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0 Measure Theory

0.1 Key Theorems

Theorem 0.1. Fubini’s Theorem
http://en.wikipedia.org/wiki/Fubini%27s_theorem

Suppose A and B are complete measure spaces. Suppose f(x, y) is A×B measurable. If∫
A×B

|f(x, y)| d(x, y) <∞

where the integral is taken with respect to a product measure on the space over A×B, then∫
A

(∫
B
f(x, y) dy

)
dx =

∫
B

(∫
A
f(x, y) dx

)
dy =

∫
A×B

f(x, y) d(x, y)

the first two integrals being iterated integrals with respect to two measures, respectively, and the
third being an integral with respect to a product of these two measures.

Corollary:
If f(x, y) = g(x)h(y) for some functions g and h, then∫

A
g(x) dx

∫
B
h(y) dy =

∫
A×B

f(x, y) d(x, y)

the third integral being with respect to a product measure.

Theorem 0.2. Tonelli’s Theorem
http://en.wikipedia.org/wiki/Fubini%27s_theorem#Tonelli.27s_theorem

Suppose that A and B are σ-finite measure spaces, not necessarily complete. If either∫
A

(∫
B
|f(x, y)| dy

)
dx <∞ or

∫
B

(∫
A
|f(x, y)| dx

)
dy <∞

then ∫
A×B

|f(x, y)| d(x, y) <∞

and ∫
A

(∫
B
f(x, y) dy

)
dx =

∫
B

(∫
A
f(x, y) dx

)
dy =

∫
A×B

f(x, y) d(x, y)
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Remark 0.3. Fubini vs. Tonelli
http://en.wikipedia.org/wiki/Fubini%27s_theorem

Tonelli’s theorem is a successor of Fubini’s theorem. The conclusion of Tonelli’s theorem is identical
to that of Fubini’s theorem, but the assumptions are different. Tonelli’s theorem states that on
the product of two -finite measure spaces, a product measure integral can be evaluated by way of
an iterated integral for nonnegative measurable functions, regardless of whether they have finite
integral. A formal statement of Tonelli’s theorem is identical to that of Fubini’s theorem, except
that the requirements are now that (X,A, µ) and (Y,B, ν) are σ-finite measure spaces, while f maps
X × Y to [0,∞].

Theorem 0.4. Hölder’s Inequality
Theorem 12.54 on page 356

Let 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. If f ∈ Lp(X,µ) and g ∈ Lq(X,µ), then fg ∈ L1(X,µ) and∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ ‖f‖p‖g‖q
Theorem 0.5. Young’s Inequality
Theorem 12.58 on page 359

Let 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1 + 1
r . If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q

Theorem 0.6. Lebesgue Dominated Convergence Theorem
Theorem 12.35 on page 348

Suppose that (fn) is a sequence of integrable functions, fn : X → R, on a measure space (X,A, µ)
that converges pointwise to a limiting function f : X → R. If there is an integrable function
g : X → [0,∞] such that

|fn(x)| ≤ g(x) ∀ x ∈ X, n ∈ N

then f is integrable and

lim
n→∞

∫
fn dµ =

∫
f dµ
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Theorem 0.7. Cauchy-Schwarz Inequality
http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

Formal Statement: For all vectors x, y of an inner product space,

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉
|〈x, y〉| ≤ ‖x‖‖y‖

Square of a Sum: ∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
2

≤
n∑
i=1

|xi|2
n∑
i=1

|yi|2

In L2: ∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣2 ≤ ∫ |f(x)|2 dx
∫
|g(x)|2 dx

4
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7 Fourier Series

7.1 Fourier Series

Definition 7.1. 2π-periodic
page 149

A function f : R→ C is 2π-periodic if

f(x+ 2π) = f(x) ∀ x ∈ R

A 2π-periodic function may be indentified with a function on the unit circle, or one-dimensional
torus, T = R/(2πZ). The space C(T) is the space of continuous functions from T to C, and L2(T)
is the completion of C(T) with respect to the L2-norm,

‖f‖ =

(∫
T
|f(x)|2 dx

)1/2

L2(T) is a Hilbert space with respect to the inner product

〈f, g〉 =

∫
T
f(x)g(x) dx

Definition 7.2. Lp(T)
page 92 and Notes 1/3/11

Lp(T) := the space of Lebesgue measurable functions, f : T → C such that
∫
T |f |

p dx < ∞, where
1 ≤ p <∞. We define the Lp-norm as:

‖f‖p =

(∫
T
|f |p dx

)1/p

For p = ∞, L∞(T) is the space of Lebesgue measurable functions that are essentially bounded on
T, meaning that f is bounded on every subset of T with nonzero measure. The norm on L∞(T) is
the essential supremum

‖f‖∞ = inf{M
∣∣ |f(x)| ≤M a.e. in T}

We identify f with g if f = g a.e. (almost everywhere, except possibly on a set of measure 0).

Theorem 7.3.
Notes 1/3/11

Lp(T) with the norm ‖f‖Lp = (
∫
T |f |

p dx)1/p is a Banach space.
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Theorem 7.4.
Notes 1/3/11

C(T) is dense in Lp(T) for 1 ≤ p <∞.

Note: C(T) := the space of continuous functions f : T→ C

Proposition 7.5.
Notes 1/3/11

p > q ⇒ Lp(T) ⊂ Lq(T) and ‖ · ‖p ≥ ‖ · ‖q

Also,
L1(T) ⊃ L2(T) ⊃ . . . ⊃ C(T)

Example 7.6. Fourier Basis Example
Notes 1/3/11

∑
n6=0

1

|n|
einx = f(x)

∑
n6=0

1

|n|2
= 2

∞∑
n=1

1

n2
<∞

lim
N→∞

∫ ∣∣∣∣∣∣f(x)−
N∑

n=−N, n6=0

1

|n|
einx

∣∣∣∣∣∣
2

dx = 0

Line 2 and Bessel’s Inequality tell us that the series converges in L2(T). However, it doesn’t
converge pointwise everywhere on T.

Ex. at x = 0,
∑

n6=0
1
|n| diverges.

Proposition 7.7. Orthonormal Basis of L2(T)
page 150

The Fourier basis elements are the functions

en(x) =
1√
2π
einx

{
en
∣∣ n ∈ Z

}
is an orthonormal basis of L2(T).

Proof Outline

• Orthogonality
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It is easily shown that

〈em, en〉 =

{
1 if m = n
0 if m 6= n

• Completeness
This proof relies upon the ideas of convolution and approximate identities. (See Theorems 7.12 and
7.13.)

Definition 7.8. Convolution
page 150

The convolution of two continuous functions f, g : T → C is the continuous function f ∗ g : T → C
defined by the integral

(f ∗ g)(x) =

∫
T
f(x− y)g(y) dy

Using the change of variable z = x− y, it is seen that

(f ∗ g)(x) =

∫
T
f(z)g(x− z) dz

so that f ∗ g = g ∗ f .

Definition 7.9. Approximate Identity
Definition 7.1 on page 151

A family of functions {ϕn ∈ C(T)
∣∣ n ∈ N} is an approximate identity if

(a) ϕn(x) ≥ 0

(b)

∫
T
ϕn(x) dx = 1

(c) lim
n→∞

∫
δ≤|x|≤π

ϕn(x) dx = 0 ∀ δ > 0

Note: in (c), T is identified with [−π, π].

Theorem 7.10.
Theorem 7.2 on page 151 and Notes 1/5/11 and FA 49

If {ϕn ∈ C(T)
∣∣ n ∈ N} is an approximate identity and f ∈ C(T), then ϕn ∗ f converges uniformly

to f as n→∞.

Note: the term “approximate identity” comes from this result, since {ϕn} is an approxima-
tion to the identity.

Proof
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f(x) =

∫
T
ϕn(y)f(x) dy

(ϕn ∗ f)(x) =

∫
T
ϕn(y)f(x− y) dy

(ϕn ∗ f)(x)− f(x) =

∫
T
ϕn(y)[f(x− y)− f(x)] dy

• f is uniformly continuous, so there exists M such that |f(x)| ≤M ∀ x ∈ T

• ∃ δ > 0 such that |f(x)− f(y)| ≤ ε whenever |x− y| < δ

|(ϕn ∗ f)(x)− f(x)| ≤
∫ π

−π
ϕn(y)|f(x− y)− f(x)| dy

≤
∫
|y|<δ

ϕn(y)|f(x− y)− f(x)| dy +

∫
|y|≥δ

ϕn(y)|f(x− y)− f(x)| dy

≤ ε
∫
|y|<δ

ϕn(y) dy +

∫
|y|≥δ

ϕn(y)[|f(x− y)|+ |f(x)|] dy

≤ ε+ 2M

∫
|y|≥δ

ϕn(y) dy

Using property (c) of an approximate identity gives that ϕn ∗ f → f uniformly in C(T).

Remark 7.11. Revised Approximate Identity Definition
Notes 1/5/11

More generally, ϕn ∈ L1(T) is an approximate identity if

(a)

∫
T
|ϕn(x)| dx ≤M ∀ n ∈ N

(b)

∫
T
ϕn(x) dx = 1

(c) lim
n→∞

∫
δ≤|x|≤π

ϕn(x) dx = 0 ∀ δ > 0

Theorem 7.12. Weierstrass Approximation Theorem
Theorem 7.3 on page 152 and Notes 1/5/11

The trigonometric polynomials are dense in C(T) with respect to the uniform norm.

Proof

• Let f ∈ C(T)

• Generate an approximate identity that is a trigonometric polynomial
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– Define ϕn = cn(1 + cosx)n = cn[2 cos2(x2 )]n and choose cn such that
∫
T ϕn(x) dx = 1

– To show ϕn is an approximate identity, we need to show that ∀ δ > 0, lim
n→∞

∫
|x|>δ ϕn(x) dx = 0

∗ Fix ε > 0. ∀ x, δ ≤ |x| ≤ π, ∃ r ∈ (0, 1) such that

(1 + cosx) < r(1 + cos y)

ϕn(x) < rnϕn(y)

δϕn(x) < rn
∫ δ/2

−δ/2
ϕn(y) dy

δϕn(x) < rn

0 ≤ ϕn(x) <
rn

δ
∀ x such that δ ≤ |x| ≤ π

– So ϕn → 0 uniformly on δ ≤ |x| ≤ π as n→∞, and
∫
|x|>δ ϕn(x) dx→ 0 as n→∞

• ϕn is an approximate identity, so ϕn ∗ f is a trigonometric polynomial, and ϕn ∗ f converges uniformly
to f (See Theorem 7.10)

Corollary 7.13.
page 153 and 155 and Notes 1/5/11

The trigonometric polynomials are dense in L2(T). That is, for any f ∈ L2(T),

f(x) =
1√
2π

∞∑
n=−∞

f̂ne
inx

f̂n =
1√
2π

∫
T
f(x)e−inx dx

If f ∈ L2(T) then the Fourier series of f converges pointwise to f a.e. (Carleson).

Proof
Let f ∈ L2(T).

• Choose g ∈ C(T) such that ‖f − g‖L2 < ε/2. We can do this because C(T) is dense in L2(T).

• Pick a trigonometric polynomial p such that ‖g − p‖L2 < ε/2
√

2π.

• ‖g − p‖L2 = (
∫
|g − p|2dx)1/2 ≤ ‖g − p‖∞

√
2π

• ‖f − p‖L2 ≤ ‖f − g‖L2 + ‖g − p‖L2 < ε/2 + ε/2

Corollary 7.14.
Notes 1/5/11

{ 1√
2π
einx

∣∣ n ∈ Z} is an orthonormal basis of L2(T).
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Definition 7.15. Periodic Fourier Transform
page 153 and Notes 1/7/11

The Periodic Fourier Transform F : L2(T) → `2(Z) maps a function to its sequence of Fourier
coefficients by

Ff =
(
f̂n

)∞
n=−∞

Thus, the L2 norm of a function can be computed by∫
T
|f(x)|2 dx =

∞∑
n=−∞

∣∣∣f̂n∣∣∣2
This implies that (f̂n) ∈ `2(Z). Furthermore, the Projection Theorem (6.13 in the book) implies
that

fN (x) =
1√
2π

N∑
n=−N

f̂ne
inx

is the best approximation of f by a trigonometric polynomial of degree N in the L2-norm.

Theorem 7.16. Parseval’s Theorem
Notes 1/7/11

Given f, g ∈ L2(T), then

f(x) =
1√
2π

∑
n∈Z

ane
inx

g(x) =
1√
2π

∑
n∈Z

bne
inx

〈f, g〉 =
∑
n∈Z

anbn

Proposition 7.17.
Proposition 7.4 on page 154

If f, g ∈ L2(T), then f ∗ g ∈ C(T) and

‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2

Proof

(f ∗ g)(x) =

∫
T
f(x− y)g(y) dy

If f, g ∈ C(T), then we can apply the Cauchy-Schwarz Inequality to get

|f ∗ g(x)| ≤ ‖f‖L2‖g‖L2

Taking the supremum of both sides yields

‖f ∗ g‖∞ ≤ ‖f‖L2‖g‖L2

10



If f, g ∈ L2(T), then there exist sequences (fk), (gk) ∈ C(T) such that ‖f − fk‖2 → 0 and ‖g − gk‖2 → 0 as
k →∞. Also, the sequence (fk ∗ gk) ∈ C(T) is Cauchy with respect to the sup-norm, since

‖fj ∗ gj − fk ∗ gk‖ ≤ ‖(fj − fk) ∗ gj‖∞ + ‖fk ∗ (gj − gk)‖∞
≤ ‖fj − fk‖2‖gj‖2 + ‖fk‖2‖gj − gk‖2
≤M (‖fj − fk‖2 + ‖gj − gk‖2)

where M ≥ ‖fj‖2 and M ≥ ‖gk‖2, since the sequences converge in L2(T). Since C(T) is complete, the
sequence (fk ∗gk) converges uniformly to a continuous function f ∗g ∈ C(T), and f ∗g satisfies the inequality.

Theorem 7.18. Convolution Theorem
Theorem 7.5 on page 154 and Notes 1/10/11

If f, g ∈ L2(T), then

(Book) (̂f ∗ g)n =
√

2πf̂nĝn

(Notes) (̂f ∗ g)n = f̂nĝn

Proof Outline

Compute (̂f ∗ g)n, using Fubini’s Theorem to change the order of integration.

Remark 7.19. Alternative bases for L2

page 155 and Notes 1/7/11

The non-normalized orthogonal basis:
{einx}

f̂n =
1

2π

∫
T
f(x)e−inx dx

Sines and Cosines:
{1, cos(nx), sin(nx)

∣∣ n = 1, 2, 3, . . .}

f(x) =
1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
a0 =

1

π

∫
T
f(x) dx an =

1

π

∫
T
f(x) cos(nx) dx bn =

1

π

∫
T
f(x) sin(nx) dx

11



7.2 L1 Functions

Remark 7.20. L1 Functions
Notes 1/7/11

L1(T) is the space of periodic functions f : T→ C such that

‖f‖L1 =

∫
T
|f(x)| dx <∞

Note that L1(T) is a Banach space but not a Hilbert space. We can define the Fourier coefficients
of f as

cn =

∫
T
f(x)e−inx dx

Note that |cn| ≤
∫
|f(x)| dx. We can write the trigonometric polynomial approximation of f as

f(x) ∼
∑
n∈Z

cne
inx

However, this does not necessarily converge to f .

Lemma 7.21. Riemann-Lebesgue Lemma
Notes 1/7/11 and 1/10/11

If f ∈ L1(T) has Fourier coefficients cn, then cn → 0 as |n| → ∞.

Proof Outline (1/7/11)

• Prove for smooth functions (use Integration By Parts)

• Approximate non-smooth functions with smooth functions

Proof Outline (1/10/11)

• Fix ε > 0

• The trigonometric polynomials are dense in L1(T), so we can pick a trigonometric polynomial p such
that ‖f − p‖L1 < ε

• If deg p = N and n > N , then

|f̂(n)| = 1

2π

∣∣∣∣∫ fe−inx dx

∣∣∣∣
=

1

2π

∣∣∣∣∫ (f − p)e−inx dx
∣∣∣∣ Note:

∫
pe−inx dx = 0 ∀ n > N by orthogonality

≤ 1

2π
‖f − p‖L1

≤ ε

2π
< ε

12



Definition 7.22. Fourier Transform for L1(T)
Notes 1/10/11

The Fourier Transform F : f → f̂ , F : L1(T)→ C0(Z)

C0(Z) =
{

(cn)n∈Z
∣∣ cn → 0 as |n| → ∞

}
‖(cn)‖∞ = max

n∈Z
|cn|

F is a bounded linear map, with ‖Ff‖∞ ≤ ‖f‖L1

Note: F is not onto.

Example 7.23. F is not onto
Notes 1/10/11

There is no function whose Fourier coefficients are

f̂(n) =
i sgn(n)

log |n|
|n| ≥ 2

7.3 Kernels and Summability Methods

Definition 7.24. Dirichlet Kernel
Notes 1/10/11 and FA 44

The Dirichlet kernel is

DN (x) =
1

2π

∑
|n|≤N

einx =
1

2π

[
sin
(
(N + 1

2)x
)

sin(x2 )

]
x 6= 0

DN (0) =
1

2π
(2N + 1)

(See the Kernel Overview.)

Derivation of the Dirichlet Kernel

13



Suppose f ∈ L1(T), f(x) ∼
∑
f̂ne

inx. Define the N th partial sum of the Fourier series of f as

SN (f)(x) =
∑
|n|≤N

f̂ne
inx

=
1

2π

∑
|n|≤N

(∫
f(y)e−iny dy

)
einx

=
1

2π

∫  ∑
|n|≤N

ein(x−y)

 f(y) dy

=

∫
DN (x− y)f(y) dy = DN ∗ f

Figure 1: Dirichlet kernels.

Example 7.25. DN is not an approximate identity
Notes 1/12/11

The Dirichlet kernel is not an approximate identity.

(a)

∫
DN dx =

∫ (
1

2π

∑
einx

)
dx =

1

2π
· 2π = 1

(b)

∫
4

π2

N∑
k=1

1

k
≤ |DN | dx ≤

4

π2

(
N∑
k=1

1

k

)
+ 2 +

π

4

(b) As N →∞,
∫
|DN | dx =

4

π
logN +O(1)→∞ as N →∞

(c) For δ > 0, lim
N→∞

∫
|x|>δ

|DN | dx 6→ 0

Thus, we can’t conclude that if f ∈ C(T) or f ∈ L1(T) then DN ∗ f → f uniformly

14



Theorem 7.26. Absolute Convergence
HW 3 Problem 2 and FA page 41

If f ∈ C(T) and its Fourier series is absolutely convergent,
∑
n∈Z
|f̂(n)| < ∞, then the Fourier series

converges uniformly to f .

Let A(T) denote the space of integrable functions whose Fourier coefficients are absolutely conver-
gent. That is, f ∈ F(T) if

∑
n∈Z
|f̂(n)| <∞. If f ∈ A(T), then f ∈ C(T).

Definition 7.27. Summability Method: Cesáro Summation
Notes 1/12/11 and FA 52

The N th Cesáro sum of a series is the average of the first N partial sums in the series:

σN =
s0 + s1 + . . .+ sN−1

N

Example 7.28. Cesáro Summation Example
Notes 1/12/11

Consider the series
∑
n=1

(−1)n = 1− 1 + 1− 1 + 1 . . .. Then the nth partial sum is

SN =

{
1 N odd
0 N even

Consider the averages of partial sums:

σN =
S1 + . . .+ SN

N

σN =

{
1
2 N even

1
2
(N+1)

N = 1
2 + 1

2N N even
→ 1

2
as N →∞

Thus,
∑
n=1

(−1)n = 1
2 (C).

Theorem 7.29.
Notes 1/14/11

Cesáro summation is regular, meaning that if
∑
an = s then

∑
an = s (C).
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Definition 7.30. Fejér Kernel
Notes 1/12/11

The Fejér Kernel is:

KN (x) =
1

2π

∑
|n|≤N

(
1− |n|

N + 1

)
einx

KN (x) =
1

2π(N + 1)

sin
(
(N+1)x

2

)
sin
(
x
2

)
2

(See the Kernel Overview.)

Proof (that the two forms are equivalent)

• Consider [
1

2

(
eix + e−ix

)
− 1

]
KN (x) =

1

2πN

(
1

2
ei(N+1)x +

1

2
e−i(N+1)x − 1

)
• Use the fact that (

sin
x

2

)2
= −1

4

(
eix − 2 + e−ix

)
Derivation of the Fejér Kernel

Form the N th Cesáro mean of the Fourier series:

σN (f)(x) =
S0f + S1f + . . .+ SNf

N + 1

=
1

2π

∑
|n|≤N

(
1− |n|

N + 1

)
f̂(n)einx

= KN ∗ f

Figure 2: Fejér kernels.
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Theorem 7.31.
Notes 1/12/11

KN is an approximate identity. If f ∈ C(T), then σNf = KN ∗ f → f uniformly and if f ∈ Lp(T),
then σNf = KN ∗ f → f in Lp(T).

Corollary 7.32.
1/12/11

Suppose f, g ∈ L1(T) and f̂ = ĝ. Then f = g.

Proof

• Set h = f − g

• Then ĥ(n) = 0

• KN ∗ h→ h in L1

• KN ∗ h = 0 ∀ N , so h = 0⇒ f = g

Note: we could have used the original approximate identity for this proof.

Definition 7.33. Summability Method: Abel Summation
Notes 1/14/11

S =
∞∑
n=0

an

S = lim
r→1−

∞∑
n=0

anr
n (A)

Theorem 7.34.
Notes 1/14/11

Abel summation is regular.

Proof

17



• We will use summation by parts. Suppose S =
∞∑
n=0

an, Sn =
n∑
k=0

ak, Sn → S as n→∞

∞∑
n=0

anr
n = a0 +

∞∑
n=1

(Sn − Sn−1)rn (Since an = Sn − Sn−1)

= a0 +

∞∑
n=1

(Sn − Snrn+1) (re-index)

= a0 + (1− r)
∞∑
n=1

(Snr
n)− S0r

= (1− r)
∞∑
n=0

Snr
n (S0 = a0)∣∣∣∣∣

∞∑
n=0

(anr
n)− s

∣∣∣∣∣ = (1− r)

∣∣∣∣∣
∞∑
n=0

(Sn − S)rn

∣∣∣∣∣ ≤ (1− r)
∞∑
n=0

|Sn − S|rn 1 = (1− r)
∞∑
n=0

rn

S = (1− r)
∞∑
n=0

Srn

• Fix ε > 0. Choose N such that |Sn − S| < ε/2 for n > N . Then∣∣∣∣∣
∞∑
n=0

anr
n − S

∣∣∣∣∣ < (1− r)
N∑
n=0

|Sn − S|rn +
ε

2
(1− r)

∞∑
n=N+1

rn︸ ︷︷ ︸
≤1

• Choose (1− r) < δ, where δ
∑N

n=0 |Sn − S| < ε/2

• n > N ⇒
∣∣∣∣ ∞∑
n=0

anr
n − S

∣∣∣∣ < ε/2 + ε/2 = ε

Theorem 7.35. Tauber & Littlwood
Notes 1/14/11

Suppose that lim
r→1−

∞∑
n=0

anr
n exists and nan = O(1) as n → ∞. (i.e. there is an M such that

|nan| ≤M ∀ n.) Then
∑
an exists (and is equal to the limit).

18



Definition 7.36. Poisson Kernel
Notes 1/14/11

Identify T as the unit circle in C, i.e.

T =
{
z ∈ C

∣∣ |z| = 1
}
⇔ z = eiθ

f(θ) ∼
∑
n∈Z

f̂(n)einθ

f̂(n) =
1

2π

∫ 2π

0
f(θ)e−inθ dθ

fr(θ) =
∑
n∈Z

f̂(n)r|n|einθ

= Pr ∗ f(θ)

The Poisson kernel is

Pr(θ) =
1

2π

∑
n∈Z

r|n|einθ, 0 < r < 1

Pr(θ) =
1

2π

[
1− r2

1− 2r cos θ + r2

]
Pr(0) =

1

2π

1− r2

(1− r)2

(See the Kernel Overview.)

Figure 3: Poisson kernels.
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Remark 7.37. Properties of the Poisson Kernel
Notes 1/14/11

• The Poisson kernel is not a trigonometric polynomial

• The Poisson kernel satisfies:

(a)
∫
Pr(θ) dθ = 1

(b) Pr ≥ 0

(c) Pr(θ)→ 0 uniformly as r → 1− on δ < |θ| < π

Theorem 7.38.
Notes 1/14/11

Pr is an approximate identity as r → 1−.

Corollary 7.39.
Notes 1/14/11

If f ∈ Lp(T), 1 ≤ p <∞, then Pr ∗ f → f as r → 1−.
If f ∈ C(T), then Pr ∗ f → f uniformly.
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Remark 7.40. Kernel Overview

Dirichlet

• Equations:

– DN (x) = 1
2π

∑
|n|≤N

einx

– DN (x) = 1
2π

[
sin((N+ 1

2
)x)

sin(x
2
)

]
, x 6= 0

– DN (0) = 1
2π (2N + 1)

• Summability Method: Standard

• Approximate Identity: No

Fejér

• Equations:

– KN (x) = 1
2π

∑
|n|≤N

(
1− |n|

N+1

)
einx

– KN (x) = 1
2π(N+1)

[
sin

(
(N+1)x

2

)
sin(x

2 )

]2
• Summability Method: Cesáro

• Approximate Identity: Yes

Poisson

• Equations:

– Pr(θ) = 1
2π

∑
n∈Z

r|n|einθ, 0 < r < 1

– Pr(θ) = 1
2π

[
1−r2

1−2r cos θ+r2

]
– Pr(0) = 1

2π
1−r2
(1−r)2

• Summability Method: Abel

• Approximate Identity: Yes, as r → 1−

7.4 Harmonic Functions

Definition 7.41. Harmonic
Notes 1/19/11

Let Ω ⊂ Rn be an open set.
u : Ω→ R is harmonic on Ω if ∆u = 0 in Ω.

Recall: ∆ = ∂2

∂x21
+ ∂2

∂x22
+ . . .+ ∂2

∂x2n
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Remark 7.42. Harmonic & Analytic Functions
Notes 1/19/11

There is a close connection in 2-D between harmonic and analytic (holomorphic) functions.

F : Ω→ C
F (z) = u(x, y) + iv(x, y)

where u, v satisfy the Cauchy-Riemann equations:

ux = vy
uy = −vx

}
⇒ uxx + vyy = 0

Example 7.43. ∆u = 0 on the Complex Unit Disk
Notes 1/19/11

Consider the Dirichlet problem on D = {(x, y) ⊂ R2
∣∣ x2 + y2 < 1}:

∆u = 0 in D

u = f on ∂D = π

Here f ∈ C(∂D).
Want u ∈ C2(D) ∩ C(D).
Use separation of variables:

u(r, θ) = F (r)G(θ)

We get that:

G(θ) = einθ

F (r) = Arn +Br−n n 6= 0

F (r) = A+B ln r n = 0

We want the solution to belong to C2(D), so we set

F (r) = r|n|, n ∈ Z

⇒ u(r, θ) =
∑
n∈Z

cnr
|n|einθ

We want that:

u(1, θ) = f(θ) =
∑
n∈Z

cne
inθ

⇒ cn = f̂(n) =
1

2π

∫ 2π

0
f(θ)e−inθ dθ

Note that:

u(r, θ) = (Pr ∗ f)(θ)︸ ︷︷ ︸
Green’s function

=
1

2π

∑
n∈Z

r|n|einθ
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Remark 7.44.
Notes 1/19/11

Pr(θ) is a C∞(D) function of r, θ in 0 ≤ r < 1, and

∆Pr(θ) =
1

r

∂

∂r

(
r
∂Pr
∂r

)
+

1

r2
∂2Pr
∂θ2

= 0

Theorem 7.45.
Notes 1/19/11

Suppose that f ∈ C(∂D). Then u(r, θ) = (Pr ∗ f)(θ) is a solution of{
∆u = 0 in D
u = f on ∂D

Moreover, u ∈ C∞(D) ∩ C(D).

Proof

• u(r, θ) =
∫
T Pr(θ − φ)f(φ) dφ (by Lebesgue Dominated Convergence Theorem)

• So u ∈ C∞(D), and ∆u = 0

• Moreover, Pr ∗ f → f uniformly as r → 1−

• So u ∈ C(D)

Theorem 7.46.
Notes 1/19/11

There is a unique solution u ∈ C2(D) ∩ C(D) of the Dirichlet problem. (Can be proved using the
maximum principle and/or energy estimates.)

Corollary 7.47.
Notes 1/19/11

Every harmonic function u ∈ C2(D) ∩ C(D) is smooth and has the mean value property:

u(r = 0) =
1

2π

∫ 2π

0
f(θ) dθ
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7.5 Hausdorff-Young Inequality

Remark 7.48. Background Info/Review
Notes 1/21/11

• Function Spaces

– Let 1 ≤ p <∞. If f ∈ Lp(T), then f : T→ C and ‖f‖p =
(∫

T |f |
p dx

)1/p
<∞.

– f = g in Lp if f = g a.e.

– In L∞, ‖f‖∞ = ess sup
T
|f(x)| = inf

measure N=0
sup{|f(x)|

∣∣ x ∈ T \N}

• Sequence Spaces

– Let 1 ≤ q <∞. If f̂ ∈ `q(Z), f̂ : Z→ C, then ‖f̂‖q =

(∑
n∈Z
|f̂(n)|q

)1/q

<∞

– In `∞, ‖f̂‖∞ = sup
n∈Z
|f̂(n)|

• Question: When is F : Lp(T)→ `q(Z), f 7→ f̂ , a bounded linear map?

– F : L2 → `2

∗ ‖Ff‖`2 = 1√
2π
‖f‖L2

∗ F is onto

– F : L1 → C0 ⊂ `∞

∗ ‖Ff‖`∞ ≤ 1
2π‖f‖L1

Theorem 7.49. Hausdorff-Young Theorem/Inequality
Notes 1/21/11

Suppose 1 ≤ p ≤ 2 and 2 ≤ p′ ≤ ∞ are Hölder conjugates (1p + 1
p′ = 1).

Then F : Lp(T)→ `p
′
(Z) is a bounded linear map, i.e. ‖f̂‖`p′ ≤ Cp‖f‖Lp .
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Remark 7.50.
Notes 1/21/11

1. Interpolation result (Riesz-Thorin Theorem)

2. F is not onto if 1 ≤ p < 2.

• Ex: p = 1, p′ =∞, then f ∈ L1 → f̂ ∈ C0 ⇒ not all of `∞

•
∑
|n|≥2

i sgn(n)
logn einx is not the Fourier series of any L1 function

3. This result does not hold for 2 < p ≤ ∞
4. If f ∈ Lp (or even if f ∈ C), one can’t say much about the Fourier coefficients f̂ beyond the

fact that f ∈ Lp so f̂ ∈ `2

• Example:

f(x) =

∞∑
n=2

ein logn

n1/2(log n)2
einx

f̂(n) =
ein logn

n1/2(log n)2∑
|f̂(n)|2 =

∑ 1

n(log n)4
<∞

f̂ ∈ `2 so f ∈ L2. Is f̂ ∈ `p for p < 2, e.g. p = 2− ε?∑
|f̂(n)|2−ε =

∑ 1

n1−ε/2(log n)4−2ε
=∞

So f̂ /∈ `p′ for any p′ < 2

7.6 Fourier Series of Differentiable Functions (Section 7.2 in H&N)

Definition 7.51. Fourier Series Differentiation
Notes 1/24/11

f(x) =
∑
n∈Z

cne
inx

f ′(x) =
∑
n∈Z

incne
inx

F :
d

dx
7→ in
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Proposition 7.52.
Notes 1/24/11

If f ∈ C1(T), then
f̂ ′(n) = inf̂(n)

(Actually, it is sufficient that f ∈ L1(T).)

See Definition 7.56 and Proposition 11.21.

Definition 7.53. Orders
Notes 1/24/11

If φ, ψ : Z→ C, we say that

• φ = O(ψ) as |n| → ∞ if there exists C such that |φ(n)| ≤ C|ψ(n)| ∀ n ∈ Z

• φ = o(ψ) as |n| → ∞ if lim
|n|→∞

∣∣∣ φ(n)ψ(n)

∣∣∣ = 0

Theorem 7.54.
Notes 1/24/11

If f ∈ C1(T), then f̂(n) = o( 1
n) as |n| → ∞

If f ∈ Ck(T), where k ∈ N, then f̂(n) = o( 1
nk ) as |n| → ∞

Proof

• f̂ ′(n) = inf̂(n) if f ∈ C1

• f̂(n) = 1
in f̂
′(n), n 6= 0, and f̂ ′(n)→ 0 as |n| → ∞ by the Riemann-Lebesgue Lemma

• So f̂(n) = o( 1
n) as |n| → ∞

• In general, f̂(n) = 1
(in)k

f̂k(n) = o( 1
nk )

Corollary 7.55.
page 157 and Notes 1/24/11

If f ∈ C∞(T), then lim
|n|→∞

|n|kf̂(n) = 0 ∀ k ∈ N.

In other words, the Fourier coefficients of smooth functions form a rapidly decreasing se-
quence that decreases faster than any polynomial. Heuristically, a smooth function contains a small
amount of high frequency components.

Compare to Theorem 11.18.
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Definition 7.56. Weak L2-derivatives (1)
Notes 1/24/11

Suppose that f ∈ L2(T) such that
∑
n∈Z

n2|f̂(n)|2 < ∞. Then we define the weak L2-derivative

g = f ′ ∈ L2(T) by

g(x) =
∑
n∈Z

inf̂(n)einx

See Proposition 7.52 and Proposition 11.21.

Definition 7.57. Sobolev Space (1)
page 158 and Notes 1/24/11

H1(T) = {f ∈ L2(T)
∣∣ f ′ ∈ L2(T)}

〈f, g〉H1 =

∫
T
(fg + f ′g′) dx =

∑
n∈Z

(1 + n2)f̂(n)g(n)

‖f‖H1 =

[∫
T
(|f |2 + |f ′|2) dx

]1/2
In other words, f ∈ H1(T) iff f and its weak derivative f ′ (defined by integration by parts) belong
to L2(T).

Definition 7.58. Integration By Parts
Notes 1/24/11

For f, g ∈ H1: ∫
T
f ′g dx = 2π

∑
f̂ ′(n)ĝ(n)

= 2π
∑

inf̂(n)ĝ(n)

= −2π
∑

f̂(n)inĝ(n)

= −2π
∑

f̂(n)ĝ′(n)

= −
∫
T
fg′ dx
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Definition 7.59. Weak Derivative (2)
page 159 and Notes 1/24/11

A function g ∈ L1(T) is the weak derivative of a function f ∈ L1(T), written g = f ′, if for every
φ ∈ C∞(T) we have ∫

T
fφ′ dx = −

∫
T
gφ dx

In other words, we are using integration by parts (
∫
T f
′g dx = −

∫
T fg

′ dx), to define f ′ pointwise
a.e. We determine ĝ(n) ∀ n by choosing φ = e−inx.

Compare to Distributional Derivative, Definition 11.10.

Example 7.60. Weak Derivative of f(x) = |x|
Notes 1/26/11

f(x) = |x| − π < x < π

f ∈ C(T), but its standard derivative f ′ /∈ C(T) because f ′(0) and f ′(π) don’t exist. We shall see
if g = f ′ (weak derivative) exists. We want:∫

gφ dx = −
∫
fφ′ dx

= −
π∫

0

xφ′ dx+

0∫
−π

xφ′ dx

= −xφ
∣∣π
0

+

π∫
0

φdx+ xφ
∣∣0
−π −

0∫
−π

φdx

=���
�−πφ(π) +���

�πφ(−π) +

π∫
−π

sgnxφ dx

We conclude that
∫
fφx = −

∫
gφ dx ∀ φ ∈ C∞(T) if g(x) = sgnx.
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Example 7.61. Weak Derivative of f(x) = sgnx
Notes 1/26/11

∫
hφ dx = −

∫
gφ′ dx

= −
π∫

0

φ′ dx+

0∫
−π

φ′ dx

= − [φ(π)− φ(0)] + [φ(0)− φ(−π)]

= 2 [φ(0)− φ(π)]

There is no such h ∈ L1. To see this, take φ = 1
2πe
−inx ∈ C∞(T).

ĥ(n) =
1

π
[1− einπ] =

{
2
π n odd
0 n even

This contradicts the Riemann-Lebesge Lemma, and therefore there is no such h ∈ L1.

Proposition 7.62.
Notes 1/26/11

f is weakly differentiable with f ∈ L1 iff it is absolutely continuous.

Definition 7.63. Absolutely Continuous
http://en.wikipedia.org/wiki/Absolute_continuity#Absolute_continuity_of_functions

f is absolutely continuous if it has a derivative f ′ a.e., the derivative is Lebesgue integrable, and

f(x) = f(a) +

∫ x

a
f ′(t) dt

Theorem 7.64.
Notes 1/26/11

If f is weakly differentiable with weak derivative g = f ′ ∈ L1(T), then

ĝ(n) = inf̂(n)

Proof

ĝ(n) =
1

2π

∫
g(x)e−inx dx = − 1

2π

∫
f(x)e−inx dx = inf̂(n)

29
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Proposition 7.65.
Notes 1/26/11

A function f ∈ L2(T) has a weak derivative g ∈ L2(T) iff∑
n∈Z

n2|f̂(n)|2 <∞

and then
g(x) =

∑
n∈Z

inf̂(n)einx

Definition 7.66. Sobolev Space (2)
Notes 1/26/11

The Sobolev space W 1,p(T), 1 ≤ p ≤ ∞, consists of all functions f : T → C s.t. f ∈ Lp(T),
f ′ ∈ Lp(T). If p = 2, we write W 1,2(T) = H1(T) (where the H is because it is a Hilbert space).

A function f ∈ H1(T) iff ∑
n∈Z

(1 + n2)|f̂(n)|2 <∞

and

‖f‖H1 =

(∫
|f |2 dx+

∫
|f ′|2 dx

)1/2

=
(
‖f‖2L2 + ‖f ′‖2L2

)1/2
=

(
2π
∑
n∈Z

(1 + n2)|f̂(n)|2
)1/2

Theorem 7.67. Sobolev Embedding Theorem
Notes 1/26/11

If f ∈ H1(T) then f ∈ C(T) and
‖f‖∞ ≤ C‖f‖H1

J : H1 → C (Embedding), f 7→ f .

Proof ∑
n∈Z
|f̂(n)| =

∑
n∈Z

1

(1 + n2)1/2
(1 + n2)1/2|f̂(n)|

≤

(∑
n∈Z

1

(1 + n2)1/2

)(∑
n∈Z

(1 + n2)|f̂(n)|

)
≤ C‖f‖H1
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It follows that f ∈ C(T) because the Fourier series converges uniformly to f (see Theorem 7.26) and

‖f‖∞ ≤
∑
n∈Z
|f̂(n)| ≤ C‖f‖H1

7.7 Chapter Summary

This chapter explores the spaces Lp(T), p ∈ [1,∞), with special attention given to the Hilbert space
L2(T). These spaces are the completion of C(T) with respect to the Lp-norm; thus, C(T) is dense in
Lp(T) for p ∈ [1,∞). Since T has finite Lebesgue measure, we can use Hölder’s Inequality to show that
for p > q, ‖ · ‖p ≥ ‖ · ‖q, which implies that Lp(T) ⊂ Lq(T). We define the convolution of two functions
and what it means for a family of functions to be an approximate identity, and we use these tools to prove
the Weierstrass Approximation Theorem, which says that the trigonometric polynomials are dense in C(T)
with respect to the uniform norm. Since uniform convergence implies L2 convergence, it follows that the
functions en(x) = 1√

2π
einx form an orthonormal basis for L2(T). Thus, for all f ∈ L2(T), we have that

f(x) =
∞∑

n=−∞
f̂ne

inx,

where the equality is in the L2 sense. A result from Carleson tells us that the Fourier series of f converges
pointwise to f a.e.

Next we explore some properties of Fourier series and Fourier coefficients. Let f, g ∈ L2(T). We use
the density of C(T) in L2(T) to prove the Convolution Theorem, which allows us to express the Fourier

coefficients of f ∗ g in terms of those of f and g: (̂f ∗ g)n =
√

2πf̂nĝn. Parseval’s Theorem allows us to

compute 〈f, g〉 using the Fourier coefficients of f and g: 〈f, g〉 =
∑∞

n=−∞ f̂nĝn.

Now we examine the Fourier series of differentiable functions. Using integration by parts, we show that

f̂ ′n = inf̂n.

This gives us the concept of a weak derivative, since the derivative of f may not be continuous; e.g. f(x) = |x|.
We define the Sobolev space Hk(T) as the space of L2(T) functions with k weak derivatives. And since the
boundary terms on T vanish, we have that 〈f ′, g〉 = −〈f, g′〉 for f, g ∈ H1(T). Thus, we may define the
weak derivative of a function using integration by parts: g ∈ L1(T) is the weak derivative of f ∈ L1(T) if∫

T
fφ′ dx = −

∫
T
gφ dx ∀ φ ∈ C∞(T).

Finally, we prove a special case of the Sobolev Embedding Theorem: if f ∈ Hk(T) for k > 1/2, then f ∈ C(T).

In addition, Hunter briefly discussed L1(T). We can define the Fourier series of an L1 function, but
we cannot guarantee that it converges to the function. Our main result is the Riemann-Lebesgue Lemma,
which says that the Fourier coefficients of an L1 function decay to zero as n→∞. Hunter then discussed 3
kernels: the Dirichlet kernel (standard summation), Fejér kernel (Cesáro summation), and Poisson kernel
(Abel summation). These kernels are related to the concept of approximate identities, and we convolve the
kernels with a function f . He covered harmonic functions, and our main result is that we can use the Poisson
kernel to solve the two-dimensional Laplace equation.
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11 Distributions and the Fourier Transform

11.1 Periodic Distributions

Definition 11.1. Test Functions
Notes 1/28/11 and http://en.wikipedia.org/wiki/Distribution_%28mathematics%29 and Hunter’s Notes
page 51

We define our space of test functions as:

D(T) = C∞(T) with the following topology:

ϕn → ϕ ∈ D if ϕ
(k)
n → ϕ(k) uniformly for all k = 0, 1, 2, . . .. Note that this

topology is not obtained from any norm, but rather it is derived.

Definition 11.2. Distribution
Notes 1/28/11 and Hunter’s Notes page 51

A distribution is a continuous linear functional, T , that maps a set of test functions, D(T), onto the
set of complex numbers. The space of distributions is denoted by D′(T). For T ∈ D′(T), ϕ ∈ D(T),
we write:

〈T, ϕ〉 = T (ϕ)

D′(T) is the topological dual space of the distributions on T (i.e. D(T)), with the topology defined
as follows: Tn ⇀ T in D′ if 〈Tn, ϕ〉 → 〈T, ϕ〉 in C ∀ ϕ ∈ D.

T : D(T)→ C
Linear: 〈T, λϕ+ µψ〉 = λ 〈T, ϕ〉+ µ 〈T, ψ〉
Continuous: If ϕn → ϕ ∈ D, then 〈T, ϕn〉 → 〈T, ϕ〉 ∈ C

Compare Distributional Convergence, Tn ⇀ T in D′ if 〈Tn, ϕ〉 → 〈T, ϕ〉, to Weak Convergence
(Definition 8.41): xn ⇀ x if 〈xn, y〉 → 〈x, y〉 ∀ y ∈ H.

Definition 11.3. Seminorm
Notes 1/28/11

Our topology on D is obtained from a countable family of seminorms:

‖ϕ‖k = sup
x∈T
|ϕ(k)(x)|, k = 0, 1, 2, . . .

A seminorm has the same properties as a norm except that it may assign length zero to nonzero
vectors.
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Example 11.4. Seminorms
Notes 1/28/11

d(ϕ,ψ) =
∞∑
k=0

1

2k
‖ϕ− ψ‖k

1 + ‖ϕ− ψ‖k

• This is not a norm because you can’t pull out a constant

• This turns D into a Fréchet space (a complete, metrizable topological vector space topology
defined by a countable family of seminorms)

• We could instead use norms to define the topology on D(T):

‖ϕ‖Ck =

k∑
j=0

‖ϕ‖j

Remark 11.5.
Notes 1/28/11

Note that the differentiation operator

D : D(T)→ D(T), D(ϕ) = ϕ′

is continuous: if ϕn → ϕ ∈ D, then Dϕn → Dϕ ∈ D. This is because there are inifinitely many
semi-norms.

Example 11.6. Regular Distribution
page 292 and Notes 1/28/11

If f : T→ C is integrable, f ∈ L1(T), define

Tf : D(T)→ C

Tf (ϕ) =

∫
T
fϕ dx

|Tf (ϕ)| ≤ sup |ϕ| ·
∫
|f | dx <∞, so Tf is well-defined. It is a distribution because it satisfies:

1. Linearity: (1) Tf (ϕ+ ψ) =
∫
f(ϕ+ ψ) dx = Tf (ϕ) + Tf (ψ). (2) Tf (cϕ) = cTf (ϕ)

2. Continuity: If ϕn → 0 in D, then |Tf (ϕn)| ≤ sup |ϕn|‖f‖L1 → 0 as n→∞.
So Tf (ϕn)→ 0 and Tf is continuous.

We identify f with Tf . Thus, L1(T) ⊂ D1(T).

We call Tf a regular distribution. A regular distribution is a distribution that is given by the
integration of a test function ϕ against a function f .
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Definition 11.7. Principal Value Distribution
page 293

A principal value distribution is a singular distribution, denoted by p.v. (1/x), and its action on a
test function ϕ is given by

p.v.
1

x
(ϕ) = lim

ε→0+

∫
|x|>ε

ϕ(x)

x
dx

Example 11.8.
Notes 1/28/11

Consider the periodic δ-function (actually a distribution, not a function).

〈δ, ϕ〉 = ϕ(0)

〈δ, ϕ+ ψ〉 = (ϕ+ ψ)(0) = ϕ(0) + ψ(0) = 〈δ, ϕ〉+ 〈δ, ψ〉
〈δ, cϕ〉 = c 〈δ, ϕ〉

ϕn → 0 implies ϕn(0)→ 0, and therefore δ is a continuous linear functional.

δ is not regular. Proof:

• Suppose 〈δ, ϕ〉 =
∫
fϕ dx for some f ∈ L1.

• Consider ϕn(x) =
[
1+cosx

2

]n
• 〈δ, ϕn〉 = 1 ∀ n, but

∫
fϕn dx→ 0 as n→∞ by the Lebesge-Dominated Convergence Theorem

if f ∈ L1

• Thus, there is no function f ∈ L1 such that
∫
fϕ dx = ϕ(0)

Example 11.9.
Notes 1/28/11

Let Tn =

{
1
2n |x| ≤ 1

n
0 1

n ≤ |x| ≤ π

Then
∫ π
−π Tn dx = 1 ∀ n. Claim: 〈Tn, ϕ〉 = n

2

∫ 1/n
1/n ϕ(x)→ ϕ(0) as n→∞. Proof:∣∣∣∣∣n2

∫ 1/n

−1/n
ϕ(x) dx− ϕ(0)

∣∣∣∣∣ =
n

2

∣∣∣∣∣
∫ 1/n

−1/n
[ϕ(x)− ϕ(0)] dx

∣∣∣∣∣
≤ n

2

[
sup
|x|≤1/n

|ϕ(x)− ϕ(0)|

]
· 2

n

≤ sup
|x|≤1/n

|ϕ(x)− ϕ(0)| → 0 as n→∞
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Definition 11.10. Distributional Derivative
page 295

Every distribution T ∈ D′(T) has a distributional derivative T ′ ∈ D(T) that is given by〈
T ′, φ

〉
= −

〈
T, φ′

〉
∀ φ ∈ D(T)

Compare to Weak Derivative (2), Definition 7.59.

Definition 11.11. Motivation for Distributional Derivatives
Notes 1/31/11

Suppose f ∈ C∞ is a smooth function. Consider Tf ′ :〈
Tf ′ , ϕ

〉
=

∫
f ′ϕdx = −

∫
fϕ′ dx = −

〈
Tf , ϕ

′〉
Want: (Tf ′) = (Tf )′

This defines the distributional derivative.

1. Linearity: 〈T ′, aϕ+ bψ〉 = −〈T, (aϕ+ bψ)′〉 = −〈T, aϕ′ + bψ′〉 = −a 〈T, ϕ′〉 − b 〈T, ψ′〉 =
a 〈T ′, ϕ〉+ b 〈T ′, ψ〉

2. Continuity: Suppose ϕn → ϕ in D. Consider 〈T ′, ϕ〉.
〈T ′, ϕn〉 = −〈T, ϕ′n〉 → −〈T, ϕ′〉 = 〈T ′, ϕ〉, because T is continuous on D and D : ϕ → ϕ′ is
continuous on D

35



Example 11.12.
Notes 1/31/11

f(x) = |x|, |x| ≤ π
f ′(x) = sgnx = g(x)

Compute the distributional derivative of g:〈
g′, ϕ

〉
= −

〈
g, ϕ′

〉
= −

∫ π

0
ϕ′ dx+

∫ 0

−π
ϕ′ dx

= − [ϕ(π)− ϕ(0)] + [ϕ(0)− ϕ(π)]

= 2ϕ(0)− 2ϕ(π)

= 2 〈δ0, ϕ〉 − 2 〈δπ, ϕ〉
= 〈2δ0 − 2δπ, ϕ〉

g′ = 2δ0 − 2δπ

= 2(δ − τπδ)

Where τπ means translation by π and δa is the δ-“function” supported at a:

〈δa, ϕ〉 = ϕ(a)

Example 11.13.
Notes 1/31/11

Compute δ′: 〈
δ′, ϕ

〉
= −

〈
δ, ϕ′

〉
= −ϕ′(0)

Definition 11.14. Fourier Coefficients
Notes 1/31/11

If T ∈ D′(T), define T̂ (n) = 1
2π

〈
T, e−inx

〉
.

36



Example 11.15.
Notes 1/31/11

Compute the Fourier coefficients of δ:

δ̂(n) =
1

2π

〈
δ, e−inx

〉
=

1

2π
e0 =

1

2π

δ(x) =
1

2π

∑
n∈Z

einx

Remark 11.16.
1/31/11

There are 3 contexts in which to look at Fourier series:

• Continuous functions ⇒ converge uniformly

• L2 functions ⇒ converge in L2

• Distribution functions ⇒ converge in the distributional sense

Example 11.17.
Notes 1/31/11

Pr(x) =
1

2π

∑
n∈Z

r|n|einx

Formally, as r → 1−, Pr(x) ⇀
1

2π

∑
n∈Z

r|n|einx = δ(x)

Theorem 11.18.
Notes 1/31/11

ϕ ∈ D iff (ϕ̂(n)) is rapidly decreasing, i.e.

|n|kϕ̂(n)→ 0 as n→∞ ∀ k ≥ 0

and the Fourier series of ϕ converges to ϕ in D.

Compare to Corollary 7.55.

Proof

• ϕ ∈ Ck ⇒ |n|kϕ̂(n) → 0 by the Riemann-Lebesgue Lemma, so if ϕ ∈ C∞, then the ϕ̂(n) are rapidly
decreasing

• Sobolev Embedding Theorem: If ϕ̂(n) is rapidly decreasing, then ϕ ∈ Hk(T) ∀ k implies that
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∑
(1 + n2)|ϕ̂(n)|2 <∞

• Hence, ϕ ∈ Ck−1(T) ∀ k. So ϕ ∈ C∞.

• Similarly,
∑
|n|≤N

ϕ̂(n)einx → ϕ in Hk ∀ k

– So
∑
|n|≤N

ϕ̂(n)einx → ϕ in Ck−1 ∀ k

– So
∑
|n|≤N

ϕ̂(n)einx converges in D

Definition 11.19. S(Z)
Notes 2/2/11

S(Z) is the space of rapidly decreasing sequences, (cn), such that

lim
n→∞

|n|kcn = 0 ∀ k = 0, 1, 2, . . .

Remark 11.20.
Notes 2/2/11

F : C∞(T)→ S(Z)
F : ϕ→ (ϕ̂(n))

If ϕ ∈ C∞(T), then SNϕ =
∑
|n|≤N

ϕ̂(n)einx → ϕ in D.

If T ∈ D′(T), then T̂ (n) = 1
2π

〈
T, e−inx

〉
Proposition 11.21.
Notes 2/2/11

T̂ ′(n) = inT̂ (n)

See Proposition 7.52 and Definition 7.56.

Proof.

T̂ ′(n) =
1

2π

〈
T ′, e−inx

〉
= − 1

2π

〈
T,
(
e−inx

)′〉
= in · 1

2π

〈
T, e−inx

〉
= inT̂ (n)
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Definition 11.22. Slow Growth
Notes 2/2/11

A sequence (cn) has slow growth if there exist k,M such that |cn| ≤M(1 + n2k)1/2 ∀ n.

Equivalently, |cn| ≤M |n|k ∀ n 6= 0.

Lemma 11.23.
Notes 2/2/11

If T ∈ D′, then (T̂ (n)) has slow growth.

Proof. If T ∈ D′ then T has some finite order k such that

| 〈T, ϕ〉 | ≤ C‖ϕ‖Ck

Then
|T̂ (n)| = |

〈
T, e−inx

〉
| ≤ C‖e−inx‖Ck ≤ C(1 + n2k)1/2

Example 11.24. Weierstrass Nowhwere Differentiable Function
Notes 2/2/11

f(x) =

∞∑
n=1

1

2n
cos(3nx)

∑ 1
2n <∞, so f ∈ A(T).

f ′(x) =
∞∑
n=1

3n

2n
sin(3nx)

f is nowhere differentiable, although it does have a distributional derivative.

Theorem 11.25.
Notes 2/2/11

If T ∈ D′(T) and SNT =
∑
|n|≤N

T̂ (n)einx ∈ C∞(T), then SNT ⇀ T in D′ as N →∞.

Ex: δ(x) = 1
2π

∑
n∈Z

einx
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Proof.

〈SNT, ϕ〉 =

〈 ∑
|n|≤N

T̂ (n)einx, ϕ

〉
=
∑
|n|≤N

〈
T̂ (n)e−inx, ϕ

〉
=
∑
|n|≤N

T̂ (n)

∫
einxϕ(x) dx

= 2π
∑
|n|≤N

T̂ (n)ϕ̂(−n) =��2π
∑
|n|≤N

〈
T, e−inx

〉
·
�
��
1

2π
ϕ̂(−n) =

〈
T,
∑
|n|≤N

ϕ̂(−n)e−inx

〉
= 〈T, SNϕ〉 → 〈T, ϕ〉 as n→∞

So SNT → T as N →∞.

Theorem 11.26.
Notes 2/2/11

If (cn) is a sequence of slow growth, (cn) ∈ S′(Z), then there exists a distribution T such that
T̂ (n) = cn.

Proof. Define T by

〈T, ϕ〉 = 2π
∑
n∈Z

cnϕ̂(−n)

Remark 11.27.
Notes 2/2/11

F : f 7→ f̂(n)

D(T) = C∞(T)↔ S(Z)

L2(T)↔ `2(Z)

D′(T)↔ S′(Z)

C(T) ⊃ A(T)↔ `′(Z)

L1(T)→ C0(Z)

• C∞ ⊂ L2(T) ⊂ D′(T)

• S(Z) ⊂ `2(Z) ⊂ S′(Z)
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8 Bounded Linear Operators on a Hilbert Space

8.1 Orthogonal Projections

Definition 8.1. Direct Sum
page 187 and Notes 2/4/11

If M and N are subspaces of a linear space X such that every x ∈ X can be written uniquely as
x = y + z with y ∈ M and z ∈ N , then we say that X = M ⊕ N is the direct sum of M and N ,
and we call N a complementary subspace of M in X. The decomposition x = y+ z is unique if and
only if M ∩N = {0}.

Definition 8.2. Projection, Idempotent, Self-Adjoint
page 187 & 188 and Notes 2/4/11

Given a direct sum decomposition, X = M ⊕N , define the projection P : X → X onto M along N
by

P (m+ n) = m, m ∈M, n ∈ N

All projections are linear and idempotent, meaning that P 2 = P , because

P 2(m+ n) = P (m) = m

Theorem 8.3.
page 188 and Notes 2/4/11

Any linear map P : X → X with P 2 = P is a projection. Specifically, it is the projection onto ranP
along kerP .

Proof.

• x = P (x) + (x− P (x))

• P 2(x) = P (x) ⇒ P (x) ∈ ranP

• P (x− P (x)) = Px− P 2x = Px− Px = 0 ⇒ x− P (x) ∈ kerP

• Suppose x ∈ kerP ∩ ranP

– x ∈ ranP ⇒ x = Py

– x ∈ kerP ⇒ 0 = Px = P 2y = Py = x = 0

– Thus, x = 0, and kerP ∩ ranP = {0}

• Thus, X = ranP ⊕ kerP
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Remark 8.4. Bounded Projections
Notes 2/4/11

Question: Given a projection P : X → X, X a Banach space, when can we say that P is bounded?

Answer: We need ranP closed and complemented by a closed subspace N = kerP

Note: The kernel of a bounded operator is always closed; the range need not be.

Definition 8.5. Orthogonal Projections, Self-Adjoint
Notes 2/4/11 and 2/7/11

Let H be a Hilbert space and let M ⊂ H be a closed linear subspace. Then by the Projection
Theorem,

H = M ⊕M⊥, M⊥ = {y ∈ H
∣∣ y ⊥ m ∀ m ∈M}

We define the orthogonal projection P : H → H onto M along M⊥.

An orthogonal projection P on a Hilbert space H is

• Idempotent: P 2 = P

• Self-Adjoint: 〈x, Py〉 = 〈Px, y〉

Proof. To see that a projection P on a Hilbert space H is self-adjoint, let

x = m+ n, y = p+ q, where m, p ∈M, n, q ∈ N

Compute:

〈x, Py〉 = 〈m+ n, p〉 = 〈m, p〉+ 〈n, p〉 = 〈m, p〉
〈Px, y〉 = 〈m, p+ q〉 = 〈m, p〉+ 〈m, q〉 = 〈m, p〉

Lemma 8.6.
page 188 and Notes 2/7/11

If P is a nonzero othogonal projection then ‖P‖ = 1

Proof.
‖Px‖2 = 〈Px, Px〉 =

〈
x, P 2x

〉
= 〈x, Px〉 ≤ ‖x‖‖Px‖

Either ‖Px‖ = 0 or ‖Px‖ ≤ ‖x‖. Since ‖Px‖ 6= 0 ∀ x, it must be the case that ‖Px‖ ≤ ‖x‖. Then

‖P‖ = sup
‖Px‖
‖x‖

≤ 1

If P 6= 0, then there exists y ∈ H such that Py 6= 0. Setting x = Py in the previous equation yields

‖P‖ ≥ ‖P · Px‖
‖Px‖

= 1
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So ‖P‖ = 1.

Theorem 8.7.
page 189 and Notes 2/7/11

If P is an orthogonal projection, then H = M ⊕ M⊥ = ranP ⊕ kerP , where M = ranP and
M⊥ = kerP are closed subspaces. Conversely, if M is any closed subspace of H, then there exists
an orthogonal projection with M = ranP and M⊥ = kerP .

Example 8.8. Even & Odd Functions
page 189 and Notes 2/7/11

Let H = L2(R) and let

M = space of even functions, f(−x) = f(x)

N = space of odd functions, f(−x) = −f(x)

M ⊥ N , since
∫
fg dx = 0 for f odd, g even. Define

• Even Projection: P : H → H onto M , Pf(x) = 1
2 [f(x) + f(−x)]

• Odd Projection: Q : H → H onto N , Qf(x) = 1
2 [f(x)− f(−x)]

– Note: Q = I − P

Check that P is self-adjoint:

〈Pf, g〉 =

∫
R

1

2
[f(x) + f(−x)]g(x) dx =

∫
R

1

2
f(x)g(x) +

1

2
f(x)g(−x) dx = 〈f, Pg〉

Example 8.9.
Notes 2/7/11

Let H = L2(T). Define Pf = 1
2π

∫
T f dx, P : H → H.

Given: f =
∑
n∈Z

f̂(n)einx

Then: Pf = f̂(0)

• Idempotent: P 2 = P since Pf is a constant, and P1 = 1

• Self-Adjoint: 〈Pf, g〉 =
∫ [

1
2π

∫
f dx

]
g dx = 1

2π

∫
f dx

∫
g dx = 〈f, 1〉 · 1

2π

∫
g dx = 〈f, Pg〉

ranP = constant functions =< 1 > (space spanned by 1)
kerP = functions with zero mean (i.e. f̂(0) = 0)
ranP ⊥ kerP
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Example 8.10. Fourier Projections
Notes 2/7/11

We can define the orthogonal projection of f onto the Nth partial sum of its Fourier series:

PNf =
∑
|n|≤N

f̂(n)einx

Similarly, we can define the projection onto the positive n part of its Fourier series:

Pf =
∞∑
n=0

f̂(n)einx

(I − P )f =

−1∑
n=−∞

f̂(n)einx

Example 8.11.
page 189 and Notes 2/7/11

Let H = L2(R). If A ⊂ R is some Lebesgue measurable set, define

χA(x) =

{
1 x ∈ A
0 x /∈ A

Then
PAf = χAf

is an orthogonal projection of L2(R) onto the subspace of functions with support contained in A.

8.2 The Dual of a Hilbert Space

Theorem 8.12. Riesz Representation Theorem
page 191 and Notes 2/7/11

Given: a Hilbert space H, its dual space H∗ = B(H,C) (the set of bounded linear maps ϕ : H → C
with ‖ϕ‖H∗ = sup |ϕ(x)|‖x‖ <∞).

Every ϕ ∈ H∗ can be given by ϕ(x) = 〈y, x〉 for some y ∈ H, and ‖ϕ‖ = ‖y‖. Conversely, every
y ∈ H corresponds to a ϕ ∈ H∗. The map J : ϕ 7→ y is an isometric, antilinear isomorphism of H∗
onto H.

Antilinear: J(ϕ+ ψ) = J(ϕ) + J(ψ)

J(λϕ) = λJ(ϕ)

Proof.

• Suppose ϕ ∈ H∗. We want to find y ∈ H such that ϕ(x) = 〈y, x〉
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• Suppose ϕ 6= 0. Then kerϕ 6= H and kerϕ is closed because ϕ is bounded

• There exists z ∈ (kerϕ)⊥ (by the Projection Theorem)

• Consider P : H → H, Px = ϕ(x)
ϕ(z)Pz. Claim: this is an orthogonal projection.

– Idempotent: P 2x = P
(
ϕ(x)
ϕ(z)z

)
= ϕ(x)

ϕ(z)Pz = ϕ(x)
ϕ(z)z (since Pz = z)

– Self-Adjoint: 〈x, Py〉 = 〈Px, y〉

• H = ranP ⊕ kerP, ranP =< z >, kerP = kerϕ

• x ∈ H, x = αz + w, w ∈ kerϕ, α = 〈z,x〉
‖z‖2

• ϕ(x) = αϕ(z) = 〈z,x〉
‖z‖2 ϕ(z) = 〈y, x〉 , y = ϕ(z)

‖z‖2 z

8.3 The Adjoint of an Operator

Definition 8.13. Adjoint
page 193 and Notes 2/9/11

Given a bounded linear map A ∈ B(H), its adjoint A∗ ∈ B(H) (← proved in Proposition 8.15) is
the linear map that satisfies

〈x,Ay〉 = 〈A∗x, y〉 ∀ x, y ∈ H

Remark 8.14. Adjoint: Existence and Uniqueness
page 193 and Notes 2/9/11

To define A∗ such thatA∗x = z, consider ϕx : H → C, ϕx(y) = 〈x,Ay〉. Then

‖ϕx(y)‖ ≤ ‖x‖‖Ay‖ ≤ ‖x‖‖A‖‖y‖
‖ϕx‖ ≤ ‖A‖‖x‖

So ϕx is a bounded linear functional. By the Riesz Representation Theorem, there is a unique z ∈ H
such that

ϕx(y) = 〈z, y〉

Define A∗x = z. Then

〈x,Ay〉 = ϕx(y) = 〈z, y〉 = 〈A∗x, y〉
〈x,Ay〉 = 〈A∗x, y〉 ∀ x, y ∈ H
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Proposition 8.15.
Notes 2/9/11

If A ∈ B(H) then A∗ ∈ B(H) and

(1) ‖A∗‖ = ‖A‖
(2) ‖A‖2 = ‖A∗A‖

(See also Corollary 8.34.)

Proof.

‖A∗‖ = sup
‖x‖=1

‖A∗x‖ (See Lemma 8.26 in the book)

= sup
‖x‖=‖y‖=1

| 〈y,A∗x〉 | = sup
‖x‖=‖y‖=1

| 〈Ay, x〉 | = sup
‖y‖=1

‖Ay‖ = ‖A‖

‖A‖2 = sup
‖x‖=1

‖Ax‖2 = sup
‖x‖=1

| 〈Ax,Ax〉 | = sup
‖x‖=1

| 〈x,A∗Ax〉 |

≤ ‖A∗A‖ (See Corollary 8.27 in the book)

‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2

‖A∗A‖ = ‖A‖2

Remark 8.16.
Notes 2/9/11

B(H) is a C∗-algebra.

‖AB‖ ≤ ‖A‖‖B‖ ∗ : B(H)→ B(H), ∗∗ = identity ‖A∗‖ = ‖A‖

Remark 8.17. Generalizations
Notes 2/9/11

1. Given: A : H → K, A∗ : K → H, where H,K are Hilbert spaces.
〈x,Ay〉K = 〈A∗x, y〉H ∀ y ∈ H, x ∈ K
A∗ is the Hilbert space adjoint.

2. Given: A : X → Y, A′ : Y ′ → X ′, where X,Y are Banach spaces and X ′ is the dual space of
X.
〈ψ,Ax〉Y×Y ′ = 〈A′ψ, x〉X×X′ ∀x ∈ X, ψ ∈ Y ′
A′ is the dual operator or Banach space adjoint.
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Example 8.18.
page 193 and Notes 2/9/11 and Notes 2/11/11

Let H = Cn. Then A : Cn → Cn is given by a matrix (aij).

yi =
n∑
j=1

aijxj , x = (x1, . . . , xn), y = (y1, . . . , yn)

〈x, y〉 =
n∑
i=1

xiyi

〈x,Ay〉 =
n∑
i=1

xi

 n∑
j=1

aijyj

 =
n∑
j=1

(
n∑
i=1

aijxi

)
yj

= 〈A∗x, y〉

If z = A∗x

zj =
n∑
i=1

aijxi =
n∑
j=1

ajixj

• A∗ has matrix (aji), which is the conjugate transpose of (aij)

• (A∗A) is Hermitian, positive definite

• (A∗A)∗ = (A∗A)∗ = A∗A

• 〈x,A∗Ax〉 = 〈Ax,Ax〉 ≥ 0

• A∗A has orthogonal eigenvectors that form a basis of Cn with eigenvalues µ1, µ2, . . . , µn ≥ 0

• ‖A∗A‖ = max
1≤j≤n

|µj | = σ(A∗A) = the spectral radius of A∗A

• ‖A‖ =
√
σ(A∗A)
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Example 8.19.
page 194 and Notes 2/9/11

Let H = L2([0, 1]), 〈f, g〉 =
∫ 1
0 f(x)g(x) dx.

Define the integral operator K : L2([0, 1])→ L2([0, 1]) by

Kf(x) =

∫ 1

0
k(x, y)f(y) dy, k : [0, 1]× [0, 1]→ C

(Note: k(x, y) is the kernel of the integral operator K. It is not related to the null space.)
Ex: Assume that k is Hilbert-Schmidt : k is measurable on [0, 1]× [0, 1] and

‖K‖2 ≤
∫ 1

0

∫ 1

0
|k(x, y)|2 dx dy <∞

〈f,Kg〉 =

∫ 1

0
f(x)

(∫ 1

0
k(x, y)g(y) dy

)
dx

=

∫ 1

0

(∫ 1

0
f(x)k(x, y) dx

)
g(y) dy

= 〈K∗f, g〉

Since

K∗f(y) =

∫ 1

0
k(x, y)f(y) dx

K∗f(x) =

∫ 1

0
k(y, x)f(y) dy

Thus, K∗ is an integral operator with conjugate transpose level of k.

Example 8.20.
page 194 and Notes 2/9/11

Recall the right and left shift operators, respectively:

S(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .) T (x1, x2, x3 . . .) = (x2, x3, . . .)

T is the adjoint of S, i.e. T = S∗. Also, S = T ∗.

Example 8.21. Solvability of Linear Equations
Notes 2/11/11

Consider A : H → H, Ax = y. Suppose for some y ∈ H we have a solution for x ∈ H.

Let z ∈ kerA∗. Then
〈z,Ax〉 = 〈A∗z, x〉 = 〈z, y〉

Thus, a necessary condition for solvability is that y ⊥ z ∀ z ∈ kerA∗, i.e. y ⊥ kerA∗.
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Theorem 8.22.
page 194 and Notes 2/11/11

If A ∈ B(H), then H = ranA⊕ (kerA∗), and

ranA = (kerA∗)⊥ kerA = (ranA∗)⊥

Proof. From Example 8.21, if y ∈ ranA then y ∈ (kerA∗)⊥.

ranA ⊂ (kerA∗)⊥

ranA ⊂ (kerA∗)⊥ since orthogonal complements are closed

If y ∈ (ranA)⊥ then

〈Ax, z〉 = 0 ∀ x ∈ H
〈x,A∗y〉 = 0 ∀ x ∈ H

This implies that A∗y = 0, so y ∈ kerA∗.

(ranA)⊥ ⊂ kerA∗

ranA = (ranA)⊥⊥ ⊃ (kerA∗)⊥

Corollary 8.23.
page 195 and Notes 2/11/11

If A ∈ B(H) has closed range (ranA is a closed linear subspace), then Ax = y is solvable iff
y ⊥ kerA∗.

Example 8.24.
Notes 2/11/11

If H is finite dimensional, or A has finite rank, then ranA is closed and Corollary 8.23 applies.

Example 8.25.
page 196 and Notes 2/11/11

Recall the left (T ) and right (S) shift operators. S∗ = T , T ∗ = S.

1. H = ranS ⊕ kerS∗ = ranS ⊕ kerT

2. H = ranT ⊕ kerT ∗ = ranT ⊕ kerS

• ranS =
{

(x1, x2, . . .) ∈ `2
∣∣ x1 = 0

}
• kerS = {0}

• ranT = `2(N)

• kerT =
{

(x1, 0, 0, 0, . . .)
∣∣ x1 ∈ C

}
Sx = y is solvable iff y ⊥ kerT , and the solution is unique.
Tx = y is solvable for all y ∈ `2(N), but the solution is not unique.
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Example 8.26.
Notes 2/11/11

Let H = `2(N), A(x1, x2, . . . , xn, . . .) = (x, 12x2, . . . ,
1
nxn, . . .).

[A] =



1
1
2

1
3

. . .
1
n

. . .


, A∗ = A (self-adjoint)

kerA = kerA∗ = {0}
H = ranA⊕ kerA

Given y = (y1, y2, . . .) ∈ `2(N), does there exist x = (x1, x2, . . .) ∈ `2(N) such that Ax = y?

x ∈ `2(N)⇔
∑
n2|yn| <∞

ranA = {(x1, x2, . . .) ∈ `2(N)
∣∣ ∑n2|xn|2 <∞}

ranA 6= H, so A is not onto.
Ex: M = {(x1, x2, . . . , xN , 0, 0, . . .)} ⊂ ranA
M is dense in `2(N), so ranA = `2(N), `2(N) = ranA⊕ kerA∗

Consider: Ax = y, y ⊥ kerA∗ = kerA = {0} ∀ y ∈ `2(N). This is not solvable for every y ∈ `2(N),
only for y ∈ ranA, and ranA is a dense, non-closed subspace of `2(N).

8.4 Self-Adjoint and Unitary Operators

Definition 8.27. Self-Adjoint
page 197 and 2/14/11

A bounded operator A : H → H on a Hilbert space H is self-adjoint if A∗ = A.

Equivalently, A is self-adjoint iff

〈x,Ay〉 = 〈Ax, y〉 ∀ x, y ∈ H
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Example 8.28. Self-Adjoint Operators
Notes 2/14/11

1. A : Cn → Cn, [A]∗ = [A]
A : Rn → Rn, [A]T = [A]

2. H = L2(R). Suppose a : R → C is bounded and measurable. Define M : H → H, Mf = af .
‖Mf‖2 ≤ ‖a‖∞‖f‖2.
M∗f = af , M∗ = M if a : R→ R.

3. Orthogonal projections: P 2 = P = P ∗ (self-adjoint)

4. Given T ∈ B(H), A = T ∗T is self-adjoint.
T = A+ iB, A = 1

2(T ∗ + T ), B = 1
2i(T

∗ − T )
A∗ = A, B∗ = B

5. The shift operators are NOT self-adjoint because S∗ = T 6= S

Definition 8.29. Bilinear Forms, Sesquilinear
page 197 and Notes 2/14/11

Let A : H → H be a bounded linear operator. We define the bilinear form a : H×H → C by

a(x, y) = 〈x,Ay〉

We say that a is sesquilinear because

a(x, λy + µz) = λa(x, y) + µa(x, z)

a(λx+ µy, z) = λa(x, z) + µa(x, z)

Definition 8.30. Hermitian Symmetric & Symmetric
page 197 and Notes 2/14/11

Suppose A is self-adjoint. Then

〈x,Ay〉 = 〈Ax, y〉 = 〈y,Ax〉

a(x, y) = a(x, y)

We say that a is Hermitian symmetric. In the real case, we have a(x, y) = a(y, x), and we say that
this is symmetric.

Definition 8.31. Quadratic Form
page 197 and Notes 2/14/11

Given A : H → H, we define the quadratic form q : H → C by

q(x) = 〈x,Ax〉 = a(x, x)

If A is self-adjoint, then a(x, x) = a(x, x), so a(x, x) is real for all x ∈ H.
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Definition 8.32. Positive, Positive Definite
page 198 and Notes 2/14/11

A self-adjoint operator A is positive or positive definite if 〈x,Ax〉 = a(x, x) > 0 for all x ∈ H, x 6= 0.

Theorem 8.33.
page 198 and Notes 2/14/11

If A is self-adjoint then

‖A‖ = sup
x 6=0

| 〈x,Ax〉 |
‖x‖2

= sup
‖x‖=1

| 〈x,Ax〉 |

Note: compare this to ‖A‖ = sup
‖x‖=1

| 〈Ax,Ax〉 |1/2 (see part 2 of Proposition 8.15).

Proof.
| 〈x,Ax〉 | ≤ ‖x‖‖Ax‖ ≤ ‖A‖‖x‖2 (Cauchy-Schwarz)

Let α = sup
‖x‖6=0

|〈x,Ax〉|
‖x‖2 ≤ ‖A‖. Then | 〈x,Ax〉 | ≤ α‖x‖2 ≤ ‖A‖‖x‖2. The parallelogram law states that

〈x,Ay〉 =
1

4

{
〈x+ y,A(x+ y)〉 − 〈x− y,A(x− y)〉 − i 〈x+ iy, A(x+ iy)〉+ i 〈x− iy, A(x− iy)〉

}
In general,

‖A‖ = sup
‖x‖=‖y‖=1

| 〈x,Ay〉 |

and this does not require self-adjoint. If A is self-adjoint, the first 2 terms in the parallelogram law expression
are real and the last 2 are imaginary. We can multiply y by eiθ so that eiθ 〈x,Ay〉 = 〈x,Az〉 is real, where
z = yeiθ. Then we have

eiθ 〈x,Ay〉 = 〈x,Az〉

=
1

4

{
〈x+ z,A(x+ z)〉 − 〈x− z,A(x− z)〉

}
| 〈x,Ay〉 | ≤ 1

4
| 〈x+ z,A(x+ z)〉 |+ 1

4
| 〈x− z,A(x− z)〉 |

≤ α

4

(
‖x+ z‖2 + ‖x− z‖2

)
≤ α

2

(
‖x‖2 + ‖z‖

)
(by the parallelogram rule (not law))

‖A‖ ≤ sup
‖x‖=‖y‖=1

| 〈x,Ay〉 | ≤ α

2
(‖x‖2 + ‖y‖2) ≤ α

2
(1 + 1) = α

Corollary 8.34.
page 199

If A is a bounded operator on a Hilbert space then ‖A∗A‖ = ‖A‖2. If A is self-adjoint, then
‖A2‖ = ‖A‖2.

The proof follows directly from Proposition 8.15.
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Definition 8.35. Unitary Operators
pages 199 & 200 and Notes 2/14/11

An operator U : H → H is unitary if

U∗U = UU∗ = I, i.e. U∗ = U−1

Note that
〈Ux,Uy〉 = 〈U∗Ux, y〉 = 〈x, y〉

so U preserves norms and inner products. Furthermore, if {en
∣∣ n ∈ N} is an orthonormal basis of

H, then so is {Uen
∣∣ n ∈ N}.

Example 8.36.
Notes 2/14/11

1. U : C2 → C2 with matrix

[U ] =

(
a b

−b a

)
, |a|2 + |b2| = 1, a, b ∈ C

In the real case, a = cos θ, b = sin θ, and U is rotation by θ.

2. The right shift operator S on `2(N) is not unitary because

S∗ = T, S∗S = I, SS∗ = P 6= I

3. If A∗ = A then U = eiA is unitary, where

eiA = I + (iA) + · · ·+ 1

n!
(iA)n + . . .

U∗ = e−iA

U∗U = I

Example 8.37. Quantum Mechanics
Notes 2/14/11

In quantum mechanics we have the Hamiltonian operator H, with H∗ = H. We also have U(t) =
eitH , U : H → K, U∗ : K → H. U is unitary if U∗U = IH and UU∗ = IK . We say that 2 Hilbert
spaces are isometric if they are unitarily equivalent.
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Example 8.38.
page 201 and Notes 2/14/11

F : L2(T)→ `2(Z) is unitary

Ff = f̂ , f̂(n) =
1√
2π

∫
T
f(x)e−inx dx

Definition 8.39. Normal Operators
Notes 2/16/11

If T : H → H is a bounded linear operator on a Hilbert space H, then T is normal if

[T ∗, T ] ≡ T ∗T − TT ∗ = 0 i.e. T ∗T = TT ∗

Self-adjoint and unitary operators are normal.

Example 8.40.
Notes 2/16/11

1. Self-adjoint and unitary operators are normal

2. The shift operators on `2(N) are not normal

3. Any multiplication operator is normal

M : L2(R)→ L2(R)

(Mf)(x) = m(x)f(x), m ∈ L∞(R)

M∗f = mf

M∗Mf = mmf = mmf = MM∗f

Special cases

(a) If m is real-valued then M = M∗, so M is self-adjoint. For

(b) For M to be unitary, we must have m = eiθ.

8.6 Weak Convergence in a Hilbert Space

Definition 8.41. Weak Convergence
page 204 and Notes 2/16/11

A sequence (xn) in a Hilbert space H converges weakly to x ∈ H, written xn ⇀ x, if

〈xn, y〉 → 〈x, y〉 ∀ y ∈ H

Compare to Distributional Convergence (Definition 11.2): Tn ⇀ T in D′ if 〈Tn, ϕ〉 → 〈T, ϕ〉.
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Definition 8.42. Strong Convergence
Notes 2/16/11

We write strong (norm) convergence as xn → x if ‖xn − x‖ → 0.

Remark 8.43. Weak vs. Strong Convergence
Notes 2/16/11

If xn → x, then xn ⇀ x because

| 〈xn, y〉 − 〈x, y〉 | ≤ ‖xn − x‖‖y‖ (Cauchy-Schwarz)

In a finite dimensional space, the converse is true, but this is not the case in infinite dimensional
spaces.

Weak convergence = component-wise convergence

Example 8.44.
page 204 and Notes 2/16/11

Let H be a separable Hilbert space and let {en
∣∣ n ∈ N} be a separable orthonormal basis. Then

en ⇀ 0 as n→∞ because

〈en, y〉 = yn → 0 as n→∞ because
∑
|yn|2 <∞

But (en) doesn’t converge strongly because

‖en − em‖ =
√

2 ∀ n 6= m

and so the sequence is not Cauchy and hence not convergent.

Example 8.45.
Notes 2/16/11

Define an unbounded sequence (xn) by xn = nen. We know that

〈xn, em〉 → 0 ⇒ 〈xn, y〉 → 0 as n→∞ ∀ y =
m∑
m=1

cmem

Let y1 =
∑ 1

mem. Then

〈xn, y〉 =
1

n
· n = 1 ∀ n

Let y2 =
∑ 1

m3/4 em ∈ H. Then

〈xn, y〉 =
1

n3/4
· n→ 0

Thus, (xn) does not converge weakly.
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Theorem 8.46. Uniform Boundedness Theorem
page 204

Suppose that {ϕn : X → C
∣∣ n ∈ N} is a set of functionals on a Banach space X such that the set

of complex numbers {ϕn(x)
∣∣ n ∈ N} is bounded for each x ∈ X. Then {‖ϕn‖

∣∣ n ∈ N} is bounded.

Theorem 8.47.
Notes 2/16/11

If xn ⇀ x then {‖xn‖
∣∣ n ∈ N} is bounded.

Proof. Define ϕn : H → C by ϕn(y) = 〈xn, y〉. Then ϕn ∈ H∗. By the uniform boundedness theorem
(Theorem 8.46),

|ϕn(y)| ≤M ∀ y ∈ H, n ∈ N
{|ϕn(y)|

∣∣ n ∈ N} is bounded for each y ∈ H, so {‖ϕn‖
∣∣ n ∈ N} is bounded

Theorem 8.48.
page 205 and Notes 2/16/11

Let D ⊂ H be a dense subset. Then xn ⇀ x iff

(a) {‖xn‖
∣∣ n ∈ N} is bounded

(b) 〈xn, y〉 → 〈x, y〉 ∀ y ∈ D

Proposition 8.49.
page 208 and Notes 2/16/11

If xn ⇀ x, then ‖x‖ ≤ lim inf
n→∞

‖xn‖

Proof.
‖x‖2 = 〈x, x〉 = lim

n→∞
〈xn, x〉 ≤ ‖x‖ lim inf

n→∞
‖xn‖

〈xn, x〉 ≤ ‖xn‖‖x‖ (Cauchy-Schwarz)

Note: if an ≤ bn, an → a, then a ≤ lim inf bn.

‖xn − x‖2 = 〈xn − x, xn − x〉 = ‖xn‖2 − 〈x, xn〉 − 〈xn, x〉+ ‖x‖2

If xn ⇀ x, then ‖xn‖ → ‖x‖, and

‖xn − x‖2 → ‖x‖2 − 〈x, x〉 − 〈x, x〉+ ‖x‖2 = 0
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Example 8.50. Example for Proposition 8.49
Notes 2/16/11

x1 = e1

x2 = 2e2

x3 = e3

x4 = 2e4

. . .

xn ⇀ 0

‖xn‖ =

{
1 n odd
2 n even

lim inf
n→∞

= 1

Example 8.51. Weak Convergence 6⇒ Strong Convergence
Notes 2/16/11

(a) Oscillation:

(1) Let H = L2(T), fn(x) = einx ⇀ 0 as n→∞

Proof. ‖fn‖ =
√

2π is bounded, and
〈
einx, ϕ

〉
→ 0 as n → ∞ for all trig polynomials ϕ,

and the trig polynomials are dense in L2(T).

(2) Let H = L2(R). Recall that C∞C (R) ⊂ L2(R) are the smooth functions with compact
support, and they are dense in L2(R). Then fn ⇀ f iff

i. ‖f‖ ≤M (bounded)

ii.
∫
fnϕdx→

∫
fϕ dx ∀ ϕ ∈ C∞C (R)

Consider fn(x) = ψ(x) sin(nπx), where ψ ∈ C∞C (R)∩L2(R). Then fn ⇀ 0 as n→∞, but
fn 6→ 0 as n→∞. (See proof below)

(b) Concentration: Consider

fn(x) =

{
n1/2 0 < x < 1

n
0 otherwise

i. ‖fn‖2 =
∫ 1/2
0

(
n1/2

)2
dx = 1

ii. ∀ ϕ ∈ C∞C (R),
∣∣∫ fnϕdx∣∣ =

∣∣∣n1/2 ∫ 1/n
0 ϕdx

∣∣∣ ≤ n1/2 · 1n‖ϕ‖∞ → 0 as n→∞
So fn ⇀ 0 as n→∞

Does fn converge strongly to 0? No, because ‖fn‖ = 1 ∀ n. (See below for more details)

(c) Escape to Infinity:

fn(x) =

{
1 n < x < n+ 1
0 otherwise

i. ‖fn‖L2 = 1, so fn is bounded.

ii.
∫
fnϕdx→ 0 as n→∞ ∀ϕ ∈ C∞C (R)

Thus, fn ⇀ 0, but fn 6→ 0 because ‖fn‖ = 1 ∀ n.

Proof. (a2)

i. ‖fn‖2 =
∫
ψ2(x) sin2(nπx) dx ≤

∫
ψ2(x) dx ≤ ‖ψ‖2

ii. Suppose ϕ ∈ CC(R).
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∫
fn(x)ϕ(x) dx =

∫
ψ(x) sin(nπx)ϕ(x) dx

=

∫
cos(nπx)

nπ
[ϕ(x)ψ(x)]′ dx (IBP, no boundary terms because ϕ ∈ CC(R))∣∣∣∣∫ fnϕdx

∣∣∣∣ ≤ 1

nπ

∫
(|ϕψ|)′ dx

≤ c

n

So
∫
fnϕdx→ 0 as n→∞, and thus fn ⇀ f .

Does (fn) converge strongly? i.e., does fn → 0? (see Remark 8.52)
If ψ 6= 0, then

‖fn‖2 =

∫
ψ2(x) sin2(nπx) dx =

∫
ψ2(x) · 1

2
[1− cos(2nπx)] dx→ 1

2
‖ψ‖2 6= 0

In fact, if we set gn = f2n = [ψ(x)]2 sin2(nπx), then gn → 1
2ψ

2(x) because∫
gn(x)ϕ(x) dx =

∫
ψ2(x) sin2(nπx)ϕ(x) dx

=
1

2

∫
ψ2ϕdx− 1

2

∫
ϕ2ψ cos(2πnx) dx

→ 1

2

∫
ψ2ϕdx

So gn ⇀
1
2ψ

2

Proof. (b)

gn =

{
n 0 < x < 1

n
0 otherwise

‖gn‖ =
√
n, (gn) is unbounded, so gn 6⇀ g. In fact, gn ⇀ δ ∈ D′(R).

hn =

{
n1/4 0 < x < 1

n
0 otherwise

‖hn‖ = 0, and (hn) is strongly and weakly convergent to 0. 1
2 is the critical value for L2, and 1

p is the critical
value for Lp.

Remark 8.52.

If fn ⇀ f and fn → g, then we must have f = g because

〈fn, h〉 → 〈f, h〉 ∀ h ∈ H
〈fn, h〉 → 〈g, h〉 ∀ h ∈ H

Since 〈f, h〉 = 〈g, h〉 ∀ h, we have that f = g.
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8.7 The Banach-Alaoglu Theorem

Definition 8.53. Weakly Sequentially Compact
page 208 and Notes 2/23/11

A set K ⊂ H is weakly sequentially compact if for any sequence (xn) ⊂ K there exists a subsequence
(xnk

) such that xnk
⇀ x ∈ K.

Theorem 8.54. Banach-Alaoglu Theorem
page 208 and Notes 2/23/11

Suppose that H is a separable Hilbert space and B = {x ∈ H
∣∣ ‖x‖ ≤ 1} is the closed unit ball.

Then B is weakly sequentially compact.

Remarks

1. B is not strongly compact if H is infinite-dimensional. Ex: {en} is an orthonormal basis, but
(en) has no convergent subsequence

2. This can be thought of as a replacement of the Heine-Borel theorem in the infinite-dimensional
case

Proof. Let {yk
∣∣ k ∈ N} be a dense subset of H. Consider (〈xn, y1〉)n ⊂ C. By Cauchy-Schwarz,

| 〈xn, y〉 ≤ ‖xn‖‖y1‖ ≤ ‖y1‖, so the sequence is bounded, and thus there exists a subsequence of (xn), denoted
(xn,1,k)k = (x1,k) such that 〈x1,k, y1〉 converges as k → ∞. Pick a subsequence (x2,k) of (x1,k) such that
〈x2,k, y2〉 converges as k →∞. Let xj = xj,j be the diagonal sequence. Then 〈xj , yn〉 converges for every yk
as j → ∞ in this dense subset of H. This defines a bounded linear functional F on D = {yk

∣∣ k ∈ N}. By
the Bounded Linear Transformation Theorem, this extends to a bounded linear functional F : H → C such
that F (yk) = lim

j→∞
〈xj , yk〉 for all k ∈ N. By the Riesz Representation Theorem, there exists x ∈ H such

that 〈x, yk〉 = lim
j→∞

〈xj , yk〉 for all k ∈ N. Since {yk} is dense in H and ‖x‖ ≤ 1, 〈x, y〉 = limj→∞ 〈xj , y〉 for

all y ∈ H, and thus xj ⇀ x. ‖x‖ ≤ lim inf
j→∞

‖xj‖ ≤ 1, so x ∈ B.

Remark 8.55.
Notes 2/23/11

1. We don’t need H to be separable (restrict to a closed subspace spanned by {xn} which is
separable)

2. Generalization to Banach spaces: the unit ball of X∗ is weak-∗ compact (equivalent to being
weak compact if X is reflexive, i.e. X∗∗ = X)

Definition 8.56. Weakly Sequentially Closed
Notes 2/23/11

A set F ⊂ H is weakly sequentially closed if whenever (xn) ⊂ F is a sequence and xn ⇀ x, then
x ∈ F .
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Example 8.57. Weakly Closed ⇒ Strongly Closed
Notes 2/23/11

Weakly closed implies strongly closed, but not conversely if H is infinite-dimensional. For example,
let

S = {x ∈ H
∣∣ ‖x‖ = 1}

B = {x ∈ H
∣∣ ‖x‖ ≤ 1}

S is not weakly closed because (en) ⊂ S, en ⇀ 0 /∈ S. B is weakly closed because if xn ⇀ x, then
‖x‖ ≤ lim inf ‖xn‖. The weak closure of S is B.

Definition 8.58. Weakly Sequentially Lower Semicontinuous
page 208 and Notes 2/23/11

A function f : D ⊂ H → R is weakly sequentially lower semicontinuous if

xn ⇀ x ⇒ f(x) ≤ lim inf
n→∞

f(xn)

Example: ‖ · ‖ : H → R is weakly sequentially lower semicontinuous.

Remark 8.59.
Notes 2/23/11

Weakly sequentially lower semicontinuous implies strongly sequentially lower semicontinuous, but
not conversely.

Theorem 8.60.
page 209 and Notes 2/23/11

Suppose that D is a weakly closed, bounded (in norm) subset in a Hilbert space H and f : D → R
is a weakly sequentially lower semicontinuous function. Then f is bounded from below
(m = inf

x∈D
f(x) > −∞) and there exists x ∈ D such that f(x) = m.

8.8 Chapter Summary

We begin by defining what it means for a bounded linear operator P to be a projection (with “oppo-
site” Q = I − P ), and we explore relationship between projections and direct sum decompositions: P a
projection ⇔ X = ranP ⊕ kerP . We introduce orthogonal projections and show that they are bounded
and self-adjoint. We explore the connection between orthogonal projections P (⇒ H = ranP ⊕ kerP ) and
direct sum decompositions (M closed) H =M⊕M⊥ (⇒ P, ranP =M, kerP =M⊥).

Recall from Chapter 5 that a linear functional is bounded iff it is continuous. We introduce the Riesz
Representation Theorem: for all ϕ ∈ H∗, there exists y ∈ H such that ϕ(x) = 〈y, x〉. This gives us that all
Hilbert spaces are self-dual: H∗∗ = H. This is because the map J1 : H → H∗ defined by J1y = ϕy identifies
H with its dual space, H∗. Similarly, we can define a map J2 that identifies H∗ with its dual space, H∗∗.
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Thus, H and H∗∗ (and H∗) have the same cardinality. And since we know (Chapter 5) that for every x ∈ H
we can define a functional Fx ∈ H∗∗ by Fx(ϕ) = ϕ(x), we therefore know that all linear functionals in H∗∗
are of this form.

We use the Riesz Representation Theorem to prove the existence of the adjoint of a bounded operator
on a Hilbert space: 〈x,Ay〉 = 〈A∗x, y〉. Examples:

• Matrix: A∗ = AT (AT if A is complex)

– 〈x,Ay〉 = xTAy, 〈A∗x, y〉 = (A∗x)T y = xT (A∗)T y

• Integral operator Kf(x) =
∫ 1
0 k(x, y)f(y) dy: K∗f(x) =

∫ 1
0 k(y, x)f(y) dy

• Shift operators: S∗ = T, T ∗ = S

We verify that for a bounded linear operator A, a solvability condition for Ax = y is that 〈y, z〉 = 0 for all
z ∈ kerA∗ ⇔ ranA ⊂ (kerA∗)⊥. We use this fact to prove that for a bounded linear operator A,

ranA = (kerA∗)⊥, kerA = (ranA∗)⊥.

Equivalently,
H = (kerA∗)⊥︸ ︷︷ ︸

ranA

⊕ (ranA)⊥︸ ︷︷ ︸
kerA∗

.

Next we have some definitions. We define what it means for a bounded linear operator to be self-adjoint,
and we prove that for a bounded self-adjoint operator A,

‖A‖ = sup
‖x‖=1

|〈x,Ax〉| , ‖A∗A‖ = ‖A‖2.

Examples:

• A matrix is self-adjoint if it is symmetric (or Hermitian, if it is complex).

• An integral operator Kf(x) =
∫ 1
0 k(x, y)f(y) dy is self-adjoint if k(x, y) = k(y, x)

We say that an operator is unitary/orthogonal if it is invertible and 〈Ux,Uy〉H2
= 〈x, y〉H1

⇔ U∗U =
UU∗ = I. We say that an operator is normal if T ∗T = TT ∗. (Self-adjoing and unitary operators are normal.)

Now we revisit weak convergence. For Hilbert spaces, the Riesz Representation Theorem gives us an
equivalent definition: xn ⇀ x if 〈xn, y〉 → 〈x, y〉 ∀ y ∈ H ⇔ ϕ(xn) → ϕ(x) ∀ ϕ ∈ H∗. We mention
3 reasons why a sequence may converge weakly but not strongly: oscillation, concentration, and escape to
infinity. We prove that for a weakly convergent sequence (xn), ‖x‖ ≤ lim inf ‖xn‖. We also prove that if
lim ‖xn‖ = ‖x‖, then (xn) converges to x strongly. The Banach-Alaoglu Theorem tells us that the closed
unit ball of a Hilbert space is weakly compact.

We define what it means for a function to be convex, and we say a few words about lower semicontinuous
functions. We finish the chapter with Mazur’s Theorem, which tells us that if xn ⇀ x, then there exists a
sequence (yn) of finite convex combinations of {xn} that converges strongly to x.
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9 The Spectrum of Bounded Linear Operators

9.0 Introduction

Remark 9.1.
page 215 and Notes 3/2/11

Consider the following initial boundary value problem for a variable coefficient, linear equation:

ut = uxx − q(x)u 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0 t ≥ 0,

u(x, 0) = f(x) 0 ≤ x ≤ 1

Using separation of variables, we assume

u(x, t) =

∞∑
n=1

an(t)un(x)

where {un
∣∣ n ∈ N} is an orthonormal basis of L2([0, 1]). We find that

dan
dt

= −λnann

and the un satisfy

−d
2un
dx2

+ qun = λnun

Then the un are eigenvectors of the linear operator A. Thus, Aun = λnun, where A is defined by

Au = −d
2u

dx2
+ qu

We want a complete set of eigenvectors of A, or equivalently, to diagonalize A. This is an example
of what we do in spectral theory.

9.1 Diagonalization of Matrices

Remark 9.2.
page 218 and Notes 3/2/11

The concept of the spectrum of an operator on a Banach/Hilbert space is a generalization of eigen-
values for matrices. Let A ∈ B(X). When dimX < ∞ then we can identify it with a a matrix Ã.
For any λ ∈ C we have two possibilities:

1. λI −A is nonsingular ⇔ det(λI −A) = 0 ⇔ (λI −A)−1 exists

2. λI − A is singular ⇔ there exists x0 such that (λI − A)x0 = 0. Thus, Ax0 = λx0, λ is an
eigenvalue, and x0 is an eigenvector.

What happens if dimX =∞???
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9.2 The Spectrum

Definition 9.3. Resolvent Set
page 218 and Notes 3/2/11

The resolvent set of a bounded operator A on a Banach space X is the set

ρ(A) = {λ ∈ C
∣∣ (λI −A) is invertible }

(by the bounded inverse theorem) = {λ ∈ C
∣∣ (λI −A) ∈ B(X)}

= {λ ∈ C
∣∣ (λI −A) is 1-1 and onto }

Definition 9.4. Spectrum
page 218 and Notes 3/2/11

The spectrum of A is the set

σ(A) = C \ ρ(A)

= {λ ∈ C
∣∣ (λI −A) is not invertible }

Definition 9.5. Point Spectrum, Continuous Spectrum, Residual Spectrum
page 219 and Notes 3/2/11

In general, σ(A) can be expressed as σ(A) = σp(A) ∪ σc(A) ∪ σr(A), where

1. σp(A) = {λ ∈ C
∣∣ (λI −A) is not 1-1 }

σp(A) is called the point spectrum of A. In this case, since (λI − A) is not 1-1, there exists
x0 ∈ ker(λI −A) such that (λI −A)x0 = 0⇔ Ax0 = λx0

2. σc(A) = {λ ∈ C
∣∣ (λI −A) is 1-1 but not onto and ran(λI −A) = X}

σc(A) is called the continuous spectrum of A

3. σr(A) = {λ ∈ C
∣∣ (λI −A) is 1-1 but not onto and ran(λI −A) 6= X}

σr(A) is called the residual spectrum of A

Example 9.6. Point, Continuous, and Residual Spectra Examples
Notes 3/7/11

1. A matrix on Cn has pure point spectrum

2. M : L2([0, 1])→ L2([0, 1]), f 7→ xf, σ(M) = [0, 1] has pure continuous spectrum

3. Consider the right shift operator S on `2(N). λ = 0 is in the residual spectrum
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Example 9.7.
Notes 3/2/11

Consider the Banach space X = C([0, 1]) with the ‖ · ‖∞ norm. Define A : X → X by
Af(x) = xf(x). The boundedness of A follows exactly as in HW7 (even though X = L2([0, 1]) on
the HW, since we can take supx = 1). Find σ(A). Claim: σ(A) = σr(A) = [0, 1].

For any λ ∈ C, f ∈ C([0, 1]), we have

(λI −A)f(x) = (λ− x)f(x) = 0

If λ 6= x then f(x) = 0. If λ /∈ [0, 1] then σp = ∅.
For all λ /∈ [0, 1], is (λI − A) onto? For every g ∈ C([0, 1]), we want f such that f(x)(λ − x) =

g(x) ⇒ f(x) = g(x)
λ−x ∈ C([0, 1]), since λ /∈ [0, 1] implies that λ − x 6= 0 ∀ x ∈ [0, 1]. Thus, (λI − A)

is onto, and we can conclude that σ(A) ⊆ [0, 1].
It will be enough to prove the claim to show that [0, 1] ⊆ σr(A). Why? [0, 1] ⊆ σr(A) ⊆ σ(A) ⊆ [0, 1].
Pick λ ∈ [0, 1]. For every g ∈ ran(λI −A) we have that

g(x) = (λ− x)f(x) for some f ∈ X = C([0, 1])

g(λ) = 0

So h(x) = 1 /∈ ran(λI −A), since g(λ) = 0 6= 1. Therefore (λI −A) is not onto.

If h ∈ ran(λI −A) then there exists (gn) ⊂ ran(λI−A) such that gn → h. h(λ = limn→∞ gn(λ)(λI−
A) = 0. Thus, 1 /∈ ran(λI −A), so λ ∈ σr(A).

Example 9.8.
page 219

Example 9.5 on page 219

Definition 9.9. Resolvent
page 220 and Notes 3/4/11

For λ ∈ ρ(A), we define the resolvent of A at λ to be

Rλ = (λI −A)−1, Rλ : ρ(A) ⊂ C→ B(H)
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Example 9.10. Neumann Series
page 220 and Notes 3/4/11

If ‖A‖ < 1 then (I −A) is invertible and

(I −A)−1 = I +A+A2 + . . .

To show this, we define the partial sum:

SN = I +A+A2 + . . .+AN

Next, we show that the sequence of partial sums is Cauchy:

‖AM+1 + . . .+AN‖ ≤ ‖AM+1‖+ . . .+ ‖AN‖ ≤ ‖A‖M+1 + . . .+ ‖A‖N

≤
N∑

n=M+1

‖A‖n

∞∑
n=1

< ∞ if ‖A‖ < 1, so the partial sums are Cauchy. Thus,
∞∑
n=0

An is Cauchy in B(H), and it

converges since B(H) is complete.

(See Remark 9.12.)

Example 9.11.
Notes 3/4/11

1. If |λ| > ‖A‖ then λ ∈ ρ(A)

(λI −A)−1 =
[
λ
(
I − A

λ

)]−1
= 1

λ

(
I − A

λ

)−1
↑ this exists if ‖A/λ‖ < 1⇒ ‖A‖ < |λ|

2. The resolvent set ρ(A) is open in C
Suppose λ0 ∈ ρ(A). We write:

(λI −A) = λ0I −A+ (λ− λ0)I = (λ0I −A)
[
I + (λ− λ0)(λ0I −A)−1

]
(λI −A)−1 =

[
I + (λ− λ0)(λ0I −A)−1

]−1
(λ0I −A)−1

↑ exists if |λ− λ0| <
1

‖(λ0I −A)−1‖

3. Rλ : λ 7→ (λI −A)−1

Rλ is an operator-valued analytic function on the open set ρ(A) ⊂ C
4. σ(A) 6= ∅

Remark 9.12.
Notes 3/4/11

In Example 9.10, it is not necessary that ‖A‖ < 1 for (I − A)−1 = I + A + A2 + . . . to converge.
Rather, we require that lim

n→∞
‖An‖1/n < 1.

65



Definition 9.13. Spectral Radius
page 220 and Notes 3/4/11

r(A) = sup{|λ|
∣∣ λ ∈ σ(A)} is the spectral redius of A. This is the radius of the smallest disc in C

centered at 0 that contains σ(A). Also, r(A) ≤ ‖A‖.

Theorem 9.14.
page 220 and Notes 3/4/11

r(A) = lim
n→∞

‖An‖1/n (and the limit exists)

Proof. Let an = log ‖An‖. (If ‖An‖ = 0 for some n, i.e. A is nilpotent, then r(A) = 0.) Then

am+n = log ‖Am+n‖
≤ log ‖An‖+ log ‖An‖
≤ am + an (subadditive)

We want to show that lim
n→∞

an
n exists, where an

n = log ‖An‖1/n. Fix n,m and write n = mp + q with

0 ≤ q < m. Then we have

an = amp+q ≤ amp + aq
an
n
≤ amp

n
+
aq
n

Note that amp ≤ pam. Let n→∞ with m fixed. Then p
n →

1
m as n→∞, and

lim sup
n→∞

an
n
≤ am

m
(9.1)

Taking the limit of (9.1) as m→∞, we obtain

lim sup
n→∞

an
n
≤ lim inf

m→∞

am
m

So lim sup
n→∞

an
n = lim sup

n→∞
an
n , and the sequence converges.

Example 9.15. Example for Theorem 9.14
Notes 3/4/11

A = µI

λI −A = (λ− µ)I

σ(A) = µ

‖A‖ = |µ| = r(A)

‖An‖1/n = |µ|

Corollary 9.16.
page 221 and Notes 3/4/11

If A is self-adjoint then r(A) = ‖A‖.
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Proof. ‖A2‖ = ‖A‖2 and ‖A2n‖ = ‖A‖2n , so lim inf
n→∞

‖An‖1/n = ‖A‖ by taking the subsequence n = 2m.

9.3 The Spectral Theorem for Compact, Self-Adjoint Operators

9.3.1 Bounded, Self-Adjoint Operators

Theorem 9.17.
page 222 and Notes 3/7/11

If A is bounded and self-adjoint, then every eigenvalue of A is real and eigenvectors with different
eigenvalues are orthogonal.

Related to Theorem 9.21.

Proof. If Ax = λx, then

〈x,Ax〉 = 〈x, λx〉 = λ‖x‖2

〈Ax, x〉 = 〈λx, x〉 = λ‖x‖2

If A is self-adjoint (and x 6= 0), then λ = λ⇒ λ ∈ R.

Case: A has pure point spectrum.
If Ax = λx and Ay = µy, x, y 6= 0, λ 6= µ, then

〈x,Ay〉 = µ 〈x, y〉
〈Ax, y〉 = λ 〈x, y〉 = λ 〈x, y〉

}
A = A∗, so µ 〈x, y〉 = λ 〈x, y〉

If λ 6= µ, then 〈x, y〉 = 0, i.e. x ⊥ y.

What about the continuous and residual spectra?

‖(A− λI)x‖2 = 〈(A− aI)x− ibx, (A− aI)x− ibx〉 where λ = a+ ib

= 〈(A− aI)x, (A− aI)x〉+((((
((((

(
〈−ibx, (A− aI)x〉+((((

((((
(

〈(A− aI)x,−ibx〉+ 〈−ibx,−ibx〉
= ‖(A− aI)x‖2 + b2‖x‖2

≥ b2‖x‖2

Continuous Spectrum: See Proposition 9.18 and Remark 9.19.
Residual Spectrum: See Proposition 9.20.

Proposition 9.18.
page 223 and Notes 3/7/11

|Im λ| · ‖x‖ ≤ ‖(A− aI)x‖
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Remark 9.19.
Notes 3/7/11

Proposition 9.18 says that if (A− λI)x = y, then |Im λ| · ‖x‖ ≤ ‖y‖. This means that if λ ∈ R, we
can estimate the solution, x, in terms of the RHS, y.

Applying this to the proof of Theorem 9.17, we see that if λ ∈ C \ R, it follows that

(a) (A− λI) is 1-1 because if (A− λI)x = 0 then |Im λ|‖x‖ = 0⇒ x = 0.

(b) (A− λI) has closed range. If yn = (A− λI)xn, yn ∈ ran(A− λI), yn → y, then we can bound

‖xm − xn‖︸ ︷︷ ︸
∴ Cauchy

≤ C ‖ym − yn‖︸ ︷︷ ︸
Cauchy

So xn → x, (A − λI)x = y, and y ∈ ran(A − λI). So if λ ∈ C \ R, then (A − λI) is 1-1 with
closed range, so there is no complex-valued continuous spectrum.

Proposition 9.20.
page 224 and Notes 3/7/11

If A is bounded and self-adjoint, then the residual spectrum is empty.

Proof. If λ is in the residual spectrum, then there exists y ∈ H such that 〈(A− λI)x, y〉 = 0 ∀ x ∈ H, so
y ⊥ ran(A− λI), y 6= 0. Since A is self-adjoint,

〈
x, (A− λI)y

〉
= 0 ∀ x ∈ H. This implies that (A−λI)y = 0,

so y is an eigenvector of A with eigenvalue λ. We have 2 cases:

1. λ ∈ C \ R⇒ impossible (A has real eigenvalues)

2. λ ∈ R. Then λ is in the point and residual spectra ⇒ impossible.

Theorem 9.21.
page 223 and Notes 3/7/11

If A is a bounded, self-adjoint operator on a Hilbert space H, then σ(A) is real and contained in
the interval [−‖A‖, ‖A‖]. The residual spectrum is empty.

Related to Theorem 9.17.

Proposition 9.22.
page 223

If A is a bounded operator on a Hilbert space (not necessarily self-adjoint!) and λ ∈ σr(A), then
λ ∈ σp(A∗). In other words, σr(A) ⊆ σp(A∗).
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Remark 9.23. Bounded, Self-Adjoint Operators

Bounded, self-adjoint operators have

• Spectral radius r(A) = ‖A‖ (See Corollary 9.16)

• Real eigenvalues (See Theorem 9.17)

• Orthogonal eigenvectors (See Theorem 9.17)

• Empty residual spectrum (See Proposition 9.20)

9.3.2 Compact Operators

Definition 9.24. Compact Operator
Notes 3/9/11

K : H → H, D ∈ B(H) is compact if it maps bounded sets to precompact sets.

Remark 9.25. Precompact
Notes 3/9/11

Remember: a set is precompact if it is bounded and “almost” finite-dimensional.

Example 9.26. The Hilbert Cube
page 230 and Notes 3/9/11

Let H = `2(N). The Hilbert cube

C =

{
(x1, x2, . . . , xn, . . .)

∣∣ |xn| ≤ 1

n

}
is closed and precompact. Hence, C is a compact subset of H.

Example 9.27. Diagonal Operators Are Compact
page 230

The diagonal operator : `2(N)→ `2(N) defined by

A(x1, x2, . . . , xn, . . .) = (λ1x1, λ2x2, . . . , λnxn, . . .)

is compact iff λn → 0 as n→∞.
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Example 9.28. Compactness of Operators
Notes 3/9/11

1. Any operator with finite rank (rank A = dim ran A) is compact

2. I : H → H is not compact if dim H =∞
3. L2([0, 1]), Kf(x) =

∫ x
0 f(y) dy is a compact operator. If ‖f‖L2 ≤M , then∣∣∣∣∫ x

0
f(y) dy

∣∣∣∣ ≤ ∫ 1

0
|f(y)| dy ≤

(∫ 1

0
|f(y)|2 dy

)1/2

≤M

Define F (x) =
∫ x
0 f(y) dy. Then

|F (x2)− F (x1)| =
∣∣∣∣∫ x2

x1

f(y) dy

∣∣∣∣ ≤ (∫ x2

x1

1 · dy
)1/2(∫ x2

x1

|f(y)|2 dy
)1/2

≤M |x2 − x1|1/2

{Kf
∣∣ ‖f‖ ≤ M} is bounded and equicontinuous. Thus, H2([0, 1]) is compactly embedded in

L2([0, 1]). It follows that {Kf
∣∣ ‖f‖L2 ≤M} is precompact in C([0, 1]) by Arzela-Ascoli, so it

is precompact in L2([0, 1]).

If f(x) =
∞∑
n=1

bn sin(nπx), then Kf(x) =
∞∑
n=1

bn
nπ −

∞∑
n=1

bn
nπ cos(nπx)

9.3.3 Compact, Self-Adjoint Operators

Remark 9.29.
page 223 and Notes 3/9/11

Given: A : H → H, A is compact and self-adjoint, H is a separable Hilbert space
We will prove:

1. A has at least one eigenvalue

2. If A leaves a subspace M ⊂ H invariant (A : M → M), then A leaves M⊥ invariant, and
H = M ⊕M⊥

Idea: if we have Aϕn = λnϕn, then we can get the largest eigenvalue by maximizing A(
∑
cnϕn) =∑

λncnϕn.

Theorem 9.30.
page 225 and Notes 3/9/11

Suppose A : H → H is compact and self-adjoint. Then A has an eigenvector with eigenvalue λ with
λ = ‖A‖ and/or λ = −‖A‖.

Proof. Recall: since A is self-adjoint, ‖A‖ = sup
‖x‖=1

| 〈x,Ax〉 |. Choose a sequence (xn) ⊂ H with ‖xn‖ = 1
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and 〈xn, Axn〉 → λ as n→∞, λ = ±‖A‖. Then we have

‖(A− λI)xn‖2 = 〈(A− λI)xn, (A− λI)xn〉
= 〈Axn, Axn〉 − 2λ 〈xn, Axn〉+ λ2 〈xn, xn〉
= ‖Axn‖2︸ ︷︷ ︸
≤‖A‖2‖xn‖2=λ2

−2λ 〈xn, Axn〉+ λ2

≤ 2λ2 − 2λ 〈xn, Axn〉 → 0 as n→∞

So (A − λI)xn → 0 as n → ∞, and thus xn − 1
λAxn → 0 (assuming λ 6= 0, in which case ‖A‖ = 0 and

everything is an eigenvalue). Since (xn) is bounded (‖xn‖ = 1 ∀ n), Axn → y by the compactness of A.
So xn → y

λ and (A − λI)y = 0. ‖y‖ = λ 6= 0, since ‖xn‖ = 1 and xn → y. So A has eigenvector y with
eigenvalue λ.

Proposition 9.31.
page 224 and Notes 3/9/11

1. Any nonzero eigenvalue of a compact, self-adjoint operator has a finite multiplicity (multiplicity
≡ the dimension of the eigenspace).

2. If λn is a sequence of eigenvalues and λn → L, then we must have that L = 0.

Theorem 9.32. Spectral Theorem for Compact, Self-Adjoint Operators
page 225 and Notes 3/11/11

If A : H → H is a compact, self-adjoint operator on a Hilbert space H then there is a finite or
countably infinite sequence (λn) of nonzero real eigenvalues and orthogonal eigenvectors (ϕn) such
that

Aϕn = λnϕn

where |λ1| ≥ |λ2| ≥ . . .. λn → 0 as n→∞ if there are infinitely many λn’s and

Ax =
∑
n

λn 〈ϕn, x〉ϕn

x =
∑
〈ϕn, x〉ϕn + n where n ∈ kerA, kerA ⊥ < ϕn >︸ ︷︷ ︸

span

Let Pn : H → H be the orthogonal projection onto the eigenspace with eigenvalue λn (eigenvectors
of bounded, self-adjoint operators are orthogonal; see Theorem 9.17). Then

A =
∑

λnPn

We are representing A as a sum of linear projections because λn → 0, and so the sum converges
uniformly.

Proof. To see that the sum converges uniformly to A, we compute

‖Ax−
N∑
n=1

λnPnx‖ =

∞∑
n=N+1

|λn 〈ϕn, x〉ϕn|2 ≤ |λN+1|2‖x‖2
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Also, if we let P0 be the orthogonal projection onto kerA, then

P0 +
∑

Pn = I

is strongly convergent. This is an example of what’s called “resolution of the identity.” Note that the λi’s
gave us uniform convergence above. For bounded (and unbounded) self-adjoint operators with continuous
spectrum we need to use resolutions of identity that involve integrals (instead of sums).

9.4 Functions of Operators = Functional Calculus

Definition 9.33. Function of an Operator
page 232 and Notes 3/11/11

If f : σ(A) ⊂ C→ C is a bounded function, then we define

f(A) =
∑

f(λn)Pn + f(0)P0

• f is uniformly convergent if f(λn)→ 0 as n→∞
• f is strongly convergent if f(λn) 6→ 0 as n→∞

Note that σ(A) = {λn} ∪ {0} if dim H =∞

• If there are finitely many λn, then 0 ∈ σp(A)

• If there are countably many λn, then 0 ∈ σc(A)

Example 9.34.
Notes 3/11/11

Suppose A is a positive (see Definition 8.32), self-adjoint compact operator. Then

〈x,Ax〉 ≥ 0 implies λn ≥ 0 ∀ n

We can define the positive square root of A as

√
A =

∑
λ1/2n Pn(√

A
)2

=
∑

λnPn = A

In general, if A is compact then

T = A∗A is positive and self-adjoint because 〈x, Tx〉 = 〈x,A∗Ax〉 = 〈Ax,Ax〉 ≥ 0

√
T = |A|, |A|2 = T = A∗A

Definition 9.35. Polar Decomposition
page 217 and Notes 3/11/11

A = U |A|, where U : ran |A| → Im A is a unitary operator
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Definition 9.36. Fredholm Operator, Index
Notes 3/11/11

A bounded operator A : H → H is Fredholm if

(a) ranA is closed

(b) dim kerA is finite

(c) codim ranA is finite ⇔ dim kerA∗ is finite

• codim ranA = dim kerA∗ (recall that H = ranA⊕ kerA∗ when ranA is closed)

We define the index by

index A = dim(kerA)− co dim(ranA) = dim(kerA)− dim(kerA∗)

Example 9.37. Fredholm or not?
Notes 3/11/11

(a) I is Fredholm with index = 0

(b) A(x1, x2, x3, . . .) 7→ (x1,
1
2x2,

1
3x3, . . .) is not Fredholm because the range is not closed

(c) The right shift operator, S, is Fredholm with index = −1

If A is Fredholm with index(A) = 0 then we have Fredholm alternative for solving the equation
Ax = y, and there are 2 possibilities:

1. A is one-to-one and we can solve the equation for every y ∈ H
2. A is not one-to-one, and we can only solve the equation if y ⊥ kerA∗

Theorem 9.38. Riesz-Schauder Theorem
Notes 3/11/11

If K is a compact, self-adjoint operator and λ 6= 0 then A = λI −K is Fredholm with index 0.

9.5 Chapter Summary

U∗AU = U∗(AU) = U∗
(
A
[
u1 u2 · · · uk

])
= U∗

[
Au1 Au2 · · · Auk

]
= U∗

[
λ1u1 λ2u2 · · · λkuk

]
=
[
λ1e1 λ2e2 · · · λkek

]
(because U∗uk = ek)

=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk

 = D
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Operator Spectrum Point Continuous Residual

Bounded, Linear Closed & Nonempty, λ ∈ σr(A) ⇒
r(A) = lim ‖An‖1/n λ ∈ σp(A∗)

Bounded, Self-Adjoint σ(A) ⊂ [−‖A‖, ‖A‖] real real empty
r(A) = ‖A‖

Compact, Self-Adjoint −‖A‖ ∈ σp(A) or σc(A) = {0} or empty
‖A‖ ∈ σp(A) σc(A) = ∅
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