Stability
e x* is an attracting fixed point if all trajectories that start near x* approach it as ¢t — oo
e x* is Liapunov stable if all trajectories that start sufficiently close to x* remain close to it for all time

— A fixed point can be Liapunov stable but not attracting

Solving a Linear System

o T =trace(A) =a+d= A+ X\
o A =det(A) =ad—bec= A2

VTR

e N\ = 5

Classification of Fixed Points

1. A < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point
2. A>0:

(a) The eigenvalues are real with the same sign (stable/unstable nodes)

i. A1,A2 >0 = unstable
il. A1, A2 <0 = stable

(b) The eigenvalues are complex: A\i2 = o £ iw

i. >0 = growing (unstable) spirals
ii. a =0 = circles
ili. @« <0 = decreasing (stable) spirals

Note: direction (clockwise/counterclockwise) depends on initial conditions and must be
checked.

(c) 72 =4A = 1 eigenvalue
3. A =0: at least one of the eigenvalues is zero

e The origin is not an isolated fixed point. There is either a whole line of fixed points, or a whole
plane of fixed points if A = 0.

Existence and Uniqueness Theorem

Consider the initial value problem x = f(x), x(0) = xg. Suppose that f is continuous and that all its partial
derivatives 0f;/Ox; are continous for x in some open connected set D C R™. Then for xg € D, the initial
value problem has a solution x(¢) on some time interval (—7,7) about ¢ = 0, and the solution is unique.
Corollary: Different trajectories never intersect.

Fixed Points and Linearization

Consider the system with fixed point (z*,y*):
&= f(z,y) f(@®y") =0
J=g(z,y) g(z*,y") = 0.
Let

U=2—2x vV=y—y



We linearize about the fixed point (z*,y*) and get

U 97 9 U
< 5 ) = ( gj gié > < ; ) + quadratic terms
or Oy

If the linearized system predicts a saddle node, node, or a spiral, then the fixed point really is a saddle node,
node, or spiral for the nonlinear system. In other words, if Re(A1) # 0 and Re(A2) # 0 then the linearization
will give the correct result.

Theorem: (Nonlinear centers for reversible systems) Suppose the origin x* = 0 is a linear center for a
continuously differentiable system and suppose that the system is reversible. Then sufficiently close to the
origin, all trajectories are closed curves.

Theorem: (Nonlinear centers for conservative systems) Consider the system x = f(x), where x = (z,y) €
R?, and f is continuously differentiable. Suppose there exists a conserved quantity F(x) and suppose that
x* is an isolated fixed point (i.e., there are no other fixed points in a small neighborhood surrounding x*).

If x* is a local minimum of E, then all trajectories sufficiently close to x* are closed.

Polar Coordinates Identity

- Ty — YT
9 = —
r2
Index Theory

Define ¢ = tan™!(y/4). The index of a closed curve C is defined as Ic = 5-[¢]c, where [¢]c is the net

change in ¢ over one circuit, i.e. the number of counterclockwise revolutions made by the vector field as x
moves once counterclockwise around C.

Properties of the Index

1. Suppose that C' can be continuously deformed into C’” without passing through a fixed point. Then
Ic = I¢r.

2. If C doesn’t enclose any fixed points, then I = 0.
3. If we reverse all the arrows in the vector field by changing t — —¢, the index is unchanged.

4. Suppose that the closed curve C' is actually a trajectory for the system, i.e. C is a closed orbit. Then
IC = +1.

More Index Info

e The index of a fixed point, x*, is defined as I, where C is any closed curve that encloses x* and no
other fixed points.

— I = +1 for a stable node, unstable node, spiral, center, degenerate node, and star

— I = —1 for a saddle point
e Theorem: If a closed curve C surrounds n isolated fixed points, then Ioc =11 + Is + ... + I,.
e Theorem: Any closed orbit in the phase plane must enclose fixed points whose indices sum to +1.
e Closed orbits are impossible for the “rabbit vs. sheep” system.
Definitions

e Given an attracting fixed point x*, we define its basin of attraction to be the set of initial conditions
xo such that x(t) — x* as t — o0



Potential energy, V(z), is defined by F(x) = —dV/dx

— mi = F(x) = mx + % =0 = E = %md}g + V(z) = constant

Systems for which a conserved quantity exists are called conservative systems

— A conservative system cannot have any attracting fixed points

Contours are closed curves of constant energy

Homoclinic orbits are trajectories that start and end at the same fixed point

A system has time-reversal symmetry if its dynamics look the same whether time runs forward or
backward

— Any mechanical system of the form m# = F(z) is symmetric under time reversal, i.e. the change
of variables t — —t

A reversible system is any second-order system that is invariant under t — —¢, y — —y

— Any system of the form & = f(z,y), ¥y = g(z,y), where f is odd in y and g is even in y, is
reversible

Heteroclinic trajectories or saddle connections are pairs of trajectories that join twin saddle points

Rabbits vs. Sheep
t=xz(3—z—2y)
y=y2—-x—-y)
z,y >0

x* = (0,0), (0,2), (3,0), (1,1)

—2r+3-2y —2x
A=
—y —2y+2-v
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Conservative System
1
Given: V(z) = —=z+ -z

We have fixed points at (0,0) and (£+1,0). Linearize

to get:
T\ 0 1 z - g
gy ) \1=322 0 Yy il

The trajectories are closed curves defined by the con- A
tours of constant energy, i.e. -

1 1 1
E = §y2 — 53:2 + 11’4 = constant

Reversible System

i=y—y
§=—z—y A:( 0

—
O =
~~

The origin is a fixed point with 7 = 0, A > 0, so

it is a linear center. The system is reversible, since

the equations are invariant under the transformation

t — —t, y — —y. Therefore, the origin is a nonlinear

center. The system also has fixed points at (—1,1) and

(—=1,—1), and they are saddle points. The twin saddle :

points are joined by a pair of trajectories. They are )\
called heteroclinic trajectories or saddle connections. N

Bifurcation Overview

Saddle-Node | Transcritical Pitchfork

Supercritical ~ Subcritical
3

2

i=r+a’ T=rr—=x T=rr—=x

‘jzzrx—i—x?)

Saddle-node vs. transcritical: in the transcritical case, the two fixed points don’t disappear after the
bifurcation; instead, they just switch their stability.




Taylor Expansions

of 1 0% f
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