right)$

Theorem 3.2. Asymptotic Equipartition Property (AEP) Theorem page 58 and Notes $4 / 6 / 11$

If X_{1}, \ldots, X_{n} are i.i.d. $\sim p(x)$, then

$$
-\frac{1}{n} \log p\left(X_{1}, \ldots, X_{n}\right) \rightarrow H(X) \quad \text { in probability }
$$

Proof. The LHS:

$$
-\frac{1}{n} \sum_{i} \log p\left(X_{i}\right) \rightarrow-\mathbb{E}[\log p(X)]=H(X)
$$

Definition 3.3. Typical Set
page 59 and Notes $4 / 6 / 11$

For any $\epsilon>0$, the typical set $A_{\epsilon}^{(n)}$ with respect to $p(x)$ is the set of all sequences $\left(x_{1}, \ldots, x_{n}\right)$ satisfying

$$
2^{-n[H(X)+\epsilon]} \leq p\left(x_{1}, \ldots, x_{n}\right) \leq 2^{-n[H(X)-\epsilon]}
$$

Properties of $A_{\epsilon}^{(n)}$:

1. $\operatorname{Pr}\left[A_{\epsilon}^{(n)}\right]>1-\epsilon$ for n sufficiently large
2. $\left|A_{\epsilon}^{(n)}\right| \leq 2^{n[H(X)+\epsilon]}$
3. $\left|A_{\epsilon}^{(n)}\right| \geq(1-\epsilon) \cdot 2^{n[H(X)-\epsilon]}$

Remark 3.4. Number of Typical Sequences

Notes 4/6/11

The number of typical sequences $\approx\binom{n}{n p} \sim 2^{n H(X)}$.
To see this, recall Stirling's formula: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

$$
\begin{array}{rlr}
M=\binom{n}{n p} & \sim \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{\sqrt{2 \pi n p}\left(\frac{n p}{e}\right)^{n p} \sqrt{2 \pi n q}\left(\frac{n q}{e}\right)^{n q}} & =\frac{1}{\sqrt{2 \pi n p q} p^{n p} q^{n q}} \\
\log M & \sim-\frac{1}{2} \log (2 \pi n p q)-n p \log p-n q \log q \\
& \sim n\left[H(X)-\frac{\frac{1}{2} \log (2 \pi n p q)}{n}\right] &
\end{array}
$$

3.2 Consequences of the AEP: Data Compression

Remark 3.5. Code Word Length

Notes 4/6/11

For sequences in $A_{\epsilon}^{(n)}$, the code word length is $n(H+\epsilon)+2$ bits.

For atypical sequences, the code word length is $n \log |\mathcal{X}|+2$ bits.

Theorem 3.6. Average Code Word Length
page 61 and Notes 4/6/11

$$
\begin{aligned}
L & =\sum_{x_{1}^{n} \in A_{\epsilon}^{(n)}} p\left(x_{1}^{n}\right) l_{1}+\sum_{x_{1}^{n} \notin A_{\epsilon}^{(n)}} p\left(x_{1}^{n}\right) l_{2} \\
& =n(H+\epsilon) \sum_{x_{1}^{n} \in A_{\epsilon}^{(n)}} p\left(x_{1}^{n}\right)+n \log |\mathcal{X}| \sum_{x_{1}^{n} \notin A_{\epsilon}^{(n)}} p\left(x_{1}^{n}\right)+2 \\
& \leq n(H+\epsilon)+n \log |\mathcal{X}| \epsilon+2 \\
& \leq n\left[H(X)+\epsilon^{\prime}\right]
\end{aligned}
$$

where $\epsilon^{\prime}=\epsilon+\epsilon \log |\mathcal{X}|+\frac{2}{n}$.

Example 3.7.

Notes 4/11/11

Consider a biased coin with p (heads) $=0.9$. The Asymptotic Equipartition Property (Theorem 3.2) says that if we flip it enough times then

$$
-\frac{1}{n} \log p\left(X_{1}, \ldots, X_{n}\right) \xrightarrow{\text { i.p. }} H(X)
$$

Definition 3.8. High-Probability Set

page 62 and Notes 4/11/11

For each $n=1,2, \ldots$, define the high-probability set $B_{\delta}^{(n)} \subset \mathcal{X}^{n}$ to be the smallest set with

$$
\operatorname{Pr}\left\{B_{\delta}^{(n)}\right\} \geq 1-\delta
$$

Remark 3.9. Typical Sequence \neq Most Likely Sequence

Notes 4/11/11
(From Example 3.7) Typical sequences have 90% heads. The most likely sequence is all heads.

Theorem 3.10.

page 63 and Notes 4/11/11

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim p(x)$. Then for every $\delta^{\prime}>0$,

$$
\begin{aligned}
\frac{1}{n} \log \left|B_{\delta}^{(n)}\right| & >H-\delta^{\prime} \\
\left|B_{\delta}^{(n)}\right| & >2^{n\left(H-\delta^{\prime}\right)}
\end{aligned}
$$

Proof.

$$
\begin{align*}
\operatorname{Pr}\left\{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right\} & =\sum_{x_{1}^{n} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} \operatorname{Pr}\left(x_{1}^{n}\right)=\sum_{x_{1}^{n} \in A_{\epsilon}^{(n)}} p\left(x_{1}^{n}\right)+\sum_{x_{1}^{n} \in B_{\delta}^{(n)}} p\left(x_{1}^{n}\right)-\sum_{x_{1}^{n} \in A_{\epsilon}^{(n)} \cup B_{\delta}^{(n)}} p\left(x_{1}^{n}\right) \\
& >(1-\epsilon)+(1-\delta)-1 \\
& >1-\epsilon-\delta \tag{3.1}
\end{align*}
$$

We also get

$$
\begin{align*}
\operatorname{Pr}\left\{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right\} & =\sum_{x_{1}^{n} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} \operatorname{Pr}\left(x_{1}^{n}\right) \\
& \leq \sum_{x_{1}^{n} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} 2^{-n(H-\epsilon)}=\left|A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} \\
& \leq\left|B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} \tag{3.2}
\end{align*}
$$

Combining (3.1) and (3.2) gives

$$
\begin{aligned}
\left|B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} & \geq 1-\epsilon-\delta \\
\left|B_{\delta}^{(n)}\right| & \geq 2^{n(H-\epsilon)}(1-\epsilon-\delta) \\
\frac{1}{n} \log \left|B_{\delta}^{(n)}\right|>H-\underbrace{\epsilon+\frac{\log (1-\epsilon-\delta)}{n}}_{\delta^{\prime}}=H-\delta^{\prime} &
\end{aligned}
$$

Remark 3.11. Notation: \doteq
page 63 and Notes $4 / 11 / 11$
$a_{n} \doteq b_{n}$ denotes that a_{n} and b_{n} are equal to the first order exponent. That is,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{a_{n}}{b_{n}}=0
$$

For example:

$$
a_{n}=2^{n\left(H+\frac{\sqrt{n}}{n}\right)}, \quad b_{n}=2^{n\left(H+\frac{\log n}{n}\right)}, \quad c_{n}=2^{n H}
$$

It is easily seen that $a_{n} \doteq b_{n} \doteq c_{n}$.

4 Entropy Rates of a Stochastic Process

4.1 Markov Chains

Definition 4.1. Stochastic Process, Stationary
page 71 and Notes 4/11/11

A stochastic process $\left\{X_{i}\right\}$ is an indexed sequence of random variables that is characterized by the joint distribution $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A stochastic process is said to be stationary if it is invariant with respect to shifts in the time index; that is,

$$
\operatorname{Pr}\left\{X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right\}=\operatorname{Pr}\left\{X_{1+l}=x_{1}, X_{2+l}=x_{2}, \ldots, X_{n+l}=x_{n}\right\}
$$

4.2 Entropy Rate

Definition 4.2. Entropy Rate

page 74 and Notes $4 / 11 / 11$

The entropy rate of a stochastic process is

$$
H(\mathcal{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)
$$

provided the limit exists. A second definition is given by

$$
H^{\prime}(\mathcal{X})=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

provided the limit exists.

Example 4.3. Entropy Rate Examples

Notes 4/11/11

1. Given: $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables. Then $H(\mathcal{X})=H(X)=H^{\prime}(\mathcal{X})$.
2. Given: X_{i} are binary random variables with $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$ independent.

$$
\begin{aligned}
& p_{i}=\left\{\begin{aligned}
0.5 & \text { if }\lceil\log i\rceil \text { is odd } \Rightarrow H\left(X_{i}\right)=1 \\
0 & \text { if }\lceil\log i\rceil \text { is even } \Rightarrow H\left(X_{i}\right)=0
\end{aligned}\right. \\
& \begin{array}{c|ccccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline H\left(X_{i}\right) & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array} \\
& H\left(X_{2^{r-1}+1}\right)=H\left(X_{2^{r}}\right)=\left\{\begin{array}{cc}
1 & \text { if } r \text { odd } \\
0 & \text { if } r \text { even }
\end{array}\right. \\
& \sum_{i=1}^{2^{r}} H\left(X_{i}\right)=\left\{\begin{aligned}
1+2^{2}+2^{4}+\ldots+2^{r-1}=\frac{2^{r+1}-1}{3} & r \text { odd } \\
1+2^{2}+\ldots+2^{r}=\frac{2^{r-1}-1}{3} & r \text { even }
\end{aligned}\right. \\
& \frac{\sum_{i=1}^{2^{r}} H\left(X_{i}\right)}{2^{r}}=\left\{\begin{array}{ll}
\frac{2}{3}-\frac{1}{3 \cdot 2 r} & r \text { odd } \\
\frac{1}{3}-\frac{1}{3 \cdot 2^{r}} & r \text { even }
\end{array} \Rightarrow\right. \text { no limit } \\
& H^{\prime}(\mathcal{X})=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n}\right) \Rightarrow \text { does not exist }
\end{aligned}
$$

Theorem 4.4.

page 75 and Notes 4/11/11

For a stationary stochastic process, $H(\mathcal{X})$ and $H^{\prime}(\mathcal{X})$ are defined and equal.

Proof. First show $H^{\prime}(\mathcal{X})$ is defined.

$$
H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \leq H\left(X_{n} \mid X_{2}, \ldots, X_{n-1}\right)=H\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right)
$$

because it is stationary. The sequence is nonincreasing and nonnegative, so the limit exists. Computing $H(\mathcal{X})$ we get that

$$
\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{n}\left(H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \rightarrow H^{\prime}(\mathcal{X})\right.
$$

by the Cesáro Mean Theorem (Theorem 4.5).

Theorem 4.5. Cesáro Mean
page 76 and Notes 4/11/11

If $a_{n} \rightarrow a$ and $b_{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$, then $b_{n} \rightarrow a$.

Theorem 4.6. Shannon-McMillan-Breiman Theorem (AEP) page 77 and Notes $4 / 11 / 11$

For any stationary ergodic process, we have

$$
-\frac{1}{n} \log p\left(X_{1}, \ldots, X_{n}\right) \xrightarrow{\text { i.p. }} H(\mathcal{X})
$$

with probability 1 . The proof uses the law of large numbers for ergodic processes.

Example 4.7. Markov Chain, Time-Invariant, Probability Transition Matrix, Irreducible, Aperiodic, Stationary Distribution
page 73 and Notes 4/11/11

Consider a Markov chain X_{1}, \ldots, X_{n}. Each random variable depends only on the one preceding it and is conditionally independent of all the other preceding random variables; that is,

$$
\operatorname{Pr}\left[X_{n} \mid X_{1}, \ldots, X_{n-1}\right]=\operatorname{Pr}\left[X_{n} \mid X_{n-1}\right]
$$

If $\operatorname{Pr}\left[X_{n} \mid X_{n-1}\right]=$ constant for all n, then the Markov chain is time-invariant and we write

$$
\operatorname{Pr}\left[X_{n} \mid X_{n-1}\right] \equiv P_{i, j}
$$

We form the probability transition matrix $P=\left[P_{i j}\right], i, j \in\{1,2, \ldots, m\}$ by setting

$$
P_{i j}=\operatorname{Pr}\left[X_{n}=j \mid X_{n-1}=i\right]
$$

If it is possible to go with positive probability from any state of the Markov chain to any other state in a finite number of steps then the Markov chain is said to be irreducible. If the largest common factor of the lengths of different paths from a state to itself is 1 , the Markov chain is aperiodic.

If there exists a state $\pi=\left[P_{1}, \ldots, P_{n}\right]$ such that the distribution at the next time step is identical, i.e. $\pi=P \pi$, then π is a stationary distribution. If $\operatorname{Pr}\left[X_{1}\right]=\pi$ then we will stay there forever and the Markov chain is a stationary process, and

$$
\begin{aligned}
H(\mathcal{X}) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}\right) \\
& =H\left(X_{2} \mid X_{1}\right) \\
& =\sum_{i=1}^{M} \pi_{i} H\left(X_{2} \mid X_{1}=i\right) \\
& =\sum_{i=1}^{M} \pi_{i} \sum_{j=1}^{M} P_{i j} \log \frac{1}{P_{i j}}
\end{aligned}
$$

In other words, we have (at least for a 2 state Markov chain, see HW3 Problem 4.7)

$$
H(\mathcal{X})=\mu_{1} H\left(\mathbb{P}_{\text {row } 1}\right)+\mu_{2} H\left(\mathbb{P}_{\text {row } 2}\right) .
$$

If we have a finite, irreducible Markov chain with finite space, then it has a limiting distribution (the unique stationary distribution).

5 Data Compression

5.1 Examples of Codes

Definition 5.1. Source Code
page 103 and Notes 4/13/11

A source code C for a random variable X is a mapping from \mathcal{X} to \mathcal{D}^{*}, the set of finite-length strings from a D-ary alphabet. Let $C(x)$ denote the codeword corresponding to x and let $l(x)$ denote the length of $C(x)$.

Definition 5.2. Expected Length

page 104 and Notes 4/13/11

The expected length $L(C)$ of $C(x)$ is given by

$$
L(C)=\sum_{x} p(x) l(x)
$$

Definition 5.3. Nonsingular

page 105 and Notes 4/13/11

A code is nonsingular if every element in \mathcal{X} is mapped to a different codeword. In other words, $x \neq x^{\prime}$ implies that $C(x) \neq C\left(x^{\prime}\right)$.

Definition 5.4. Extension, Uniquely Decodable

page 105 and Notes 4/13/11

The extension C^{*} of a code C is the mapping from finite-length strings of \mathcal{X} to finite-length strings in D^{*} given by

$$
C\left(x_{1} x_{2} \ldots x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \ldots C\left(x_{n}\right)
$$

A code is uniquely decodable if its extension is nonsingular.

Definition 5.5. Instantaneous Code, Prefix Code

page 106 and Notes 4/13/11

A code is called a prefix code or an instantaneous code if no codeword is a prefix of any other codeword.

Remark 5.6.
page 106 and Notes 4/13/11

All codes \supset Nonsingular \supset Uniquely Decodable \supset Instantaneous

Example 5.7.
page 107 and Notes $4 / 13 / 11$

X	Singular	Nonsingular, not uniquely decodable	Uniquely decodable, not instantaneous	Instantaneous
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

5.2 Kraft Inequality

Theorem 5.8. Kraft Inequality

page 107 and Notes $4 / 13 / 11$

For any prefix code over an alphabet of size $D \geq 2$, the codeword lengths $l_{1}, l_{2}, \ldots, l_{m}$ must satisfy

$$
\sum_{i} D^{-l_{i}} \leq 1
$$

Conversely, given a set of codeword lengths satisfying this inequality, there exists a prefix code with those codeword lengths.

Theorem 5.9. Extended Kraft Inequality
page 109 and Notes 4/13/11

For any countably infinite set of codewords that form a prefix code (or a uniquely decodable code), the codeword lengths satisfy

$$
\sum_{i=1}^{\infty} D^{-l_{i}} \leq 1
$$

Conversely, given any l_{1}, l_{2}, \ldots satisfying the above inequality, we can construct a prefix code with these codeword lengths.

Theorem 5.10. Kraft Inequality (McMillan)
page 116 and Notes $4 / 18 / 11$

The codeword lengths of any uniquely decodable D-ary code must satsify the Kraft inequality

$$
\sum D^{-l_{i}} \leq 1
$$

Proof. Consider C^{k}, the k th extension of the code. By the definition of unique decodability, the k th extension
of the code is nonsingular. Then

$$
\begin{aligned}
\left(\sum_{x \in \mathcal{X}} D^{-l(x)}\right)^{k} & =\sum_{x_{1} \in \mathcal{X}} \sum_{x_{2} \in \mathcal{X}} \ldots \sum_{x_{k} \in \mathcal{X}} D^{-l\left(x_{1}\right)} D^{-l\left(x_{2}\right)} \ldots D^{-l\left(x_{k}\right)} \\
& =\sum_{x_{1}, x_{2}, \ldots, x_{k} \in \mathcal{X}^{k}} D^{-l\left(x_{1}\right)} D^{-l\left(x_{2}\right)} \ldots D^{-l\left(x_{k}\right)} \\
& =\sum_{x^{k} \in \mathcal{X}^{k}} D^{-l\left(x^{k}\right)}
\end{aligned}
$$

and somehow this leads to the desired result.

5.3 Optimal Codes

Remark 5.11.

page 110 and Notes 4/18/11

We want to minimize

$$
L=\sum p_{i} l_{i}
$$

while satisfying

$$
\sum D^{-l_{i}} \leq 1
$$

We do this using Lagrange multipliers. We set

$$
\begin{aligned}
J & =\sum p_{i} l_{i}+\lambda\left(\sum d^{-l_{i}}\right) \\
\frac{\partial J}{\partial l_{i}} & =p_{i}-\lambda D^{-l_{i}} \log _{e} D=0 \\
D^{-l_{i}} & =\frac{p_{i}}{\lambda \log _{e} D} \\
\lambda & =\frac{1}{\log _{e} D} \\
p_{i} & =D^{-l_{i}} \\
l_{i}^{*} & =-\log _{D} p_{i}
\end{aligned}
$$

where l_{i}^{*} is the optimal code length for x_{i}.

Theorem 5.12.

page 111 and Notes 4/18/11

The expected length L of any prefix D-ary code for a random variable X satisfies

$$
L \geq H_{D}(X)
$$

with equality iff $\log _{D} \frac{1}{p_{i}}$ is an integer for all i.

Proof.

$$
\begin{aligned}
L-H_{D}(X) & =\sum p_{i} l_{i}-\sum p_{i} \log _{D} \frac{1}{p_{i}} \\
& =-\sum p_{i} \log _{D} D^{-l_{i}}+\sum p_{i} \log _{D} p_{i}
\end{aligned}
$$

Let

$$
c=\sum D^{-l_{i}} \quad \text { and } \quad r_{i}=\frac{D^{-l_{i}}}{\sum D^{-l_{i}}}=\frac{D^{-l_{i}}}{c}
$$

Then continuing from above, we have

$$
\begin{aligned}
L-H_{D}(X) & =\sum p_{i} \log _{D} r_{i} c+\sum p_{i} \log _{D} p_{i} \\
& =\sum p_{i} \log _{D} \frac{p_{i}}{r_{i} c} \\
& =\sum p_{i} \log _{D} \frac{p_{i}}{r_{i}}-\sum p_{i} \log _{D} c \\
& =D(p \| r)+\log _{D} \frac{1}{c} \\
& \geq 0
\end{aligned}
$$

Definition 5.13. D-adic
page 112 and Notes 4/18/11

A probability distribution is D-adic if each probability equals D^{-n} for some integer n.

5.4 Bounds on the Optimal Code Length

Definition 5.14. Shannon-Fano Coding

page 112 and Notes 4/18/11

Choose code lengths by

$$
l_{i}=\left\lceil\log _{D} \frac{1}{p_{i}}\right\rceil
$$

This is a prefix code because

$$
\sum_{i} D^{-l_{i}}=\sum_{i} D^{-\left\lceil\log _{D} \frac{1}{p_{i}}\right\rceil} \leq \sum_{i} D^{-\log _{D} \frac{1}{p_{i}}}=\sum p_{i}=1
$$

We can bound the expected codeword length by

$$
L=\sum_{i} p_{i}\left\lceil\log _{D} \frac{1}{p_{i}}\right\rceil \leq \sum_{i} p_{i}\left(\log _{D} \frac{1}{p_{i}}+1\right)=H_{D}(X)+1
$$

Theorem 5.15.

page 113 and Notes $4 / 18 / 11$

Let L^{*} be the associated expected length of the optimal prefix code. Then

$$
H_{D}(X) \leq L^{*} \leq H_{D}(X)+1
$$

Remark 5.16. Approaching the Entropy

page 113 and Notes $4 / 18 / 11$

Let L_{n} be the expected codeword length per input symbol; that is,

$$
L_{n}=\frac{1}{n} \sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}} p\left(x_{1}, \ldots, x_{n}\right) l\left(x_{1}, \ldots, x_{n}\right)
$$

Then by Theorem 5.15,

$$
H_{D}\left(X_{1}, \ldots, X_{n}\right) \leq n L_{n} \leq H_{D}\left(X_{1}, \ldots, X_{n}\right)+1
$$

Because X_{1}, \ldots, X_{n} are i.i.d., $H\left(X_{1}, \ldots, X_{n}\right)=\sum H\left(X_{i}\right)=n H(X)$. Thus, we get

$$
H_{D}(X) \leq L_{n} \leq H_{D}(X)+\frac{1}{n}
$$

If we have a stochastic process that is stationary, then

$$
L_{n} \rightarrow H(\mathcal{X})
$$

Theorem 5.17.

page 114 and Notes 4/18/11

The minimum expected codeword length per symbol satisfies

$$
\frac{H\left(X_{1}, \ldots, X_{n}\right)}{n} \leq L_{n}^{*} \leq \frac{H\left(X_{1}, \ldots, X_{n}\right)}{n}+\frac{1}{n}
$$

Moreover, if X_{1}, \ldots, X_{n} is a stationary stochastic process then

$$
L_{n}^{*} \rightarrow H(\mathcal{X})
$$

Theorem 5.18. Wrong Code
page 115 and Notes $4 / 18 / 11$

If the true distribution is $p(x)$ and our code is designed for $q(x)$ with $l(x)=\left\lceil\log \frac{1}{q(x)}\right\rceil$, then

$$
H(p)+D(p \| q) \leq \mathbb{E}_{p} l(X) \leq H(p)+D(p \| q)+1
$$

Proof.

$$
\begin{gathered}
\quad \mathbb{E}_{p} l(X)=\sum_{x} p(x)\left\lceil\log \frac{1}{q(x)}\right\rceil \\
<\sum_{x} p(x)\left(\log \frac{1}{q(x)}+1\right)=\sum_{x} p(x) \log \frac{1}{q(x)} \cdot \frac{p(x)}{p(x)}+1 \\
<\sum_{x} p(x) \log \frac{p(x)}{q(x)}+\sum_{x} p(x) \log \frac{1}{p(x)}+1 \\
<H(p)+D(p \| q)+1
\end{gathered}
$$

5.6 Huffman Codes

Example 5.19. Huffman Code ($D=2$)
page 118 and Notes $4 / 20 / 11$

Construction of Huffman code for $D=2, \mathcal{X}=\{1,2,3,4,5\}, p=\{0.25,0.25,0.2,0.15,0.15\}$

1	$0.25 \Rightarrow 01$	$0.3 \Rightarrow 00$	$0.45 \Rightarrow 1$	$0.55 \Rightarrow 0$
2	$0.25 \Rightarrow 10$	$0.25 \Rightarrow 01$	$0.25 \Rightarrow 10$	$0.2 \Rightarrow 11$
3	$0.2 \Rightarrow 11$	$0.25 \Rightarrow 10$	$0.25 \Rightarrow 01$	
4	$0.15 \Rightarrow 000$	$0.2 \Rightarrow 11$		
5	$0.15 \Rightarrow 001$			

Example 5.20. Huffman Code ($D=3$)
page 119 and Notes 4/20/11

Construction of Huffman code for $D=2, \mathcal{X}=\{1,2,3,4,5\}, p=\{0.25,0.25,0.2,0.15,0.15\}$

1	0.25	$0.5 \Rightarrow 0$
2	0.25	$0.25 \Rightarrow 1$
3	0.2	$0.2 \Rightarrow 2$
4	0.15	
5	0.15	

Example 5.21. Huffman Code $(D=4)$
page 119 and Notes 4/20/11

Construction of Huffman code for $D=2, \mathcal{X}=\{1,2,3,4,5\}, p=\{0.25,0.25,0.2,0.15,0.15\}$

$1 \Rightarrow 1$	0.25	$0.3 \Rightarrow 0$
$2 \Rightarrow 2$	0.25	$0.25 \Rightarrow 1$
$3 \Rightarrow 3$	0.2	$0.25 \Rightarrow 2$
$4 \Rightarrow 00$	0.15	0.2
$5 \Rightarrow 01$	0.15	
6	0	
7	0	

- The total number of symbols should be $1+k(D-1)$
- It is possible to have 2 optimal codes with different codeword lengths, but the same expected codeword length
- The codeword lengths of optimal codes are not unique

Example 5.23.

Notes 4/20/11

Let $D=2, \mathcal{X}=\{1,2,3,4\}, p=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{12}\right\}$.

$$
\begin{aligned}
& 1 \Rightarrow 1 \\
& 2 \Rightarrow 00 \\
& 3 \Rightarrow 010 \\
& 4 \Rightarrow 011
\end{aligned}
$$

$1 \Rightarrow 00$	$\frac{1}{3}$	$\frac{1}{3}^{*}$	$\frac{2}{3}$
$2 \Rightarrow 01$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$3 \Rightarrow 10$	$\frac{1}{4}$	$\frac{1}{3}$	
$4 \Rightarrow 11$	$\frac{1}{12}$		

5.7 Some Comments on Huffman Codes

Remark 5.24. Huffman vs. Shannon

page 122 and Notes $4 / 20 / 11$

For Shannon code, $\left\lceil\log \frac{1}{p_{i}}\right\rceil$, choose p_{i} small, e.g. $p=\{0.999,0.001\}$. Then for Huffman code,

$$
l_{i} \leq\left\lceil\log \frac{1}{p_{i}}\right\rceil
$$

5.8 Optimality of Huffman Codes

Lemma 5.25.

page 123 and Notes $4 / 20 / 11$

For any distribution, there exists an optimal prefix code that satisfies

1. the lengths of the codeword are ordered inversely with probability, i.e. $p_{j} \geq p_{k} \Rightarrow l_{j} \leq l_{k}$.
2. the two longest codewords have the same length.
3. two of the longest codewords differ only in the last bit

Proof. Consider C^{\prime} with codewords j and k interchanged from C^{*}. Then

$$
\begin{aligned}
L\left(C^{\prime}\right)-L\left(C^{*}\right) & =p_{j} l_{k}+p_{k} l_{j}-p_{j} l_{j}-p_{k} l_{k} \\
& =\underbrace{\left(p_{j}-p_{k}\right)}_{\geq 0}\left(l_{k}-l_{j}\right)
\end{aligned}
$$

Definition 5.26. Canonical Codes

page 125 and Notes $4 / 20 / 11$

Canonical codes are codes that satisfy the 3 properties in Lemma 5.25.

Definition 5.27. Huffman Reduction

page 125 and Notes $4 / 20 / 11$

$$
\begin{aligned}
|\mathcal{X}|=m, \mathbb{P} & =\left(p_{1}, \ldots, p_{m}\right) \text { with } p_{1} \geq p_{2} \geq \cdots \geq p_{m} \\
\left|\mathcal{X}^{\prime}\right|=m-1, \mathbb{P} & =\left(p_{1}, \ldots, p_{m-2}, p_{m-1}+p_{m}\right)
\end{aligned}
$$

Remark 5.28.

Notes 4/20/11

Let $C_{m-1}^{*}\left(\mathbb{P}^{\prime}\right)$ be the optimal code for \mathbb{P}^{\prime}.
Let $C_{m}^{*}(\mathbb{P})$ be the optimal code for \mathbb{P}.
From $C_{m-1}^{*}\left(\mathbb{P}^{\prime}\right)$ we can construct an extension code for $|\mathcal{X}|=m$. To do this, take the codeword in C_{m-1}^{*} for $p_{m-1}+p_{m}$ and extend it by adding 1 more bit at the end. The average length $\sum_{i} l_{i} p_{i}$ is:

$$
L(\mathbb{P})=L^{*}\left(\mathbb{P}^{\prime}\right)+p_{m-1}+p_{m}
$$

Start from a canonical code for $|\mathcal{X}|=m$. We can construct a code for \mathbb{P}^{\prime} by throwing away the last bit of the two codewords for p_{m-1} and p_{m}. Then we have

$$
\begin{aligned}
L\left(\mathbb{P}^{\prime}\right) & =L^{*}(\mathbb{P})-p_{m-1}-p_{m} \quad\left(L^{*}(\mathbb{P})=p_{m-1} l_{\max }+p_{m} l_{\max }\right) \\
\underbrace{\left[(\mathbb{P})+L\left(\mathbb{P}^{\prime}\right)\right.}_{0} & =L^{*}(\mathbb{P})+L^{*}\left(\mathbb{P}^{\prime}\right) \\
\underbrace{\left[L\left(\mathbb{P}^{\prime}\right)-L^{*}\left(\mathbb{P}^{\prime}\right)\right]}_{0}+\underbrace{\left[L(\mathbb{P})-L^{*}(\mathbb{P})\right]} & =0
\end{aligned}
$$

7 Channel Capacity

7.1 Examples of Channel Capacity

Definition 7.1. Discrete Channel
page 183 and Notes $4 / 25 / 11$

A discrete channel consists of

- A discrete alphabet \mathcal{X} (input alphabet)
- A discrete alphabet \mathcal{Y} (output alphabet)
- A conditional probability $p\left(y^{n} \mid x^{n}\right)$ for each n

$$
\begin{aligned}
x^{n} & =\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n} \\
y^{n} & =\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{Y}^{n}
\end{aligned}
$$

Definition 7.2. Memoryless Channnel

page 184 and Notes $4 / 25 / 11$

A memoryless channel satisfies

$$
p\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

Remark 7.3.

Notes 4/25/11

A channel can be given by a matrix, \mathbb{P}, with rows corresponding to x and columns corresponding to y.

Definition 7.4. Operational Channel Capacity

page 184 and Notes $4 / 25 / 11$

Operational channel capacity is the highest rate at which information can be sent (with arbitrarily low probability of error).

Definition 7.5. Information Channel Capacity

page 184 and Notes $4 / 25 / 11$

We define the information channel capacity as

$$
C=\max _{p(x)} I(X ; Y)
$$

Example 7.6. Noisy Channel with Nonoverlapping Outputs
page 185 and Notes $4 / 25 / 11$

$$
\begin{aligned}
& 0 \mapsto 0 \\
& 1 \mapsto 1,2 \text { with equal probability } \\
& 2 \mapsto 3
\end{aligned}
$$

$$
\mathbb{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

There is no ambiguity (nonoverlapping output).

$$
\begin{aligned}
C & =\max _{p(x)} I(X ; Y)=\max _{p(x)} H(X)-H(X \mid Y)=\max _{p(x)} H(X) \\
& =\log 3
\end{aligned}
$$

Example 7.7. Noisy Typewriter

page 186 and Notes $4 / 25 / 11$
$A \mapsto A, B$ with equal probability, $B \mapsto B, C$ with equal probability, $\ldots, Z \mapsto Z, A$ with equal probability.

$$
\begin{aligned}
I(X ; Y) & =H(Y)-H(Y \mid X)=H(Y)-1 \\
& \leq \log 26-1 \\
C & =\max _{p(x)} H(Y)-1=\log 26-1 \\
& =\log 13
\end{aligned}
$$

Example 7.8. Binary Symmetric Channel
page 187 and Notes $4 / 25 / 11$

$$
\begin{gathered}
\mathbb{P}=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right] \\
I(X ; Y)=H(Y)-H(Y \mid X)=H(Y)-H(p) \\
\leq 1-H(p) \\
C=1-H(p), \quad \text { achieved when } p(x) \text { is uniform }
\end{gathered}
$$

$$
\begin{aligned}
& 0 \mapsto \begin{cases}0 & \text { with probability } 1-\alpha \\
e & \text { with probability } \alpha\end{cases} \\
& 1 \mapsto \begin{cases}e & \text { with probability } \alpha \\
1 & \text { with probability } 1-\alpha\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
I(X ; Y)= & H(Y)-H(Y \mid X)=H(Y)-H(\alpha) \\
H(Y)= & H(Y, E)=H(E)+H(Y \mid E)=H(\alpha) \\
H(Y \mid E)= & \operatorname{Pr}[E=0] H(Y \mid E=0) \\
& +\operatorname{Pr}[E=1] H(Y \mid E=1) \\
\leq & 1-\alpha
\end{aligned}
$$

Define

$$
E= \begin{cases}0 & \text { if } Y=e \\ 1 & \text { if } Y \neq e\end{cases}
$$

Example 7.10.
Notes 4/25/11

$$
\mathbb{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Define a probability distribution for $X: p(0,1,2,3) \sim\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
H(X \mid Y) & =\sum_{y} H(X \mid Y=y) p(y)=H(X \mid Y=3) \operatorname{Pr}(Y=3) \\
& =\left(p_{2}+p_{3}\right)\left[\frac{p_{2}}{p_{2}+p_{3}} \log \frac{p_{2}+p_{3}}{p_{2}}+\frac{p_{3}}{p_{2}+p_{3}} \log \frac{p_{2}+p_{3}}{p_{3}}\right] \\
& =p_{2} \log \frac{p_{2}+p_{3}}{p_{2}}+p_{3} \log \frac{p_{2}+p_{3}}{p_{3}} \\
I(X ; Y) & =p_{0} \log \frac{1}{p_{0}}+p_{1} \log \frac{1}{p_{1}}+p_{2} \log \frac{1}{p_{2}}+p_{3} \log \frac{1}{p_{3}}-p_{2} \log \frac{p_{2}+p_{3}}{p_{2}}-p_{3} \log \frac{p_{2}+p_{3}}{p_{3}} \\
& =p_{0} \log \frac{1}{p_{0}}+p_{1} \log \frac{1}{p_{1}}+\left(p_{2}+p_{3}\right) \log \frac{1}{p_{2}+p_{3}} \\
C & =\log 3, \quad \text { achieved with } p_{0}=p_{1}=p_{2}+p_{3}
\end{aligned}
$$

7.2 Symmetric Channels

Definition 7.11. Weakly Symmetric

page 190 and Notes $4 / 27 / 11$

A channel is weakly symmetric if the rows of \mathbb{P} are permutations of each other and all the column sums are equal.

Definition 7.12. Symmetric page 190 and Notes $4 / 27 / 11$

A channel is symmetric if the rows and columns are permutations of each other.

Theorem 7.13.

page 191 and Notes $4 / 27 / 11$

For a weakly symmetric channel $(\mathcal{X}, \mathbb{P}, \mathcal{Y})$,

$$
C=\max _{p(x)} I(X ; Y)=\log |\mathcal{Y}|-H(\text { row of transition matrix })
$$

Proof.

$$
\begin{aligned}
I(X ; Y) & =H(Y)-H(Y \mid X)=H(Y)-H(\text { row of } \mathbb{P}) \\
\max _{p(x)} I(X ; Y) & =\log |\mathcal{Y}|-H(\text { row of } \mathbb{P})
\end{aligned}
$$

which is achieved for $p(x)=$ uniform distribution.

7.3 Properties of Channel Capacity

Remark 7.14.
page 191 and Notes $4 / 27 / 11$

1. $C \geq 0$ (since mutual information is nonnegative)
2. $C \leq \log |\mathcal{X}|$
3. $C \leq \log |\mathcal{Y}|$
4. $I(X ; Y)$ is a continuous and concave function of $p(x)$, so $C=\max _{p(x)} I(X ; Y)$, and a local maximum is a global maximum

7.5 The Communication System

Definition 7.15. The Communication System
page 193 and Notes 4/27/11

$$
\xrightarrow{W \text { (message) }} \text { Encoder } \xrightarrow{X^{n}} \text { Channel } p(y \mid x) \xrightarrow{Y^{n}} \text { Decoder } \xrightarrow{\hat{W} \text { (estimate of message) }}
$$

A message W, drawn from $\{1,2, \ldots, M\}$, results in the signal $X^{n}(W) . X^{n}(i)$ denotes the codeword for message i.

The receiver receives the message as $Y^{n} \sim p\left(y^{n} \mid x^{n}\right)$.
The receiver guesses the message using a decoding rule $\hat{W}=g\left(Y^{n}\right)$.

If $\hat{W} \neq W$ then the receiver has made an error.

Definition 7.16. (M, n) Codebook
page 193 and Notes 4/27/11

An (M, n) code for the channel $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ consists of the following:

1. An index set $\{1,2, \ldots, M\}$.
2. An encoding function $X^{n}:\{1,2, \ldots, M\} \rightarrow \mathcal{X}^{n}$. The set of codewords $x^{n}(1), x^{n}(2), \ldots, x^{n}(M)$ is called the codebook.
3. A decoding function $g: \mathcal{Y}^{n} \rightarrow\{1,2, \ldots, M\}$.

Definition 7.17. Conditional Probability of Error

page 194 and Notes 4/27/11

The conditional probability of error given that message i is sent is

$$
\lambda_{i}=\operatorname{Pr}\left[g\left(Y^{n}\right) \neq i \mid x^{n}=x^{n}(\lambda)\right]
$$

Definition 7.18. Maximal Probability of Error
page 194 and Notes 4/27/11

The maximal probability of error is

$$
\lambda^{(n)}=\max _{i=1, \ldots, M} \lambda_{i}
$$

Definition 7.19. Average Probability of Error page 194 and Notes 4/27/11

The average probability of error is

$$
P_{e}^{(n)}=\frac{1}{M} \sum_{i=1}^{M} \lambda_{i}
$$

Definition 7.20. Rate, Achievable
page 195 and Notes 4/27/11

The rate R of an (M, n) code is

$$
R=\frac{\log M}{n}
$$

A rate is said to be achievable if there exists a sequence of $\left(\left\lceil 2^{n R}\right\rceil, n\right)$ codes such that the max probability of error $\lambda^{(n)} \rightarrow 0$.

7.6 Jointly Typical Sequences

Definition 7.21. Jointly Typical Sequence

page 195 and Notes 4/27/11

Let n be a positive integer and set $\epsilon>0$. The set $A_{\epsilon}^{(n)}$ of jointly typical sequences with respect to $p(x, y)$ is given by

$$
\begin{aligned}
A_{\epsilon}^{(n)}=\left\{\left(x^{n}, y^{n}\right) \in \mathcal{X}^{n} \times \mathcal{Y}^{n} \mid\right. & \left|1-\frac{1}{n} \log p\left(x^{n}\right)-H(X)\right|<\epsilon, \\
& \left|1-\frac{1}{n} \log p\left(y^{n}\right)-H(Y)\right|<\epsilon, \\
& \left.\left|1-\frac{1}{n} \log p\left(x^{n}, y^{n}\right)-H(X, Y)\right|<\epsilon\right\}
\end{aligned}
$$

Theorem 7.22. Joint AEP Theorem
page 196 and Notes 4/27/11

Let X^{n}, Y^{n} be sequences of length n drawn according to $p\left(x^{n}, y^{n}\right)=\prod p\left(x_{i}, y_{i}\right)$.

1. $\operatorname{Pr}\left[\left(X^{n}, Y^{n}\right) \in A_{\epsilon}^{(n)}\right] \rightarrow 1$ as $n \rightarrow \infty$
2. $\left|A_{\epsilon}^{(n)}\right| \leq 2^{n[H(X, Y)+\epsilon]}$
3. $\left|A_{\epsilon}^{(n)}\right| \geq 2^{n[H(X, Y)-\epsilon]}$
4. If $\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \sim p\left(x^{n}\right) p\left(y^{n}\right)$, then

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(X^{n}, Y^{n}\right) \in A_{\epsilon}^{(n)}\right] \leq 2^{-n[I(X ; Y)-3 \epsilon]} \\
& \operatorname{Pr}\left[\left(X^{n}, Y^{n}\right) \in A_{\epsilon}^{(n)}\right] \geq 2^{-n[I(X ; Y)-3 \epsilon]}
\end{aligned}
$$

Proof. By the weak law of large numbers,

$$
\begin{aligned}
-\frac{1}{n} \log p\left(X^{n}\right) & \rightarrow-\mathbb{E}[\log p(X)]=H(X) \\
-\frac{1}{n} \log p\left(Y^{n}\right) & \rightarrow H(Y) \\
-\frac{1}{n} \log p\left(X^{n}, Y^{n}\right) & \rightarrow H(X, Y)
\end{aligned}
$$

For n large,

$$
\begin{array}{r}
\operatorname{Pr}\left[\left|-\frac{1}{n} \log p\left(X^{n}\right)-H(X)\right| \geq \epsilon\right]<\frac{\epsilon}{3} \\
\operatorname{Pr}\left[\left|-\frac{1}{n} \log p\left(Y^{n}\right)-H(Y)\right| \geq \epsilon\right]<\frac{\epsilon}{3} \\
\operatorname{Pr}\left[\left|-\frac{1}{n} \log p\left(X^{n}, Y^{n}\right)-H(X, Y)\right| \geq \epsilon\right]<\frac{\epsilon}{3}
\end{array}
$$

For the rest of the proof see pages 197 and 198.

7.7 Channel Coding Theorem

Theorem 7.23. Channel Coding Theorem
page 200 and Notes 5/2/11

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every rate $R<C$ there exists a sequence of $\left(2^{n R}, n\right)$ codes with maximum probability of error $\lambda^{(n)} \rightarrow 0$.

Conversely, any sequence of $\left(2^{n R}, n\right)$ codes with $\lambda^{(n)} \rightarrow 0$ must have $R<C$.
(See the Channel Coding Theorem Converse, Theorem 7.27.)

Proof. Fix $p(x)=p^{*}(x)$ that minimizes $I(X ; Y)$. Generate each codebook according to $p(x)$. Fix $R<C$. Our $\left(2^{n R}, n\right)$ codebook is a $w^{n R} \times n$ matrix:

$$
\left[\begin{array}{c}
X^{n}(1) \\
X^{n}(2) \\
\vdots \\
X^{n}\left(2^{n R}\right)
\end{array}\right]=\left[\begin{array}{cccc}
X_{1}(1), & X_{2}(1), & \ldots, & X_{n}(1) \\
X_{1}(2), & X_{2}(2), & \ldots, & X_{n}(2) \\
\vdots & \vdots & \ddots & \vdots \\
X_{1}\left(2^{n R}\right), & X_{2}\left(2^{n R}\right), & \ldots, & X_{n}\left(2^{n R}\right)
\end{array}\right]
$$

All $2^{n R} \times n$ elements are i.i.d. $\sim p(x)$.
Assume: all messages are equally likely.
Optimal decoder: $\hat{W}=\arg \max \operatorname{Pr}\left[Y^{n} \mid X^{n}(i)\right], X^{n}(i) \in$ codebook.
We consider the jointly typical decoder: when we receive a sequence Y^{n}, if there exists a unique codeword $X^{n}(i)$ that is jointly typical with Y^{n}, then $\hat{W}=i$.

$$
\begin{aligned}
\operatorname{Pr}(\varepsilon) & =\sum_{\mathcal{C} \text { (codebooks) }} \operatorname{Pr}\left(\mathcal{C} P_{e}^{(n)}(\mathcal{C})\right. \\
& =\sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) \cdot \frac{1}{2^{n R}} \sum_{W=1}^{2^{n R}} \lambda_{W}(\mathcal{C}) \quad(W \text { is the index of the message) } \\
& =\frac{1}{2^{n R}} \sum_{W=1}^{2^{n R}} \sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) \lambda_{W}(\mathcal{C}) \\
& =\operatorname{Pr}[\varepsilon \mid W=1]
\end{aligned}
$$

Define the event $E_{i}, i=1,2, \ldots, 2^{n R}$, as

$$
E_{i}=\left\{\left(X^{n}(i), Y^{n}\right) \in A_{\epsilon}^{(n)}\right\}
$$

where Y^{n} is generated by $X^{n}(1)$. Then

$$
\begin{aligned}
\varepsilon & =E_{1}^{C} \cup E_{2} \cup E_{3} \cup \cdots \cup E_{2^{n R}} \\
\operatorname{Pr}[\varepsilon \mid W=1] & =\operatorname{Pr}\left[E_{1}^{C} \cup E_{2} \cup \cdots \cup E_{2^{n R}} \mid W=1\right] \\
& \leq \operatorname{Pr}\left[E_{1}^{C}\right]+\sum_{i=2}^{2^{n R}} \operatorname{Pr}\left[E_{i}\right] \\
\operatorname{Pr}\left[E_{1}^{C}\right] & \leq \epsilon \text { for } n \text { sufficiently large }
\end{aligned}
$$

To bound $\operatorname{Pr}\left[E_{i}\right]$,

$$
\begin{aligned}
& \operatorname{Pr}\left[E_{i}\right] \leq 2^{-n[I(X ; Y)-3 \epsilon]} \\
\operatorname{Pr}[\varepsilon] & =\operatorname{Pr}[E \mid W=1] \\
& \leq \epsilon+\sum_{i=1}^{2^{n R}} 2^{-n[I(X ; Y)-3 \epsilon]} \\
& \leq \epsilon+\left(2^{n R}-1\right) \cdot 2^{-n[I(X ; Y)-3 \epsilon]} \\
& \leq \epsilon+2^{-n[I(X ; Y)-R]} \cdot 2^{3 n \epsilon} \\
& \leq 2 \epsilon \text { for } n \text { sufficiently large }
\end{aligned}
$$

Make $C-R>3 \epsilon \Rightarrow \epsilon<\frac{C-R}{3} \Rightarrow I(X ; Y)-R-3 \epsilon>0$. There exists a codebook \mathcal{C}^{*} with average probability of error $P_{e}^{(n)}\left(\mathcal{C}^{*}\right) \leq 2 \epsilon$, i.e.

$$
P_{e}^{(n)}\left(\mathcal{C}^{*}\right)=\frac{1}{2^{n R}} \underbrace{\sum_{i=1}^{2^{n R}} \lambda_{i}\left(\mathcal{C}^{*}\right)}_{\leq 2^{n R} \cdot 2^{\epsilon}} \leq 2 \epsilon
$$

At least half of the messages have $\lambda_{i}\left(\mathcal{C}^{*}\right) \leq 4 \epsilon$. Consider a codebook containing only these "good" codewords. We have $2^{n R-1}=2^{n R^{\prime}}$ codewords, where $R^{\prime}=R-\frac{1}{n}$, each with probability of error $\leq 4 \epsilon$.

7.8 Zero-Error Codes

Remark 7.24.
Notes 5/4/11

For any $\left(2^{n R}, n\right)$ code with zero probability of error, we have $R<C$.

$$
\operatorname{Pr}[\hat{W}=W]=1 \quad \Rightarrow \quad H\left(W \mid Y^{n}\right)=0
$$

Assume W is uniformly distributed.

$$
\begin{aligned}
n R & =H(W)=\underbrace{H\left(W \mid Y^{n}\right)}_{0}+I\left(W ; Y^{n}\right) \\
& \leq I\left(X^{n} ; Y^{n}\right) \\
& \leq n C \quad R \leq C
\end{aligned}
$$

$$
\begin{aligned}
W & \rightarrow X^{n} \rightarrow Y^{n} \\
Y^{n} & \rightarrow X^{n} \rightarrow W
\end{aligned}
$$

Recall Fano's Inequality (Theorem 2.36): If \hat{X} is an estimate of X based on Y (i.e. $\hat{X}=g(Y)$), then $P_{e} \equiv \operatorname{Pr}[\hat{X} \neq X]$.

$$
\begin{aligned}
P_{e} & =\operatorname{Pr}[\hat{X} \neq X] \leq 1+P_{e} \log |\mathcal{X}| \\
H\left(W \mid Y^{n}\right) & \leq 1+P_{e}^{(n)} \log 2^{n R}=1+n R P_{e}^{(n)}
\end{aligned}
$$

where $P_{e}^{(n)}$ is the average probability of error.

7.9 Fano's Inequality and the Converse to the Coding Theorem

Lemma 7.25. Fano's Inequality
page 206

For a discrete memoryless channel, we have

$$
H(W \mid \hat{W}) \leq 1+P_{e}^{(n)} n R
$$

Lemma 7.26.
page 206 and Notes 5/4/11

For a discrete memoryless channel,

$$
I\left(X^{n} ; Y^{n}\right) \leq n C
$$

Proof.

$$
\begin{aligned}
I\left(X^{n} ; Y^{n}\right) & \leq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right) \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X^{n}, Y_{1}, \ldots, Y_{i-1}\right) \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \\
& \leq \sum_{i=1}^{n} H\left(Y_{i}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \\
& \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \\
& \leq n C
\end{aligned}
$$

Theorem 7.27. Converse of the Channel Coding Theorem
page 207 and Notes 5/4/11

Any sequence of $\left(2^{n R}, n\right)$ codes with $\lambda^{(n)} \rightarrow 0$ must have $R \leq C$.
(See the Channel Coding Theorem, Theorem 7.23.)

Proof. $\lambda^{(n)} \rightarrow 0$, so $P_{e}^{(n)} \rightarrow 0$ for any distribution of W. Consider the uniform distribution for W.

$$
\begin{aligned}
n R=H(W) & =H\left(W \mid Y^{n}\right)+I\left(W ; Y^{n}\right) \\
& \leq 1+n R P_{e}^{(n)}+I\left(X^{n} ; Y^{n}\right) \\
& \leq 1+n R P_{e}^{(n)}+n C \\
P_{e}^{(n)} & \geq \frac{n R-n C-1}{n R}=1-\frac{C}{R}-\frac{1}{n R}
\end{aligned}
$$

(Fano's \& data-processing inequalities)
(Lemma 7.26

If $R>C$ then $P_{e}^{(n)} \nrightarrow 0$ as $n \rightarrow \infty$.

Theorem 7.28. Converse to Channel Coding Theorem (Review)

If we have $\left(2^{n R}, n\right)$ codes with $\lambda^{(n)} \rightarrow 0$, then $R \leq C$.

Proof. Assume W is uniformly distributed over these $2^{n R}$ possible messages. $W \rightarrow X^{n} \rightarrow Y^{n} \rightarrow \hat{W}$.

$$
\begin{aligned}
n R=H(W) & =\underbrace{H(W \mid \hat{W})}_{\begin{array}{c}
\text { bound } \\
\text { by Fano }
\end{array}}+I(W ; \hat{W}) \\
& \leq 1+P_{e}^{(n)} n R+I\left(X^{n} ; Y^{n}\right) \quad \text { (by Data Processing Inequality) } \\
n R & \leq 1+P_{e}^{(n)} n R+n C \\
P_{e}^{(n)} & \geq 1-\frac{C}{R}-\frac{1}{n R}
\end{aligned}
$$

Remark 7.29.

So far our channel has looked like:

$$
\begin{gathered}
\xrightarrow{W} \rightarrow \text { Encoder } \xrightarrow{X^{n}} p(y \mid x) \xrightarrow{Y^{n}} \text { Decoder } \xrightarrow{\hat{W}} \\
C \equiv \max _{p(x)} I(X ; Y)
\end{gathered}
$$

What if our channel has feedback? In other words, the receiver can communicate with the transmitter. Feedback is always immediate and error-free. Can we transmit at a higher rate than without feedback?

With feedback, out channel looks like:

$$
\xrightarrow{W} \rightarrow \underbrace{\text { Encoder } \xrightarrow{X_{i}\left(W, Y^{i-1}\right)} p(y \mid x) \stackrel{Y_{i}}{ }}_{\leftarrow}-\text { Decoder } \xrightarrow{\hat{W}}
$$

$\left(2^{n R}, n\right)$ feedback code: a sequence of mapping $x_{i}\left(W, Y^{i-1}\right)$ for each $i=1, \ldots, n$.
Decoder: $g: y^{n} \rightarrow\left\{1,2, \ldots, 2^{n R}\right\}$
Probability of Error: $P_{e}^{(n)}=\operatorname{Pr}\left[g\left(Y^{n}\right) \neq W\right]$

Direct: there exists a sequence of $\left(2^{n R}, n\right)$ codes \ldots

Converse:

$$
\begin{array}{rlr}
n R=H(W) & =H(W \mid \hat{W})+I(W ; \hat{W}) & \\
& \leq 1+P_{e}^{(n)} n R+I(W ; \hat{W}) & \\
& \leq 1+P_{e}^{(n)} n R+I\left(W ; Y^{n}\right) & \\
I\left(W ; Y^{n}\right) & =H\left(Y^{n}\right)-H\left(Y^{n} \mid W\right) \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid Y_{1}, \ldots, Y_{i-1}, W\right) \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid Y_{1}, \ldots, Y_{i-1}^{n}, W, X_{i}\right) \\
& =H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \\
& \leq \sum_{i=1}^{n} H\left(Y_{i}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \stackrel{?}{=} I(X ; Y) \leq n C
\end{array}
$$

This says that for a discrete memoryless channel, feedback doesn't get you anything extra.

Remark 7.30.

$$
\underbrace{\text { Source, } V}_{\begin{array}{c}
\text { stationary, } \\
\text { ergodic }
\end{array}} \rightarrow \underbrace{H(V)}_{R \geq H(V)}
$$

We have $n H(V)$ messages and $2^{n H(V)}$ codes. We can transmit a source provided that $H(V)<C$.

$$
\begin{gathered}
\text { Source, } V \rightarrow \text { Encoder } \rightarrow p(y \mid x) \rightarrow \\
n \text { outputs } \rightarrow \text { Source Code } \rightarrow \text { Channel Code }
\end{gathered}
$$

Theorem 7.31. Source-Channel Coding Theorem

If $V_{1}, V_{2}, \ldots, V_{n}$ is a finite alphabet stochastic process satisfying AEP (stationary and ergodic) with $H(V)<C$, then there exists a source-channel code with

$$
\operatorname{Pr}\left[\hat{V}^{n} \neq V^{n}\right] \rightarrow 0
$$

Conversely, for any source with $H(V)>C$, the probability of error is bounded away from zero.

Definition 7.32. Source-Channel Code
$\xrightarrow{v^{n}=\left\{V_{1}, \ldots, V_{n}\right\}}$ Source Coding \rightarrow Channel Coding $\xrightarrow{x^{n}\left(V^{n}\right)} p(y \mid x) \xrightarrow{Y^{n}}$ Channel Coding \rightarrow Source Coding $\xrightarrow{\hat{V}^{n}}$ $\xrightarrow{V^{n}=\left\{V_{1}, \ldots, V_{n}\right\}}$ Encoder $\xrightarrow{x^{n}\left(V^{n}\right)} p(y \mid x) \xrightarrow{Y^{n}}$ Decoder $\xrightarrow{\hat{V}^{n}}$

Remark 7.33.

Need to show:

$$
\operatorname{Pr}\left[\hat{V}^{n} \neq V^{n}\right] \rightarrow 0 \quad \text { implies } \quad H(V) \leq C
$$

$x^{n}\left(V^{n}\right)$ can be viewed as a function:

$$
x^{n}\left(V^{n}\right): V^{n} \rightarrow \mathcal{X}^{n}
$$

From Fano's Inequality we know the following:

$$
\begin{aligned}
H\left(v^{n} \mid \hat{V}^{n}\right) & \leq 1+\operatorname{Pr}\left[\hat{V}^{n} \neq V^{n}\right] n \log |\mathcal{V}| \\
H(\mathcal{V}) & =\lim _{n \rightarrow \infty} \frac{H\left(V_{1}, \ldots, V_{n}\right)}{n}=\lim _{n \rightarrow \infty} H\left(V_{n} \mid V_{1}, \ldots, V_{n-1}\right) \\
& \leq \frac{H\left(V_{1}, \ldots, V_{n}\right)}{n}=\frac{H\left(V^{n}\right)}{n}=\frac{H\left(V^{n} \mid \hat{V}^{n}\right)+I\left(V^{n} ; \hat{V}^{n}\right)}{n} \\
& \leq \frac{1}{n}\left(1+P_{e} n \log |\mathcal{V}|\right)+\frac{1}{n} \\
H(V) & \leq \frac{1}{n} n+P_{e} \log |\mathcal{V}|+C \quad \rightarrow \quad P_{e} \log |\mathcal{V}| \geq H(V)-C-\frac{1}{n}
\end{aligned}
$$

7.11

Example 7.34.
\# of information bits: 4
\# of parity check bits: 3

FIGURE 7.10. Venn diagram with information bits.

Definition 7.35. Hamming Codes

Codeword length: $n=2^{m}-1$
\# of information bits: $k=2^{m}-m-1$
\# of parity check bits: $m=n-k$
Error correcting capability: $t=1$ (regardless of m)
Coding rate: $\frac{k}{n}=\frac{2^{m}-m-1}{2^{m}-1}$
\Rightarrow enlarging m gives a higher rate, but you can't correct as effectively
$m=3, n=2^{3}-1=7, k=4$
The parity check matrix:

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

A codeword $C=\left[\begin{array}{llll}C_{1} & C_{2} & \ldots & C_{7}\end{array}\right]^{T}$ is one satisfying

$$
H C=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { modulo } 2
$$

\# number of codewords: $2^{4}=16$
List of the codewords:

0000000	0001111	0010110	0011001
0100101	0101010	0110011	0111100
1000011	1001100	1010101	1011010
1100110	1101001	1110000	1111111

The first 4 bits are the information bits, and the last 3 are the parity check bits.

Note that every codeword (except 0000000) has at least 3 ones. Thus, the minimum weight $=3$. We cannot have 1 or 2 ones because all of the columns of H are different, and thus no two columns can add up to $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T}$. The minimum distance (the $\#$ of bits that differ) between any two codewords is $d=3$. Note that the distance between any 2 codewords is also a codeword:

$$
\begin{aligned}
H C_{1} & =0 \\
H C_{2} & =0 \\
H\left(C_{1}-C_{2}\right) & =0
\end{aligned}
$$

Suppose that a codeword c is transmitted with an error:

$$
\begin{aligned}
c \rightarrow r=c+e_{i} \quad \text { where } e_{i}=\left[\begin{array}{lll}
0 & \cdots & \underbrace{1}_{i} \\
H r & \cdots & \cdots
\end{array}\right] \\
H c+H e_{i}=i \text { th column of } H
\end{aligned}
$$

The column of H that we end up with corresponds to the location of the error.

8 Differential Entropy

$8.1 \quad 5-11-11$

Definition 8.1. Differential Entropy

For a discrete r.v. $X, H(X)=-\sum_{x} p(x) \log p(x)$
For a continuous r.v. with PDF $f(x)$,

$$
h(x)=-\int_{S} f(x) \log f(x) d x
$$

where $S=\{x \mid f(x)>0\}=\operatorname{supp} x$

Example 8.2. Uniform Distribution

A random variable distributed uniformly from 0 to $a, X \sim \mu(0, a)$, is given by

$$
f(x)= \begin{cases}\frac{1}{a} & x \in(0, a) \\ 0 & \text { otherwise } .\end{cases}
$$

Its entropy is given by

$$
h(x)=-\int_{0}^{a} \frac{1}{a} \log \frac{1}{a} d x=\log a .
$$

Example 8.3. Normal (Gaussian) Distribution

A normally distributed random variable is given by

$$
X \sim \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}=\phi(x) .
$$

We calculate its entropy as

$$
\begin{aligned}
h(x) & =-\int_{-\infty}^{\infty} \phi(x) \ln \phi(x) d x=-\int_{-\infty}^{\infty} \phi(x)\left(-\frac{x^{2}}{2 \sigma^{2}}-\ln \sqrt{2 \pi \sigma}\right) d x \\
& =\int_{-\infty}^{\infty} \phi(x) \frac{x^{2}}{2 \sigma^{2}} d x+\ln \sqrt{2 \pi \sigma^{2}} \int_{-\infty}^{\infty} \phi(x) d x \\
& =\frac{1}{2}+\ln \sqrt{2 \pi \sigma^{2}} \\
& =\frac{1}{2} \ln 2 \pi \sigma^{2} e \text { nats } \\
& =\frac{1}{2} \log 2 \pi \sigma^{2} e \text { bits. }
\end{aligned}
$$

Remark 8.4.

For a fixed variance, a Gaussian distribution has the largest differential entropy.

$8.2 \quad 5-18-11$

Definition 8.5. Differential Entropy (Review)

$x \sim f$, support $S \subset \mathbb{R}$ such that $f(x)>0$

$$
h(X)=h(f)=-\int_{S} f(x) \log f(x) d x
$$

Uniform Distribution: $x \sim \mu(0, a) \quad \Rightarrow \quad h(X)=\log a$
Normal Distribution: $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \Rightarrow \quad h(X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$

Theorem 8.6. AEP for Continuous Random Variables

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables $\sim f$. By the weak law of large numbers,

$$
-\frac{1}{n} \log f\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathbb{E}[-\log f(x)]=h(X) \quad \text { in probability }
$$

Definition 8.7. Typical Set $A_{\epsilon}^{(n)}$

For $\epsilon>0$ and n, the typical set is

$$
A_{\epsilon}^{(n)}=\left\{\left.\left(x_{1}, \ldots, x_{n}\right) \in S^{n}| |-\frac{1}{n} \log f\left(x_{1}, \ldots, x_{n}\right)-h(X) \right\rvert\, \leq \epsilon\right\}
$$

where $f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \cdots f\left(x_{n}\right)$.

Theorem 8.8.

The typical set has the following properties:

1. $\operatorname{Pr}\left(A_{\epsilon}^{(n)}\right)>1-\epsilon$ for n sufficiently large
2. $\operatorname{Vol}\left(A_{\epsilon}^{(n)}\right) \equiv \int_{A_{\epsilon}^{(n)}} d x_{1} \cdots d x_{n} \leq 2^{n[h(X)+\epsilon]}$ for all n (this is the volume of the typical set)
3. Vol $\left(A_{\epsilon}^{(n)}\right) \geq(1-\epsilon) 2^{n[h(X)-\epsilon]}$ for n sufficiently large

Theorem 8.9.

The set $A_{\epsilon}^{(n)}$ is the smallest volume set with probability $>1-\epsilon$ to the first order in the exponent (i.e. the $n h(X)$ term).

Differential entropy can be negative. For example, $x \sim \mu(0, a), a<0$.

Remark 8.11.

The sequences in $A_{\epsilon}^{(n)}$ are roughly equally likely, i.e. uniformly distributed.

Remark 8.12.

The differential entropy can be thought of as the \log of the side length of the n-dimensional cube that is the typical set, where the volume of the typical set is

$$
\left(2^{h(X)}\right)^{n} \approx 2^{n h(X)}
$$

Remark 8.13. Relationship Between Differential Entropy and Discrete Entropy

We can quantize a differential random variable by dividing the range of X into intervals of length Δ. By the Mean Value Theorem, there exists $x_{i} \in[i \Delta,(i+1) \Delta]$ such that

$$
f\left(x_{i}\right) \Delta=\int_{i \Delta}^{(i+1) \Delta} f(x) d x
$$

Consider the quantized random variable x^{Δ} defined as

$$
x^{\Delta}=x_{i} \quad \text { if } x \in[i \Delta,(i+1) \Delta]
$$

Then $\operatorname{Pr}\left[x^{\Delta}=x_{i}\right]=\int_{i \Delta}^{(i+1) \Delta} f(x) d x=f\left(x_{i}\right) \Delta$.

$$
\begin{aligned}
H\left(X^{\Delta}\right) & =-\sum_{i=-\infty}^{\infty} p_{i} \log p_{i}=\sum_{i} f\left(x_{i}\right) \Delta \log \left(f\left(x_{i}\right) \Delta\right)=-\sum_{i} f\left(x_{i}\right) \Delta \log f\left(x_{i}\right)-\sum_{i} f\left(x_{i}\right) \Delta \log \Delta \\
& \xrightarrow{\Delta \rightarrow 0}-\int_{x} f(x) \log f(x) d x-\sum_{i}\left(\int_{i \Delta}^{(i+1) \Delta} f(x) d x\right) \log \Delta \\
& =h(X)-\log \Delta \\
h(X) & \approx H\left(X^{\Delta}\right)+\log \Delta
\end{aligned}
$$

Definition 8.14. Joint Entropy

Given $X_{1}, \ldots, X_{n} \sim f\left(x_{1}, \ldots, x_{n}\right)$, the joint entropy is

$$
h\left(X_{1}, \ldots, X_{n}\right)=-\int f\left(x_{1}, \ldots, x_{n}\right) \log f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

Definition 8.15. Conditional Differential Entropy

Given $p(x \mid Y=y)$,

$$
\begin{aligned}
h(X \mid Y=y) & =-\int_{y} f(y) \int_{x} f(x \mid y) \log f(x \mid y) d x \\
& =-\int_{(x, y)} f(x, y) \log f(x \mid y) d x d y
\end{aligned}
$$

Definition 8.16. Relative Entropy (K-L Divergence)

$$
D(f \| g)=\int_{x} f(x) \log \frac{f(x)}{g(x)} d x
$$

Definition 8.17. Mutual Information

$$
\begin{aligned}
I(X ; Y) & =D(f(x, y) \| f(x) f(y)) \\
& =\int f(x, y) \log \frac{f(x, y)}{f(x) f(y)} d x d y \\
& =h(Y)-h(Y \mid X) \\
& =\lim _{\Delta \rightarrow 0} I\left(X^{\Delta}, Y^{\Delta}\right) \\
& =\sup _{P, Q} I\left([X]_{P} ;[Y]_{Q}\right)
\end{aligned}
$$

Example 8.18. Mutual Information between 2 Gaussian r.v.'s
$(X, Y) \sim \mathcal{N}(0, \mathbf{k})$ where

$$
\mathbf{k}=\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]
$$

Then

$$
\begin{aligned}
I(X ; Y) & =h(X)+h(Y)-h(X, Y) \\
h(X) & =\frac{1}{2} \log 2 \pi e \sigma^{2}=h(Y) \\
h(X, Y) & =\frac{1}{2} \log (2 \pi e)^{2}|\mathbf{k}| \\
& =\frac{1}{2} \log 2 \pi e \sigma^{2}+\frac{1}{2} \log 2 \pi e \sigma^{2}-\frac{1}{2}(2 \pi e)^{2} \sigma^{4}\left(1-\rho^{2}\right) \\
& =-\frac{1}{2} \log \left(1-\rho^{2}\right)
\end{aligned}
$$

Proposition 8.19.

Properties:

- $D(f \| q) \geq 0$
- $I(X ; Y) \geq 0$ with equality iff X, Y are independent
- $h\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} h\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \leq \sum_{i=1}^{n} h\left(X_{i}\right)$
- $h(X+c)=h(X)$
- $h(\alpha X)=h(X)+\log |\alpha|$
- $h(\mathbf{A} X)=h(X)+\log |\operatorname{det} \mathbf{A}|$

Definition 8.20. Jointly Gaussian

X_{1}, \ldots, X_{n} are jointly Gaussian if

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \mathbf{K}^{-1}(\mathbf{x}-\mu)}
$$

where

$$
\mu=\left[\begin{array}{lll}
\mu_{1} & \cdots & \mu_{n}
\end{array}\right]^{T}=\left[\begin{array}{lll}
\mathbb{E}\left(x_{1}\right) & \cdots & \mathbb{E}\left(x_{n}\right)
\end{array}\right]^{T}
$$

and

$$
\mathbf{K}=\mathbb{E}\left[(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{T}\right]=\left\{K_{i, j}\right\}_{1 \leq i, j \leq n}
$$

where $K_{i, j}=\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$.

Theorem 8.21.

$$
h(\mathcal{N}(\mu, \mathbf{k}))=\frac{1}{2} \log \left((2 \pi e)^{n}|\mathbf{k}|\right)
$$

Proof.

$$
\begin{aligned}
\mathcal{N}(\mu, \mathbf{k})) & =-\int f(\mathbf{x}) \log f(\mathbf{x}) d \mathbf{x} \\
& =\int f(\mathbf{x})\left(\frac{1}{2}(\mathbf{x}-\mu)^{T} \mathbf{k}^{-1}(\mathbf{x}-\mu)\right) d \mathbf{x}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \mathbb{E}\left[(\mathbf{X}-\mu)^{T} \mathbf{k}^{-1}(\mathbf{X}-\mu)\right] \\
& =\frac{1}{2} \mathbb{E}\left[\sum_{i, j}\left(x_{i}-\mu_{i}\right)\left(\mathbf{k}^{-1}\right)_{i, j}\left(x_{j}-\mu_{j}\right)\right]+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \sum_{i, j} \mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]\left(\mathbf{k}^{-1}\right)_{i, j}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \sum_{i, j}(\mathbf{k})_{i, j}^{-1}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \sum_{j} \sum_{i} \mathbf{k}_{j, i}\left(\mathbf{k}^{-1}\right)_{i, j}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \sum_{j}\left(\mathbf{k} \mathbf{k}^{-1}\right)_{j j}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{n}{2}+\log \left((\sqrt{2 \pi})^{n}|\mathbf{k}|^{1 / 2}\right) \\
& =\frac{1}{2} \log \left((2 \pi e)^{n}|\mathbf{k}|\right)
\end{aligned}
$$

Remark 8.22. Connection to Linear Algebra

Hadamad's Inequality tells us that

$$
|\mathbf{k}| \leq \prod_{i=1}^{n} k_{i, i}
$$

Proof.

$$
\begin{aligned}
h\left(X_{1}, \ldots, X_{n}\right) & =\frac{1}{2} \log \left((2 \pi e)^{n}|\mathbf{k}|\right) \\
& \leq \sum_{i=1}^{n} h\left(X_{i}\right)=\sum_{i} \frac{1}{2} \log 2 \pi e k_{i, i} \\
|\mathbf{k}| & \leq \sum_{i} k_{i, i}
\end{aligned}
$$

Theorem 8.23.

The Gaussian distribution maximizes entropy over all densities with the same variance. Specifically, if we have an n-dimensional vector \mathbf{x} with μ, \mathbf{k}, then

$$
h(X) \leq \frac{1}{2} \log \left((2 \pi e)^{n}|\mathbf{k}|\right)
$$

with equality iff $x \sim \mathcal{N}_{n}(\mu, \mathbf{k})$.

Proof. Let $\mathbf{x} \sim g, \phi \sim \mathcal{N}(\mu, \|)$. Then

$$
\int g(\mathbf{x}) \log \phi(\mathbf{x}) d \mathbf{x}=\int \phi(\mathbf{x}) \log \phi(\mathbf{x}) d \mathbf{x}
$$

We compute the K-L divergence between g and ϕ :

$$
\begin{aligned}
0 \leq D(g \| \phi) & =\int g \log \frac{g}{\phi} d \mathbf{x} \\
& =-h(g)-\int g \log \phi d x \\
& =-h(g)+h(\phi) \\
h(g) & \leq h(\phi)
\end{aligned}
$$

9 Gaussian Channel

$9.1 \quad 5-23-11$

Definition 9.1. Gaussian Channel

The Gaussian channel accepts a sequence X_{1}, X_{2}, \ldots of real numbers and produces and output of Y_{i} 's.

$$
Y_{i}=X_{i}+Z_{i}, \quad Z_{i} \sim \mathcal{N}(0, N)
$$

Z_{i} 's are independent of each other and X_{i} 's.

Remark 9.2. Power Constraint

For any codeword ($X_{1}, X_{2}, \ldots, X_{n}$) transmitted over the channel,

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(w) \leq P
$$

Example 9.3. One Way To Use Gaussian Channel

$$
\begin{aligned}
x & =\left\{\begin{array}{rr}
\sqrt{p} & \operatorname{Pr} \frac{1}{2} \\
-\sqrt{p} & \operatorname{Pr} \frac{1}{2}
\end{array}, \quad \hat{x}=\left\{\begin{array}{rr}
\sqrt{p} & Y>0 \\
-\sqrt{p} & Y<0
\end{array}\right.\right. \\
\operatorname{Pr}(\text { error }) & =\frac{1}{2} \operatorname{Pr}\{Y \leq 0 \mid x=\sqrt{p}\}+\frac{1}{2} \operatorname{Pr}\{Y \geq 0 \mid x=-\sqrt{p}\} \\
& =\frac{1}{2} \operatorname{Pr}\{Z \leq-\sqrt{p}\}+\frac{1}{2} \operatorname{Pr}\{Z \geq \sqrt{p}\} \\
& =\operatorname{Pr}\{Z \geq \sqrt{p}\} \\
& =1-\Phi\left(\sqrt{\frac{p}{n}}\right)
\end{aligned}
$$

where

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

Definition 9.4. Capacity (Continuous)

The capacity (continuous) of the Gaussian channel with power constraint P is

$$
C=\max _{f_{x}(\cdot), \mathbb{E} \cdot x^{2} \leq P} I(X ; Y)
$$

where

$$
\begin{aligned}
I(X ; Y) & =h(Y)-h(Y \mid X)=h(Y)-h(\underbrace{Y-X}_{Z} \mid X) \\
& =h(Y)-h(Z \mid X) \\
& =h(Y)-h(Z) \\
h(Z) & =\frac{1}{2} \log (2 \pi e N) \\
\mathbb{E} Y^{2} & =\mathbb{E}(X+Z)^{2}=\mathbb{E} X^{2}+2 \mathbb{E}(X Z)+\underbrace{\mathbb{E} Z^{2}}_{N} \leq P+N \\
I(X ; Y) & \leq \frac{1}{2} \log (2 \pi e(P+N))-\frac{1}{2} \log (2 \pi e N) \\
& \leq \frac{1}{2} \log \left(\frac{P+N}{N}\right) \\
& =\frac{1}{2} \log \left(1+\frac{P}{N}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
C & =\max _{f_{x}, \mathbb{E} X^{2} \leq P} I(X ; Y) \\
& =\frac{1}{2} \log \left(1+\frac{P}{N}\right)
\end{aligned}
$$

Definition 9.5.

An (M, n) code for the Gaussian channel with power constraint P consists of

- An encoding function $x:\{1,2, \ldots, M\} \rightarrow \mathbb{R}^{n}$ yielding codewords $X^{n}(1), X^{n}(2), \ldots, X^{n}(M)$ satisfying the power constraint P, i.e. for every $x^{n}(w)=\left(x_{1}(w), \ldots, x_{n}(w)\right)$,

$$
\frac{1}{n} \sum_{i=1}^{n} x_{1}^{2}(w) \leq P, \quad w=1,2, \ldots, M
$$

- A decoding function $g: \mathbb{R}^{n} \rightarrow\{1,2, \ldots, M\}$. The rate of the code is

$$
R=\frac{\log M}{n} \text { bits per transmission }
$$

The probability of error given message W is

$$
\lambda_{w}=\operatorname{Pr}\left\{g\left(Y^{n}\right) \neq W \mid X^{n}=X^{n}(w)\right\}
$$

The average probability of error is

$$
P_{e}(n)=\frac{1}{n} \sum_{w=1}^{M} \lambda_{w}
$$

The maximum probability of error is

$$
\lambda^{(n)}=\max _{w=1,2, \ldots, M} \lambda_{w}
$$

Definition 9.6. Achievable

The rate R is achievable if there exists a sequence of $\left(2^{n R}, n\right)$ codes such that

$$
\lambda^{(n)} \xrightarrow{n \rightarrow \infty} 0
$$

Theorem 9.7. Capacity of a Gaussian Channel

The capacity of a Gaussian channel with power constraint P and noise variance N is:

$$
C=\frac{1}{2} \log \left(1+\frac{P}{N}\right) \text { bits per transmission }
$$

Proof. (Achievability)

Given $\epsilon>0$, we have the jointly typical set $A_{\epsilon}^{(n)}$ with respect to the density of $f(x, y)$:

$$
\begin{aligned}
A_{\epsilon}^{(n)}=\left\{\left(x^{n}, y^{n}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}:\right. & \left|-\frac{1}{n} \log f_{X^{n}}\left(x^{n}\right)-h(X)\right|<\epsilon \\
& \left|-\frac{1}{n} \log f_{Y^{n}}\left(y^{n}\right)-h(Y)\right|<\epsilon \\
& \left.\left|-\frac{1}{n} \log f_{X^{n}, Y^{n}}\left(x^{n}, y^{n}\right)-h(X, Y)\right|<\epsilon\right\}
\end{aligned}
$$

where $f_{X^{n}, Y^{n}}\left(x^{n}, y^{n}\right)=\prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)$.
Let \mathcal{C} be a $\left(2^{n R}, n\right)$ code, and $X^{n}(W)=\left(X_{1}(W), \ldots, X_{n}(W)\right)$ be the codeword corresponding to message W. If Y is received and there is a unique W^{*} for which $\left(X^{n}\left(W^{*}\right), Y^{n}\right) \in A_{\epsilon}^{(n)}$, then the decoder's estimate is W^{*}. An error occurs if:

- $X^{n}(W)$ does not satisfy the power constraint P
- $\left(X^{n}(W), Y^{n}\right)$ is not jointly typical
- $\left(X^{n}\left(W^{*}\right), Y^{n}\right)$ is jointly typical and $W^{*} \neq W$

We define the events

$$
\begin{aligned}
E_{0} & =\left\{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(1)>P\right\} \\
E_{W} & =\left\{\left(X^{n}(W), Y^{n}\right) \in A_{\epsilon}^{(n)}\right\}
\end{aligned}
$$

Thus, the average probability of error is

$$
P_{e}=\operatorname{Pr}\left\{E_{0} \cup E_{1}^{C} \cup E_{2} \cup \cdots \cup E_{2^{n R}}\right\}
$$

By the Law of Large Numbers, for large n we have that

$$
P\left(E_{0}\right) \leq \epsilon
$$

where $X_{1}^{2}(1), X_{2}^{2}(1), \ldots, X_{n}^{2}(1)$ are i.i.d. with mean $P-\epsilon$ if we choose $X_{i}(W) \sim \mathcal{N}(0, P-\epsilon)$. By property (1) of $A_{\epsilon}^{(n)}$, we have that $\operatorname{Pr}\left\{E_{1}^{C}\right\} \leq \epsilon$ for large $n .\left(\operatorname{Pr}\left\{E_{1}\right\} \geq 1-\epsilon\right.$, Theorem 7.69.) By property (2) of $A_{\epsilon}^{(n)}$,

$$
P\left(E_{W}\right) \leq 2^{-n[I(X ; Y)-3 \epsilon]}, \quad w \geq 2
$$

Thus,

$$
\begin{aligned}
P_{e}^{(n)} & \leq \epsilon+\epsilon+\sum_{w=2}^{2^{n R}} 2^{-n[I(X ; Y)-3 \epsilon]} \\
& \leq 2 \epsilon+\left(2^{n R}-1\right) 2^{-n[I(X ; Y)-3 \epsilon] \rightarrow-n[I(X ; Y)-R-3 \epsilon]} \\
& \leq 2 \epsilon+\left(2^{n R}-1\right) 2^{-n[I(X ; Y)-R-3 \epsilon]}
\end{aligned}
$$

This probability will go to zero if

$$
\begin{aligned}
-(R+3 \epsilon)+I(X ; Y) & >0 \\
R & <I(X ; Y)-3 \epsilon \\
R & <I(X ; Y)
\end{aligned}
$$

Thus, $R<I(X ; Y) \Rightarrow P_{e}^{(n)} \rightarrow 0$.
To show that the maximum probability of error, we use the "throw half of the codes away" trick that we have used in the past.

$9.2 \quad 5-25-11$

Continuing from last time, we want to prove that if $R>C$ then $P_{e}^{(n)} \nrightarrow 0$. Equivalently, we want to prove that $P_{e}^{(n)} \rightarrow 0$ implies that $R \leq C$.

Proof. Assume that we have a $\left(2^{n R}, n\right)$ codebook that satisfies the power constraint:

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(u) \leq P \forall w
$$

Our scheme looks like:

$$
W \rightarrow X^{n}(W) \rightarrow Y^{n}(W) \rightarrow \hat{W}
$$

Fano's Inequality gives us that

$$
H(W \mid \hat{W}) \leq 1+n R P_{e}^{(n)}=n \epsilon_{n}
$$

where $\epsilon_{n} \rightarrow 0$ because $P_{e}^{(n)} \rightarrow 0$.

$$
\begin{aligned}
n R & =H(W)=I(W ; \hat{W})+H(W \mid \hat{W}) \\
& \leq I(W ; \hat{W})+n \epsilon_{n} \\
& \leq I\left(W ; Y^{n}\right)+n \epsilon_{n} \\
& \leq I\left(X^{n} ; Y^{n}\right)+n \epsilon_{n} \\
& =h\left(Y^{n}\right)-h\left(Y^{n} \mid X^{n}\right)+n \epsilon_{n} \\
& =h\left(Y^{n}\right)-h\left(Z^{n}\right)+n \epsilon_{n} \\
& \leq \sum_{i=1}^{n}\left(h\left(Y_{i}\right)-h\left(Z_{i}\right)\right)+n \epsilon_{n}
\end{aligned}
$$

We have that

$$
P_{i}=\mathbb{E} x_{i}^{2}=\frac{1}{2^{n R}} \sum_{w=1}^{2^{n R}} x_{i}^{2}(w)
$$

Also,

$$
\frac{1}{n} \sum P_{i} \leq P
$$

We compute the expectation value of Y_{i}^{2} :

$$
\begin{array}{rl}
\mathbb{E} Y_{i}^{2} & =\underbrace{\mathbb{E} X_{i}^{2}}_{\rightarrow P_{i}}+2 \mathbb{E} X_{i} Z_{i}
\end{array} \underbrace{\epsilon Z^{2}}_{\rightarrow N})
$$

The power constraint is that:

$$
\begin{aligned}
\mathbb{E}_{i} X^{2} & <P \forall W \\
\mathbb{E}_{W} \mathbb{E}_{i} X^{2} & <P \\
\mathbb{E}_{i} \underbrace{E_{W} X^{2}}_{P_{i}} & <P
\end{aligned}
$$

Continuing from (9.1), we have

$$
\begin{aligned}
R & \leq \frac{1}{2} \log \left(1+\frac{1}{n} \sum_{i=1}^{n} \frac{P_{i}}{N}\right)+\epsilon_{n} \\
& \leq \underbrace{\frac{1}{2} \log \left(1+\frac{P}{N}\right)}_{C}+\epsilon_{n}
\end{aligned}
$$

Thus, $R \leq C+\epsilon_{n}$. Therefore, if $\epsilon_{n} \rightarrow 0$ then $R \leq C$.

9.2.1 Shannon Limit for Gaussian Channel

Definition 9.8. SNR for a Code Symbol

$$
\begin{array}{r}
\frac{P}{2 N} \triangleq \text { SNR for a Code Symbol } \\
\gamma_{G}(R)=\frac{P}{2 N R}=\text { Source-bit SNR }
\end{array}
$$

Remark 9.9.

For reliable communication, we know that

$$
\begin{aligned}
R & \leq C=\frac{1}{2} \log \left(1+\frac{P}{N}\right) \\
& =\frac{1}{2} \log \left(1+2 R \gamma_{G}\right) \\
R & \leq \frac{1}{2} \log \left(1+2 R \gamma_{G}\right) \\
\gamma_{G} & \geq \frac{2^{2 R}-1}{2 R}
\end{aligned}
$$

9.2.2 Parallel Gaussian Channels

Remark 9.10.

$$
\begin{aligned}
Y_{j} & =X_{j}+Z_{j}, \quad j=1,2, \ldots, k, \quad Z_{j} \sim \mathcal{N}\left(0, N_{j}\right) \\
\mathbb{E} \sum_{j=1}^{k} X_{j}^{2} & \leq P \\
C & =\max _{f(\cdot) \mathbb{E} X^{2} \leq P} I\left(X_{1}, \ldots, X_{k} ; Y_{1}, \ldots, Y_{k}\right) \\
& =h\left(Y_{1}, \ldots, Y_{k}\right)-h\left(Y_{1}, \ldots, Y_{k} \mid X_{1}, \ldots, X_{k}\right) \\
& =h\left(Y_{1}, \ldots, Y_{k}\right)-h\left(Z_{1}, \ldots, Z_{k}\right) \\
& \leq \sum_{i=1}^{k} h\left(Y_{i}\right)-h\left(Z_{i}\right) \\
& \leq \sum_{i=1}^{k} \frac{1}{2} \log \left(1+\frac{P_{i}}{N_{i}}\right)
\end{aligned}
$$

where $P_{i}=\mathbb{E} X_{i}^{2}$ and $\sum_{i=1}^{k} P_{i} \leq P$ (power constraint). For the optimization problem, Lagrangian multipliers give us

$$
\begin{aligned}
J\left(P_{1}, \ldots, P_{k}\right) & =\sum_{i=1}^{k} \frac{1}{2} \log \left(1+\frac{P_{i}}{N_{i}}\right)+\lambda\left(\sum_{i=1}^{k} P_{i}-P\right) \\
\frac{1}{2} \frac{1}{P_{i}+N_{i}}+\lambda & =0 \\
P_{i} & =\nu-N_{i}
\end{aligned}
$$

This is sometimes referred to as water-filling.

Definition 9.11. Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be used to verify that

$$
P_{i}=\left(\nu \cdot N_{i}\right)^{+}
$$

is the solution that maximizes capacity (where the superscript "+" denotes nonnegative), with ν chosen so that

$$
\sum_{i=1}^{k}\left(\nu-N_{i}\right)^{+}=P
$$

This means that we favor channels with lower noise (see Figure 9.4 on page 277 (303)).

Remark 9.12.

Consider the following optimization problem: maximize $f(\mathbf{x})$ subject to $g_{j}(\mathbf{x}) \leq 0, j=1, \ldots, k$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave and $g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex.

Theorem 9.13. The Lagrangian

$$
L(\mathbf{x})=f(\mathbf{x})-\sum_{j=1}^{k} \lambda_{j} g_{j}(\mathbf{x})
$$

Let x^{*} be a feasible point (satisfies the constraint g). Suppose $\lambda_{1}, \ldots, \lambda_{k}$:

$$
\nabla L\left(x^{*}\right)=0
$$

$\lambda_{j} \geq 0 \forall j$ and $\lambda_{j}=0$ if $g_{j}\left(x^{*}\right)<0$. Then x^{*} solves the maximization problem.

Lemma 9.14.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave and $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n}$, then

$$
f(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})(\mathbf{x}-\mathbf{y})^{T}
$$

For a convex function g, we have

$$
g(\mathbf{x}) \geq g(\mathbf{y})+\nabla g(\mathbf{y})(\mathbf{x}-\mathbf{y})^{T}
$$

Proof. (of Theorem 9.13)
Assume \mathbf{x} is a feasible point, i.e. $g(\mathbf{x}) \leq 0 \forall j$. Then from Lemma 9.14,

$$
\begin{aligned}
f(\mathbf{x}) & \leq f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \\
g_{j}(\mathbf{x}) & \geq g_{j}\left(\mathbf{x}^{*}\right)+\nabla g\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \\
L\left(\mathbf{x}^{*}\right) & =f(\mathbf{x})-\sum \lambda_{j} g_{j}\left(\mathbf{x}^{*}\right) \\
\nabla L\left(\mathbf{x}^{*}\right) & =\mathbf{0} \\
\nabla f\left(\mathbf{x}^{*}\right) & =\sum \lambda_{j} \nabla g_{j}\left(\mathbf{x}^{*}\right) \\
f(\mathbf{x}) & \leq f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \\
& \leq f\left(\mathbf{x}^{*}\right)+\sum \lambda_{j}\left(g_{j}(\mathbf{x})-g_{j}\left(\mathbf{x}^{*}\right)\right) \\
& \leq f\left(\mathbf{x}^{*}\right)-\sum \underbrace{\lambda_{j}}_{\searrow 0} g_{j}\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

Remark 9.15.

$$
\begin{aligned}
f(\mathbf{P}) & =\frac{1}{2} \sum \log \left(1+\frac{P_{i}}{N}\right) \\
g_{0}(\mathbf{P}) & =\sum P_{j}-P \leq 0 \\
g_{j}(\mathbf{P}) & =-P_{j} \leq 0, \quad j=1, \ldots, k
\end{aligned}
$$

$9.3 \quad 6-1-11$

Remark 9.16. Course EG Final Info

We can pick up the homework on Friday outside her office.

Office hours Tuesday 5-6.
2.5 standard problems (capacity, entropy, Huffman code, etc.), 1.5 tricky problems.

Remark 9.17. Review of the Gaussian System

$$
Y=X+Z, \quad Z \sim \mathcal{N}(0, N)
$$

For the problem to be well-posed, we have the constraint

$$
\mathbb{E}\left[X^{2}\right] \leq P
$$

We know that the capacity is

$$
C=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

$\frac{P}{N}=$ SNR $=$ Signal to Noise Ratio

We have k independent channels:

$$
Y_{1}=X_{1}+Z_{1}, \cdots, Y_{k}=X_{k}+Z_{k}, \quad Z_{i} \sim \mathcal{N}\left(0, N_{i}\right)
$$

The power constraint here is

$$
\mathbb{E} \sum_{i=1}^{k} X_{i}^{2} \leq P
$$

For any given power allocation P_{1}, \ldots, P_{k} with $P_{1}+\cdots+P_{k}=P$, then

$$
C\left(P_{1}, \ldots, P_{k}\right)=\sum_{i=1}^{k} \frac{1}{2} \log \left(1+\frac{P_{i}}{N_{i}}\right)
$$

We want to maximize $C\left(P_{1}, \ldots, P_{k}\right)$ subject to the constraint $\sum P_{i} \leq P$. We can do this with Lagrange multipliers:

$$
\begin{aligned}
J\left(P_{1}, \ldots, P_{k}\right) & =\sum_{i=1}^{k} \frac{1}{2} \log \left(1+\frac{P_{i}}{N_{i}}\right)+\lambda \sum_{i=1}^{k} P_{i} \\
\frac{\partial J}{\partial P_{i}} & =0 \\
0 & =\frac{1}{2} \cdot \frac{1}{P_{i}+N_{i}}+\lambda \\
P_{i}+N_{i} & =\nu \\
P_{i} & =\left(\nu-N_{i}\right)^{+}
\end{aligned}
$$

Definition 9.19. Bandlimited Channel

A bandlimited channel cuts out all frequencies greater than its bandwidth, W.

$$
\underbrace{X(t)}_{P \text { Watts }} \rightarrow \overbrace{\oplus}^{Z(t)} \rightarrow \underbrace{H(f)}_{\begin{array}{c}
\text { bandpass } \\
\text { filter }
\end{array}} \rightarrow Y(t)
$$

We can model the bandpass filter as a convolution with $h(t)$, giving us:

$$
\underbrace{Y(t)}_{\begin{array}{c}
\text { bandimited } \\
\text { time-limited in } T
\end{array}}=(X(t)+Z(t)) * h(t)=\underbrace{X(t) * h(t)}_{\begin{array}{c}
\text { bandlimited } \\
\text { time-limited in } T
\end{array}}+\underbrace{Z(t) * h(t)}_{\begin{array}{c}
\text { bandlimited } \\
\text { time-limited in } T
\end{array}}
$$

We can convert this to a discrete signal with $2 W T$ samples (Nyquist). Thus, we have

$$
\begin{gathered}
Y_{i}=X_{i}+N_{i} \\
\frac{1}{2} \log \left(1+\frac{P_{\text {sample }}}{N_{\text {sample }}}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
P_{\text {sample }} & =\frac{P T}{2 T W}=\frac{P}{2 W} \\
N_{\text {sample }} & =\frac{N_{0} W T}{2 T W}=\frac{N_{0}}{2} \\
\text { power spectral density } & \triangleq \frac{N_{0}}{2} \text { watts } / \text { hertz } \\
\text { bandwidth } & \triangleq W \text { hertz }
\end{aligned}
$$

So the capacity of a bandlimited channel is

$$
\begin{aligned}
C & =\frac{P}{N_{0}} \frac{W N_{0}}{P} \log \left(1+\frac{P}{N_{0} W}\right) \\
& =W \log \left(1+\frac{P}{N_{0} W}\right) \text { bits/second }
\end{aligned}
$$

Index

achievable, 40
AEP for continuous random variables, 53 aperiodic, 26
Asymptotic Equipartition Property, 20
average probability of error, 40
bandlimited channel, 70
bandwidth, 70
canonical codes, 34
capacity (continuous), 60
capacity of a Gaussian channel, 61
channel capacity, 35
channel coding theorem, 41
channel coding theorem converse, 44
codebook, 39
concave, 12
conditional differential entropy, 55
conditional entropy, 8
conditional mutual information, 11
conditional probability of error, 39
conditional relative entropy, 10
convex, 12
$\mathcal{D}^{*}, 27$
D-adic, 30
Data Processing Inequality, 16
differential entropy, 51
discrete channel, 35
entropy, 7
entropy rate, 24
expected length, 27
Extended Kraft Inequality, 28
extension, 27
Fano's Inequality, 17
Fano's Inequality (discrete), 43
feedback code, 46
Gaussian channel, 59
Hamming code, 49
high-probability set, 22
Huffman code, 32
i.i.d., 19
in probability, 20
independent, 13
information channel capacity, 35
instantaneous code, 27
irreducible, 26
Jensen's Inequality, 12
joint entropy, 8
joint entropy (differential), 55
jointly Gaussian, 56
jointly typical sequence, 40
Kraft Inequality, 28
Kraft Inequality (McMillan), 28
Kuhn-Tucker conditions, 65
Kullback-Leibler distance/divergence, 9
Lagrangian, 66
Log Sum Inequality, 14
Markov chain, 15
Markov chain (2), 26
maximal probability of error, 39
memoryless channel, 35
minimum distance, 50
minimum weight, 50
(M, n) code, 39
mutual information, 10
mutual information (differential), 55
normal (Gaussian) distribution, 51
operational channel capacity, 35
power constraint, 59
prefix code, 27
probability error, 17
probability mass function, 7
probability transition matrix, 26
rate, 40
relative entropy, 9
relative entropy (differential), 55
self-information, 11
SNR (signal-to-noise ratio), 64
source code, 27
source-channel code, 47
stationary, 24
stationary distribution, 26
stochastic process, 24
symmetric, 38
time-invariant, 26
typical set, 20
typical set (differential), 53
uniform distribution (differential), 51
uniquely decodable, 27
volume, 53
water-filling, 65
weakly symmetric, 37

