Document: Math 201B
Latest Update: January 27, 2011
Author: Jeff Irion

Contents

- If $f^{\prime}\left(x^{*}\right)<0$ then the fixed point is stable. If $f^{\prime}(x)>0$ then the fixed point is unstable.
- The potential, $V(x)$, is defined by $f(x)=-\frac{d V}{d x}$

Saddle-Node Bifurcations

- $\dot{x}=r+x^{2}$

$$
\begin{aligned}
\dot{x}=f(x) & =r+x^{2} \\
f^{\prime}(x) & =2 x
\end{aligned}
$$

3 Cases

1. $r<0 \Rightarrow 2$ fixed points (1 stable, 1 unstable)
$-x=\sqrt{r} \Rightarrow f^{\prime}(x)=2 \sqrt{r}>0 \Rightarrow$ unstable
$-x=-\sqrt{r} \Rightarrow f^{\prime}(x)=-2 \sqrt{r}<0 \Rightarrow$ stable
2. $r=0 \Rightarrow 1$ half-stable fixed point at $x=0$
3. $r>0 \Rightarrow$ no fixed points

The bifurcation occurs at $r=r_{c}=0$.

- $\dot{x}=r-x^{2}$

$$
\begin{aligned}
\dot{x}=f(x) & =r-x^{2} \\
f^{\prime}(x) & =-2 x
\end{aligned}
$$

3 Cases

1. $r<0 \Rightarrow$ no fixed points
2. $r=0 \Rightarrow 1$ half-stable fixed point at $x=0$
3. $r>0 \Rightarrow 2$ fixed points (1 stable, 1 unstable)
$-x=\sqrt{r} \Rightarrow f^{\prime}(x)=-2 \sqrt{r}<0 \Rightarrow$ stable
$-x=-\sqrt{r} \Rightarrow f^{\prime}(x)=2 \sqrt{r}>0 \Rightarrow$ unstable
The bifurcation occurs at $r=r_{c}=0$.

- $\dot{x}=r-x-e^{-x}$

The system has fixed points at

$$
r-x=e^{-x}
$$

We can solve this graphically by plotting $f(x)=r-x$ and $g(x)=e^{-x}$ and finding where the two curves intersect. The critical fixed point occurs when $r=r_{c}$ and the two curves are tangent to each other. We can solve for this by setting:

$$
\begin{aligned}
\frac{d}{d x}(r-x) & =\frac{d}{d x} e^{-x} \\
-1 & =-e^{-x} \\
x^{*} & =0 \\
r_{c}-0 & =e^{-0} \\
r_{c} & =1
\end{aligned}
$$

Transcritical Bifurcations

- $\dot{x}=r x-x^{2}$

$$
\begin{aligned}
\dot{x}=f(x) & =r x-x^{2} \\
f^{\prime}(x) & =r-2 x
\end{aligned}
$$

3 Cases

1. $r<0 \Rightarrow 2$ fixed points (1 stable, 1 unstable)
$-x=r \Rightarrow f^{\prime}(x)=-r>0 \Rightarrow$ unstable
$-x=0 \Rightarrow f^{\prime}(x)=r<0 \Rightarrow$ stable
2. $r=0 \Rightarrow 1$ half-stable fixed point at $x=0$
3. $r>0 \Rightarrow 2$ fixed points (1 stable, 1 unstable)
$-x=0 \Rightarrow f^{\prime}(x)=r>0 \Rightarrow$ unstable
$-x=r \Rightarrow f^{\prime}(x)=-r<0 \Rightarrow$ stable
Note that there is a fixed point at $x^{*}=0$ for all values of r.
The bifurcation occurs at $r=r_{c}=0$.

- $\dot{x}=x\left(1-x^{2}\right)-a\left(1-e^{-b x}\right)$

$$
\dot{x}=x\left(1-x^{2}\right)-a\left(1-e^{-b x}\right)
$$

Use a Taylor expansion for $1-e^{-b x}$:

$$
1-e^{-b x}=b x-\frac{1}{2} b^{2} x^{2}+O\left(x^{3}\right)
$$

Plugging this into our ODE yields:

$$
\dot{x}=(1-a b) x+\left(\frac{1}{2} a b^{2}\right) x^{2}+O\left(x^{3}\right)
$$

The fixed points will occur at:

$$
x^{*}=0 \quad \text { and } \quad x^{*} \approx \frac{2(a b-1)}{a b^{2}}
$$

Comparing to the normal form for a transcritical bifurcation, we see that the bifurcation occurs when $a b=1$.

- $\dot{x}=r \ln x+x-1$

$$
\dot{x}=r \ln x+x-1
$$

Note that $x=1$ is a fixed point for all values of r.
Introduce a new variable and use it to simplify the equation.

$$
\begin{aligned}
u & =x-1 \\
\dot{u} & =\dot{x} \\
& =r \ln (1+u)+u \\
& =r\left[u-\frac{1}{2} u^{2}+O\left(u^{3}\right)\right]+u \\
& \approx(r+1) u-\frac{1}{2} r u^{2}
\end{aligned}
$$

Hence, a transcritical bifucation occurs at $r_{c}=-1$.
To put this equation into normal form, let

$$
\begin{aligned}
u & =a \nu \\
\dot{\nu} & \approx(r+1) \nu-\left(\frac{1}{2} r a\right) \nu^{2} \\
& \approx(r+1) \nu-\nu^{2} \quad \text { where } a=\frac{2}{r} \\
& \approx \nu R-\nu^{2} \quad \text { where } R=r+1
\end{aligned}
$$

In terms of our original variables, we have:

$$
\begin{aligned}
R_{c} & =0 \Rightarrow r_{c}=-1 \\
\nu^{*} & =0 \Rightarrow x^{*}=1 \\
\nu^{*} & =R \Rightarrow u^{*}=\frac{2}{r}(r+1) \Rightarrow x^{*}=\frac{2 r+2}{r}+1
\end{aligned}
$$

Pitchfork Bifurcations

- Supercritical: $\dot{x}=r x-x^{3}$

$$
\begin{aligned}
\dot{x}=f(x) & =r x-x^{3} \\
f^{\prime}(x) & =r-3 x^{2}
\end{aligned}
$$

3 Cases

1. $r<0 \Rightarrow 1$ stable fixed point at $x=0$
2. $r=0 \Rightarrow 1$ stable fixed point at $x=0$
3. $r>0 \Rightarrow 3$ fixed points (2 stable, 1 unstable)
$-x=\sqrt{r} \Rightarrow f^{\prime}(x)=-2 r<0 \Rightarrow$ stable
$-x=0 \Rightarrow f^{\prime}(x)=r>0 \Rightarrow$ unstable
$-x=-\sqrt{r} \Rightarrow f^{\prime}(x)=-2 r<0 \Rightarrow$ stable

- Bifurcation Overview

Saddle-Node	Transcritical	Pitchfork	
		Supercritical	Subcritical
$\dot{x}=r \pm x^{2}$	$\dot{x}=r x-x^{2}$	$\dot{x}=r x-x^{3}$	$\dot{x}=r x+x^{3}$

Saddle-node vs. transcritical: in the transcritical case, the two fixed points don't disappear after the bifurcation; instead, they just switch their stability.

Taylor Expansions

$f(x)=f\left(x_{0}\right)+\left.\left(x-x_{0}\right) \frac{\partial f}{\partial x}\right|_{x_{0}}+\left.\frac{1}{2!}\left(x-x_{0}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{x_{0}}+\ldots$
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad$ for $|x| \leq 1$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad$ for all x
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad$ for $|x|<1$
$\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots \quad$ for $|x|<1$
$\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\ldots \quad$ for $-1<x \leq 1$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \quad$ for all x
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \quad$ for all x
$\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots \quad$ for $|x|<\frac{\pi}{2}$
$\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \quad$ for all x
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \quad$ for all x
$\tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots \quad$ for $|x|<\frac{\pi}{2}$

