Stability

- x^{*} is an attracting fixed point if all trajectories that start near \mathbf{x}^{*} approach it as $t \rightarrow \infty$
- x^{*} is Liapunov stable if all trajectories that start sufficiently close to x^{*} remain close to it for all time
- A fixed point can be Liapunov stable but not attracting

Solving a Linear System

- $\tau=\operatorname{trace}(A)=a+d=\lambda_{1}+\lambda_{2}$
- $\Delta=\operatorname{det}(A)=a d-b c=\lambda_{1} \lambda_{2}$
- $\lambda_{1,2}=\frac{\tau \pm \sqrt{\tau^{2}-4 \Delta}}{2}$

Classification of Fixed Points

1. $\Delta<0$: the eigenvalues are real and have opposite signs; the fixed point is a saddle point
2. $\Delta>0$:
(a) The eigenvalues are real with the same sign (stable/unstable nodes)
i. $\lambda_{1}, \lambda_{2}>0 \Rightarrow$ unstable
ii. $\lambda_{1}, \lambda_{2}<0 \Rightarrow$ stable
(b) The eigenvalues are complex: $\lambda_{1,2}=\alpha \pm i \omega$
i. $\alpha>0 \Rightarrow$ growing (unstable) spirals
ii. $\alpha=0 \Rightarrow$ circles
iii. $\alpha<0 \Rightarrow$ decreasing (stable) spirals

Note: direction (clockwise/counterclockwise) depends on initial conditions and must be checked.
(c) $\tau^{2}=4 \Delta \Rightarrow 1$ eigenvalue
3. $\Delta=0$: at least one of the eigenvalues is zero

- The origin is not an isolated fixed point. There is either a whole line of fixed points, or a whole plane of fixed points if $A=0$.

Existence and Uniqueness Theorem

Consider the initial value problem $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}), \mathbf{x}(0)=\mathbf{x}_{0}$. Suppose that \mathbf{f} is continuous and that all its partial derivatives $\partial f_{i} / \partial x_{j}$ are continous for \mathbf{x} in some open connected set $D \subset \mathbb{R}^{n}$. Then for $\mathbf{x}_{0} \in D$, the initial value problem has a solution $\mathbf{x}(t)$ on some time interval $(-\tau, \tau)$ about $t=0$, and the solution is unique.
Corollary: Different trajectories never intersect.

Fixed Points and Linearization

Consider the system

$$
\begin{gathered}
\dot{x}=f(x, y) \\
\dot{y}=g(x, y)
\end{gathered}
$$

with fixed point $\left(x^{*}, y^{*}\right)$:

$$
\begin{aligned}
& f\left(x^{*}, y^{*}\right)=0 \\
& g\left(x^{*}, y^{*}\right)=0 .
\end{aligned}
$$

Let

$$
u=x-x^{*} \quad v=y-y^{*}
$$

We linearize about the fixed point $\left(x^{*}, y^{*}\right)$ and get

$$
\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\binom{u}{v}+\text { quadratic terms }
$$

If the linearized system predicts a saddle node, node, or a spiral, then the fixed point really is a saddle node, node, or spiral for the nonlinear system. In other words, if $\operatorname{Re}\left(\lambda_{1}\right) \neq 0$ and $\operatorname{Re}\left(\lambda_{2}\right) \neq 0$ then the linearization will give the correct result.

Theorem: (Nonlinear centers for reversible systems) Suppose the origin $\mathbf{x}^{*}=\mathbf{0}$ is a linear center for a continuously differentiable system and suppose that the system is reversible. Then sufficiently close to the origin, all trajectories are closed curves.

Theorem: (Nonlinear centers for conservative systems) Consider the system $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$, where $\mathbf{x}=(x, y) \in$ \mathbb{R}^{2}, and \mathbf{f} is continuously differentiable. Suppose there exists a conserved quantity $E(\mathbf{x})$ and suppose that \mathbf{x}^{*} is an isolated fixed point (i.e., there are no other fixed points in a small neighborhood surrounding \mathbf{x}^{*}). If \mathbf{x}^{*} is a local minimum of E, then all trajectories sufficiently close to \mathbf{x}^{*} are closed.

Polar Coordinates Identity

$$
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}}
$$

Index Theory

$\overline{\text { Define } \phi=\tan ^{-1}}(\dot{y} / \dot{x})$. The index of a closed curve C is defined as $I_{C}=\frac{1}{2 \pi}[\phi]_{C}$, where $[\phi]_{C}$ is the net change in ϕ over one circuit, i.e. the number of counterclockwise revolutions made by the vector field as \mathbf{x} moves once counterclockwise around C.

Properties of the Index

1. Suppose that C can be continuously deformed into C^{\prime} without passing through a fixed point. Then $I_{C}=I_{C^{\prime}}$.
2. If C doesn't enclose any fixed points, then $I_{C}=0$.
3. If we reverse all the arrows in the vector field by changing $t \rightarrow-t$, the index is unchanged.
4. Suppose that the closed curve C is actually a trajectory for the system, i.e. C is a closed orbit. Then $I_{C}=+1$.

More Index Info

- The index of a fixed point, \mathbf{x}^{*}, is defined as I_{C}, where C is any closed curve that encloses \mathbf{x}^{*} and no other fixed points.
$-I=+1$ for a stable node, unstable node, spiral, center, degenerate node, and star
$-I=-1$ for a saddle point
- Theorem: If a closed curve C surrounds n isolated fixed points, then $I_{C}=I_{1}+I_{2}+\ldots+I_{n}$.
- Theorem: Any closed orbit in the phase plane must enclose fixed points whose indices sum to +1 .
- Closed orbits are impossible for the "rabbit vs. sheep" system.

Definitions

- Given an attracting fixed point \mathbf{x}^{*}, we define its basin of attraction to be the set of initial conditions \mathbf{x}_{0} such that $\mathbf{x}(t) \rightarrow \mathbf{x}^{*}$ as $t \rightarrow \infty$
- Potential energy, $V(x)$, is defined by $F(x)=-d V / d x$

$$
-m \ddot{x}=F(x) \quad \Rightarrow \quad m \ddot{x}+\frac{d V}{d x}=0 \quad \Rightarrow \quad E=\frac{1}{2} m \dot{x}^{2}+V(x)=\mathrm{constant}
$$

- Systems for which a conserved quantity exists are called conservative systems
- A conservative system cannot have any attracting fixed points
- Contours are closed curves of constant energy
- Homoclinic orbits are trajectories that start and end at the same fixed point
- A system has time-reversal symmetry if its dynamics look the same whether time runs forward or backward
- Any mechanical system of the form $m \ddot{x}=F(x)$ is symmetric under time reversal, i.e. the change of variables $t \rightarrow-t$
- A reversible system is any second-order system that is invariant under $t \rightarrow-t, y \rightarrow-y$
- Any system of the form $\dot{x}=f(x, y), \dot{y}=g(x, y)$, where f is odd in y and g is even in y, is reversible
- Heteroclinic trajectories or saddle connections are pairs of trajectories that join twin saddle points

Rabbits vs. Sheep

$$
\left.\begin{array}{c}
\dot{x}=x(3-x-2 y) \\
\dot{y}=y(2-x-y) \\
x, y \geq 0 \\
\mathbf{x}^{*}=(0,0), \quad(0,2), \quad(3,0), \quad(1,1) \tag{1,1}\\
A=\left(\begin{array}{cc}
-2 x+3-2 y & -2 x \\
-y
\end{array}\right)-2 y+2-x
\end{array}\right), ~ \begin{aligned}
& \lambda_{1}=3, \quad \lambda_{2}=2 \\
& \left.A\right|_{(0,0)}=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right) \\
& \left.A\right|_{(0,2)}=\left(\begin{array}{rr}
-1 & 0 \\
-2 & -2
\end{array}\right) \\
& \mathbf{v}_{1}=\binom{1}{0}, \quad \mathbf{v}_{2}=\binom{0}{1} \\
& \left.A\right|_{(3,0)}=\left(\begin{array}{rr}
-3 & \lambda_{2}=-2 \\
0 & -1
\end{array}\right) \\
& \mathbf{v}_{1}=\binom{1}{-2}, \quad \mathbf{v}_{2}=\binom{0}{1} \\
& \left.A\right|_{(1,1)}=\left(\begin{array}{rr}
-1, & \lambda_{2}=-3 \\
-1 & -2 \\
-1
\end{array}\right) \\
& \mathbf{v}_{1}=\binom{3}{-1}, \quad \mathbf{v}_{2}=\binom{1}{0} \\
& \lambda_{1}=-1+\sqrt{2}, \quad \lambda_{2}=-1-\sqrt{2} \\
& \mathbf{v}_{1}=\binom{\sqrt{2}}{-1}, \quad \mathbf{v}_{2}=\binom{\sqrt{2}}{1}
\end{aligned}
$$

Conservative System

Given: $\quad V(x)=-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}$

$$
-\frac{d V}{d x}=x-x^{3}=F(x)
$$

We have fixed points at $(0,0)$ and $(\pm 1,0)$. Linearize to get:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
0 & 1 \\
1-3 x^{2} & 0
\end{array}\right)\binom{x}{y}
$$

The trajectories are closed curves defined by the contours of constant energy, i.e.

$$
E=\frac{1}{2} y^{2}-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}=\mathrm{constant}
$$

Reversible System

$$
\begin{aligned}
& \dot{x}=y-y^{3} \\
& \dot{y}=-x-y^{2}
\end{aligned}
$$

$$
A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The origin is a fixed point with $\tau=0, \Delta>0$, so it is a linear center. The system is reversible, since the equations are invariant under the transformation $t \rightarrow-t, y \rightarrow-y$. Therefore, the origin is a nonlinear center. The system also has fixed points at $(-1,1)$ and $(-1,-1)$, and they are saddle points. The twin saddle points are joined by a pair of trajectories. They are called heteroclinic trajectories or saddle connections.

Bifurcation Overview

Saddle-Node	Transcritical	Pitchfork Supercritical $\dot{x}=r \pm x^{2}$$\dot{x}=r x-x^{2}$	
$\dot{x}=r x-x^{3}$	$\dot{x}=r x+x^{3}$		

Saddle-node vs. transcritical: in the transcritical case, the two fixed points don't disappear after the bifurcation; instead, they just switch their stability.

Taylor Expansions

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+\left.\left(x-x_{0}\right) \frac{\partial f}{\partial x}\right|_{x_{0}}+\left.\frac{1}{2!}\left(x-x_{0}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{x_{0}}+\ldots \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad \text { for }|x| \leq 1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad \text { for all } x \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad \text { for }|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots \quad \text { for }|x|<1 \\
& \sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\ldots \quad \text { for }-1<x \leq 1 \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \quad \text { for all } x \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \quad \text { for all } x \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots \quad \text { for }|x|<\frac{\pi}{2} \\
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \quad \text { for all } x \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \quad \text { for all } x \\
& \tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots \quad \text { for }|x|<\frac{\pi}{2}
\end{aligned}
$$

