
Stability

• x∗ is an attracting fixed point if all trajectories that start near x∗ approach it as t→∞

• x∗ is Liapunov stable if all trajectories that start sufficiently close to x∗ remain close to it for all time

– A fixed point can be Liapunov stable but not attracting

Solving a Linear System

• τ = trace(A) = a+ d = λ1 + λ2

• ∆ = det(A) = ad− bc = λ1λ2

• λ1,2 = τ±
√
τ2−4∆
2

Classification of Fixed Points

1. ∆ < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

2. ∆ > 0:

(a) The eigenvalues are real with the same sign (stable/unstable nodes)

i. λ1, λ2 > 0 ⇒ unstable
ii. λ1, λ2 < 0 ⇒ stable

(b) The eigenvalues are complex : λ1,2 = α± iω
i. α > 0 ⇒ growing (unstable) spirals
ii. α = 0 ⇒ circles

iii. α < 0 ⇒ decreasing (stable) spirals
Note: direction (clockwise/counterclockwise) depends on initial conditions and must be
checked.

(c) τ2 = 4∆ ⇒ 1 eigenvalue

3. ∆ = 0: at least one of the eigenvalues is zero

• The origin is not an isolated fixed point. There is either a whole line of fixed points, or a whole
plane of fixed points if A = 0.

Existence and Uniqueness Theorem
Consider the initial value problem ẋ = f(x), x(0) = x0. Suppose that f is continuous and that all its partial
derivatives ∂fi/∂xj are continous for x in some open connected set D ⊂ Rn. Then for x0 ∈ D, the initial
value problem has a solution x(t) on some time interval (−τ, τ) about t = 0, and the solution is unique.
Corollary: Different trajectories never intersect.

Fixed Points and Linearization
Consider the system

ẋ = f(x, y)
ẏ = g(x, y)

with fixed point (x∗, y∗):

f(x∗, y∗) = 0
g(x∗, y∗) = 0.

Let
u = x− x∗ v = y − y∗



We linearize about the fixed point (x∗, y∗) and get(
u̇
v̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)(
u
v

)
+ quadratic terms

If the linearized system predicts a saddle node, node, or a spiral, then the fixed point really is a saddle node,
node, or spiral for the nonlinear system. In other words, if Re(λ1) 6= 0 and Re(λ2) 6= 0 then the linearization
will give the correct result.

Theorem: (Nonlinear centers for reversible systems) Suppose the origin x∗ = 0 is a linear center for a
continuously differentiable system and suppose that the system is reversible. Then sufficiently close to the
origin, all trajectories are closed curves.

Theorem: (Nonlinear centers for conservative systems) Consider the system ẋ = f(x), where x = (x, y) ∈
R2, and f is continuously differentiable. Suppose there exists a conserved quantity E(x) and suppose that
x∗ is an isolated fixed point (i.e., there are no other fixed points in a small neighborhood surrounding x∗).
If x∗ is a local minimum of E, then all trajectories sufficiently close to x∗ are closed.

Polar Coordinates Identity

θ̇ =
xẏ − yẋ
r2

Index Theory
Define φ = tan−1(ẏ/ẋ). The index of a closed curve C is defined as IC = 1

2π [φ]C , where [φ]C is the net
change in φ over one circuit, i.e. the number of counterclockwise revolutions made by the vector field as x
moves once counterclockwise around C.

Properties of the Index

1. Suppose that C can be continuously deformed into C ′ without passing through a fixed point. Then
IC = IC′ .

2. If C doesn’t enclose any fixed points, then IC = 0.

3. If we reverse all the arrows in the vector field by changing t→ −t, the index is unchanged.

4. Suppose that the closed curve C is actually a trajectory for the system, i.e. C is a closed orbit. Then
IC = +1.

More Index Info

• The index of a fixed point, x∗, is defined as IC , where C is any closed curve that encloses x∗ and no
other fixed points.

– I = +1 for a stable node, unstable node, spiral, center, degenerate node, and star

– I = −1 for a saddle point

• Theorem: If a closed curve C surrounds n isolated fixed points, then IC = I1 + I2 + . . .+ In.

• Theorem: Any closed orbit in the phase plane must enclose fixed points whose indices sum to +1.

• Closed orbits are impossible for the “rabbit vs. sheep” system.

Definitions

• Given an attracting fixed point x∗, we define its basin of attraction to be the set of initial conditions
x0 such that x(t)→ x∗ as t→∞



• Potential energy, V (x), is defined by F (x) = −dV/dx

– mẍ = F (x) ⇒ mẍ+ dV
dx = 0 ⇒ E = 1

2mẋ
2 + V (x) = constant

• Systems for which a conserved quantity exists are called conservative systems

– A conservative system cannot have any attracting fixed points

• Contours are closed curves of constant energy

• Homoclinic orbits are trajectories that start and end at the same fixed point

• A system has time-reversal symmetry if its dynamics look the same whether time runs forward or
backward

– Any mechanical system of the form mẍ = F (x) is symmetric under time reversal, i.e. the change
of variables t→ −t

• A reversible system is any second-order system that is invariant under t→ −t, y → −y

– Any system of the form ẋ = f(x, y), ẏ = g(x, y), where f is odd in y and g is even in y, is
reversible

• Heteroclinic trajectories or saddle connections are pairs of trajectories that join twin saddle points

Rabbits vs. Sheep

ẋ = x(3− x− 2y)
ẏ = y(2− x− y)
x, y ≥ 0

x∗ = (0, 0), (0, 2), (3, 0), (1, 1)

A =
(
−2x+ 3− 2y −2x

−y −2y + 2− x

)

A
∣∣
(0,0)

=
(

3 0
0 2

)
λ1 = 3, λ2 = 2

v1 =
(

1
0

)
, v2 =

(
0
1

)
A
∣∣
(0,2)

=
(
−1 0
−2 −2

)
λ1 = −1, λ2 = −2

v1 =
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1
−2

)
, v2 =

(
0
1

)
A
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(3,0)

=
(
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0 −1

)
λ1 = −1, λ2 = −3

v1 =
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3
−1

)
, v2 =

(
1
0

)
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√
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( √
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Conservative System
Given: V (x) = −1

2
x2 +

1
4
x4

−dV
dx

= x− x3 = F (x)

We have fixed points at (0, 0) and (±1, 0). Linearize
to get: (

ẋ
ẏ

)
=
(

0 1
1− 3x2 0

)(
x
y

)
The trajectories are closed curves defined by the con-
tours of constant energy, i.e.

E =
1
2
y2 − 1

2
x2 +

1
4
x4 = constant

Reversible System

ẋ = y − y3

ẏ = −x− y2
A =

(
0 1
−1 0

)

The origin is a fixed point with τ = 0, ∆ > 0, so
it is a linear center. The system is reversible, since
the equations are invariant under the transformation
t → −t, y → −y. Therefore, the origin is a nonlinear
center. The system also has fixed points at (−1, 1) and
(−1,−1), and they are saddle points. The twin saddle
points are joined by a pair of trajectories. They are
called heteroclinic trajectories or saddle connections.

Bifurcation Overview
Saddle-Node Transcritical Pitchfork

Supercritical Subcritical
ẋ = r ± x2 ẋ = rx− x2 ẋ = rx− x3 ẋ = rx+ x3

Saddle-node vs. transcritical: in the transcritical case, the two fixed points don’t disappear after the
bifurcation; instead, they just switch their stability.



Taylor Expansions

f(x) = f(x0) + (x− x0)
∂f

∂x

∣∣
x0

+
1
2!

(x− x0)2∂
2f

∂x2

∣∣
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+ . . .
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2
+
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ex = 1 + x+
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2!
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3!
+ . . . for all x

1
1− x

= 1 + x+ x2 + x3 + . . . for |x| < 1

1
1 + x

= 1− x+ x2 − x3 + . . . for |x| < 1

√
1 + x = 1 +

1
2
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8
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sinhx = x+
x3

3!
+
x5

5!
+ . . . for all x

coshx = 1 +
x2

2!
+
x4

4!
+ . . . for all x
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3
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