Document: Math 201B (Winter 2011)
Professor: Hunter
Latest Update: June 4, 2013
Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents

0 Measure Theory 2
0.1 Key Theorems 2
7 Fourier Series 5
7.1 Fourier Series 5
$7.2 \quad L^{1}$ Functions 12
7.3 Kernels and Summability Methods 13
7.4 Harmonic Functions 21
7.5 Hausdorff-Young Inequality 24
7.6 Fourier Series of Differentiable Functions (Section 7.2 in H\&N) 25
7.7 Chapter Summary 31
11 Distributions and the Fourier Transform 32
11.1 Periodic Distributions 32
8 Bounded Linear Operators on a Hilbert Space 41
8.1 Orthogonal Projections 41
8.2 The Dual of a Hilbert Space 44
8.3 The Adjoint of an Operator 45
8.4 Self-Adjoint and Unitary Operators 50
8.6 Weak Convergence in a Hilbert Space 54
8.7 The Banach-Alaoglu Theorem 59
8.8 Chapter Summary 60
9 The Spectrum of Bounded Linear Operators 62
9.0 Introduction 62
9.1 Diagonalization of Matrices 62
9.2 The Spectrum 63
9.3 The Spectral Theorem for Compact, Self-Adjoint Operators 67
9.3.1 Bounded, Self-Adjoint Operators 67
9.3.2 Compact Operators 69
9.3.3 Compact, Self-Adjoint Operators 70
9.4 Functions of Operators $=$ Functional Calculus 72
9.5 Chapter Summary 73

0 Measure Theory

0.1 Key Theorems

Theorem 0.1. Fubini's Theorem
http://en.wikipedia.org/wiki/Fubini\'s_theorem

Suppose A and B are complete measure spaces. Suppose $f(x, y)$ is $A \times B$ measurable. If

$$
\int_{A \times B}|f(x, y)| d(x, y)<\infty
$$

where the integral is taken with respect to a product measure on the space over $A \times B$, then

$$
\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y=\int_{A \times B} f(x, y) d(x, y)
$$

the first two integrals being iterated integrals with respect to two measures, respectively, and the third being an integral with respect to a product of these two measures.

Corollary:

If $f(x, y)=g(x) h(y)$ for some functions g and h, then

$$
\int_{A} g(x) d x \int_{B} h(y) d y=\int_{A \times B} f(x, y) d(x, y)
$$

the third integral being with respect to a product measure.

Theorem 0.2. Tonelli's Theorem
http://en.wikipedia.org/wiki/Fubini\'s_theorem\#Tonelli.27s_theorem

Suppose that A and B are σ-finite measure spaces, not necessarily complete. If either

$$
\int_{A}\left(\int_{B}|f(x, y)| d y\right) d x<\infty \text { or } \int_{B}\left(\int_{A}|f(x, y)| d x\right) d y<\infty
$$

then

$$
\int_{A \times B}|f(x, y)| d(x, y)<\infty
$$

and

$$
\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y=\int_{A \times B} f(x, y) d(x, y)
$$

Tonelli's theorem is a successor of Fubini's theorem. The conclusion of Tonelli's theorem is identical to that of Fubini's theorem, but the assumptions are different. Tonelli's theorem states that on the product of two -finite measure spaces, a product measure integral can be evaluated by way of an iterated integral for nonnegative measurable functions, regardless of whether they have finite integral. A formal statement of Tonelli's theorem is identical to that of Fubini's theorem, except that the requirements are now that (X, A, μ) and (Y, B, ν) are σ-finite measure spaces, while f maps $X \times Y$ to $[0, \infty]$.

Theorem 0.4. Hölder's Inequality
Theorem 12.54 on page 356

Let $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(X, \mu)$ and $g \in L^{q}(X, \mu)$, then $f g \in L^{1}(X, \mu)$ and

$$
\left|\int f g d \mu\right| \leq\|f\|_{p}\|g\|_{q}
$$

Theorem 0.5. Young's Inequality
Theorem 12.58 on page 359
Let $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then $f * g \in L^{r}\left(\mathbb{R}^{n}\right)$ and

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Theorem 0.6. Lebesgue Dominated Convergence Theorem
Theorem 12.35 on page 348

Suppose that $\left(f_{n}\right)$ is a sequence of integrable functions, $f_{n}: X \rightarrow \overline{\mathbb{R}}$, on a measure space (X, \mathcal{A}, μ) that converges pointwise to a limiting function $f: X \rightarrow \overline{\mathbb{R}}$. If there is an integrable function $g: X \rightarrow[0, \infty]$ such that

$$
\left|f_{n}(x)\right| \leq g(x) \quad \forall x \in X, n \in \mathbb{N}
$$

then f is integrable and

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

Theorem 0.7. Cauchy-Schwarz Inequality http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

Formal Statement: For all vectors x, y of an inner product space,

$$
\begin{aligned}
|\langle x, y\rangle|^{2} & \leq\langle x, x\rangle\langle y, y\rangle \\
|\langle x, y\rangle| & \leq\|x\|\|y\|
\end{aligned}
$$

Square of a Sum:

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right|^{2} \leq \sum_{i=1}^{n}\left|x_{i}\right|^{2} \sum_{i=1}^{n}\left|y_{i}\right|^{2}
$$

In L^{2} :

$$
\left|\int f(x) g(x) d x\right|^{2} \leq \int|f(x)|^{2} d x \int|g(x)|^{2} d x
$$

7 Fourier Series

7.1 Fourier Series

Definition 7.1. 2π-periodic

page 149

A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic if

$$
f(x+2 \pi)=f(x) \quad \forall x \in \mathbb{R}
$$

A 2π-periodic function may be indentified with a function on the unit circle, or one-dimensional torus, $\mathbb{T}=\mathbb{R} /(2 \pi \mathbb{Z})$. The space $C(\mathbb{T})$ is the space of continuous functions from \mathbb{T} to \mathbb{C}, and $L^{2}(\mathbb{T})$ is the completion of $C(\mathbb{T})$ with respect to the L^{2}-norm,

$$
\|f\|=\left(\int_{\mathbb{T}}|f(x)|^{2} d x\right)^{1 / 2}
$$

$L^{2}(\mathbb{T})$ is a Hilbert space with respect to the inner product

$$
\langle f, g\rangle=\int_{\mathbb{T}} \overline{f(x)} g(x) d x
$$

Definition 7.2. $L^{p}(\mathbb{T})$

page 92 and Notes $1 / 3 / 11$
$L^{p}(\mathbb{T}):=$ the space of Lebesgue measurable functions, $f: \mathbb{T} \rightarrow \mathbb{C}$ such that $\int_{\mathbb{T}}|f|^{p} d x<\infty$, where $1 \leq p<\infty$. We define the L^{p}-norm as:

$$
\|f\|_{p}=\left(\int_{\mathbb{T}}|f|^{p} d x\right)^{1 / p}
$$

For $p=\infty, L^{\infty}(\mathbb{T})$ is the space of Lebesgue measurable functions that are essentially bounded on \mathbb{T}, meaning that f is bounded on every subset of \mathbb{T} with nonzero measure. The norm on $L^{\infty}(\mathbb{T})$ is the essential supremum

$$
\|f\|_{\infty}=\inf \{M| | f(x) \mid \leq M \text { a.e. in } \mathbb{T}\}
$$

We identify f with g if $f=g$ a.e. (almost everywhere, except possibly on a set of measure 0).

Theorem 7.3.

Notes 1/3/11
$L^{p}(\mathbb{T})$ with the norm $\|f\|_{L^{p}}=\left(\int_{\mathbb{T}}|f|^{p} d x\right)^{1 / p}$ is a Banach space.

Theorem 7.4.

Notes $1 / 3 / 11$
$C(\mathbb{T})$ is dense in $L^{p}(\mathbb{T})$ for $1 \leq p<\infty$.
Note: $C(\mathbb{T}):=$ the space of continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$

Proposition 7.5.

Notes $1 / 3 / 11$
$p>q \Rightarrow L^{p}(\mathbb{T}) \subset L^{q}(\mathbb{T}) \quad$ and $\quad\|\cdot\|_{p} \geq\|\cdot\|_{q}$
Also,
$L^{1}(\mathbb{T}) \supset L^{2}(\mathbb{T}) \supset \ldots \supset C(\mathbb{T})$

Example 7.6. Fourier Basis Example

Notes 1/3/11

$$
\begin{aligned}
& \sum_{n \neq 0} \frac{1}{|n|} e^{i n x}=f(x) \\
& \sum_{n \neq 0} \frac{1}{|n|^{2}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \\
& \lim _{N \rightarrow \infty} \int\left|f(x)-\sum_{n=-N, n \neq 0}^{N} \frac{1}{|n|} e^{i n x}\right|^{2} d x=0
\end{aligned}
$$

Line 2 and Bessel's Inequality tell us that the series converges in $L^{2}(\mathbb{T})$. However, it doesn't converge pointwise everywhere on \mathbb{T}.

Ex. at $x=0, \sum_{n \neq 0} \frac{1}{|n|}$ diverges.

Proposition 7.7. Orthonormal Basis of $L^{2}(\mathbb{T})$
page 150

The Fourier basis elements are the functions

$$
e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}
$$

$\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{T})$.

Proof Outline

- Orthogonality

It is easily shown that

$$
\left\langle e_{m}, e_{n}\right\rangle= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

- Completeness

This proof relies upon the ideas of convolution and approximate identities. (See Theorems 7.12 and 7.13.)

Definition 7.8. Convolution

page 150

The convolution of two continuous functions $f, g: \mathbb{T} \rightarrow \mathbb{C}$ is the continuous function $f * g: \mathbb{T} \rightarrow \mathbb{C}$ defined by the integral

$$
(f * g)(x)=\int_{\mathbb{T}} f(x-y) g(y) d y
$$

Using the change of variable $z=x-y$, it is seen that

$$
(f * g)(x)=\int_{\mathbb{T}} f(z) g(x-z) d z
$$

so that $f * g=g * f$.

Definition 7.9. Approximate Identity

Definition 7.1 on page 151

A family of functions $\left\{\varphi_{n} \in C(\mathbb{T}) \mid n \in \mathbb{N}\right\}$ is an approximate identity if
(a) $\varphi_{n}(x) \geq 0$
(b) $\int_{\mathbb{T}} \varphi_{n}(x) d x=1$
(c) $\lim _{n \rightarrow \infty} \int_{\delta \leq|x| \leq \pi} \varphi_{n}(x) d x=0 \quad \forall \delta>0$

Note: in (c), \mathbb{T} is identified with $[-\pi, \pi]$.

Theorem 7.10.

Theorem 7.2 on page 151 and Notes $1 / 5 / 11$ and FA 49

If $\left\{\varphi_{n} \in C(\mathbb{T}) \mid n \in \mathbb{N}\right\}$ is an approximate identity and $f \in C(\mathbb{T})$, then $\varphi_{n} * f$ converges uniformly to f as $n \rightarrow \infty$.

Note: the term"approximate identity" comes from this result, since $\left\{\varphi_{n}\right\}$ is an approximation to the identity.

Proof

$$
\begin{aligned}
f(x) & =\int_{\mathbb{T}} \varphi_{n}(y) f(x) d y \\
\left(\varphi_{n} * f\right)(x) & =\int_{\mathbb{T}} \varphi_{n}(y) f(x-y) d y \\
\left(\varphi_{n} * f\right)(x)-f(x) & =\int_{\mathbb{T}} \varphi_{n}(y)[f(x-y)-f(x)] d y
\end{aligned}
$$

- f is uniformly continuous, so there exists M such that $|f(x)| \leq M \forall x \in \mathbb{T}$
- $\exists \delta>0$ such that $|f(x)-f(y)| \leq \epsilon$ whenever $|x-y|<\delta$

$$
\begin{aligned}
\left|\left(\varphi_{n} * f\right)(x)-f(x)\right| & \leq \int_{-\pi}^{\pi} \varphi_{n}(y)|f(x-y)-f(x)| d y \\
& \leq \int_{|y|<\delta} \varphi_{n}(y)|f(x-y)-f(x)| d y+\int_{|y| \geq \delta} \varphi_{n}(y)|f(x-y)-f(x)| d y \\
& \leq \epsilon \int_{|y|<\delta} \varphi_{n}(y) d y+\int_{|y| \geq \delta} \varphi_{n}(y)[|f(x-y)|+|f(x)|] d y \\
& \leq \epsilon+2 M \int_{|y| \geq \delta} \varphi_{n}(y) d y
\end{aligned}
$$

Using property (c) of an approximate identity gives that $\varphi_{n} * f \rightarrow f$ uniformly in $C(\mathbb{T})$.

Remark 7.11. Revised Approximate Identity Definition

Notes 1/5/11

More generally, $\varphi_{n} \in L^{1}(\mathbb{T})$ is an approximate identity if
(a) $\int_{\mathbb{T}}\left|\varphi_{n}(x)\right| d x \leq M \quad \forall n \in \mathbb{N}$
(b) $\int_{\mathbb{T}} \varphi_{n}(x) d x=1$
(c) $\lim _{n \rightarrow \infty} \int_{\delta \leq|x| \leq \pi} \varphi_{n}(x) d x=0 \quad \forall \delta>0$

Theorem 7.12. Weierstrass Approximation Theorem
Theorem 7.3 on page 152 and Notes $1 / 5 / 11$

The trigonometric polynomials are dense in $C(\mathbb{T})$ with respect to the uniform norm.

Proof

- Let $f \in C(\mathbb{T})$
- Generate an approximate identity that is a trigonometric polynomial
- Define $\varphi_{n}=c_{n}(1+\cos x)^{n}=c_{n}\left[2 \cos ^{2}\left(\frac{x}{2}\right)\right]^{n}$ and choose c_{n} such that $\int_{\mathbb{T}} \varphi_{n}(x) d x=1$
- To show φ_{n} is an approximate identity, we need to show that $\forall \delta>0, \lim _{n \rightarrow \infty} \int_{|x|>\delta} \varphi_{n}(x) d x=0$
* Fix $\epsilon>0 . \forall x, \delta \leq|x| \leq \pi, \exists r \in(0,1)$ such that

$$
\begin{aligned}
&(1+\cos x)<r(1+\cos y) \\
& \varphi_{n}(x)<r^{n} \varphi_{n}(y) \\
& \delta \varphi_{n}(x)<r^{n} \int_{-\delta / 2}^{\delta / 2} \varphi_{n}(y) d y \\
& \delta \varphi_{n}(x)<r^{n} \\
& 0 \leq \varphi_{n}(x)<\frac{r^{n}}{\delta} \quad \forall x \text { such that } \delta \leq|x| \leq \pi
\end{aligned}
$$

- So $\varphi_{n} \rightarrow 0$ uniformly on $\delta \leq|x| \leq \pi$ as $n \rightarrow \infty$, and $\int_{|x|>\delta} \varphi_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$
- φ_{n} is an approximate identity, so $\varphi_{n} * f$ is a trigonometric polynomial, and $\varphi_{n} * f$ converges uniformly to f (See Theorem 7.10)

Corollary 7.13.
page 153 and 155 and Notes $1 / 5 / 11$

The trigonometric polynomials are dense in $L^{2}(\mathbb{T})$. That is, for any $f \in L^{2}(\mathbb{T})$,

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n x} \\
& \hat{f}_{n}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{T}} f(x) e^{-i n x} d x
\end{aligned}
$$

If $f \in L^{2}(\mathbb{T})$ then the Fourier series of f converges pointwise to f a.e. (Carleson).

Proof
Let $f \in L^{2}(\mathbb{T})$.

- Choose $g \in C(\mathbb{T})$ such that $\|f-g\|_{L^{2}}<\epsilon / 2$. We can do this because $C(\mathbb{T})$ is dense in $L^{2}(\mathbb{T})$.
- Pick a trigonometric polynomial p such that $\|g-p\|_{L^{2}}<\epsilon / 2 \sqrt{2 \pi}$.
- $\|g-p\|_{L^{2}}=\left(\int|g-p|^{2} d x\right)^{1 / 2} \leq\|g-p\|_{\infty} \sqrt{2 \pi}$
- $\|f-p\|_{L^{2}} \leq\|f-g\|_{L^{2}}+\|g-p\|_{L^{2}}<\epsilon / 2+\epsilon / 2$

Corollary 7.14.

Notes 1/5/11
$\left\{\left.\frac{1}{\sqrt{2 \pi}} e^{i n x} \right\rvert\, n \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{T})$.

Definition 7.15. Periodic Fourier Transform page 153 and Notes $1 / 7 / 11$

The Periodic Fourier Transform $\mathcal{F}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$ maps a function to its sequence of Fourier coefficients by

$$
\mathcal{F} f=\left(\hat{f}_{n}\right)_{n=-\infty}^{\infty}
$$

Thus, the L^{2} norm of a function can be computed by

$$
\int_{\mathbb{T}}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|\hat{f}_{n}\right|^{2}
$$

This implies that $\left(\hat{f}_{n}\right) \in \ell^{2}(\mathbb{Z})$. Furthermore, the Projection Theorem (6.13 in the book) implies that

$$
f_{N}(x)=\frac{1}{\sqrt{2 \pi}} \sum_{n=-N}^{N} \hat{f}_{n} e^{i n x}
$$

is the best approximation of f by a trigonometric polynomial of degree N in the L^{2}-norm.

Theorem 7.16. Parseval's Theorem
Notes 1/7/11

Given $f, g \in L^{2}(\mathbb{T})$, then

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} a_{n} e^{i n x} \\
g(x) & =\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} b_{n} e^{i n x} \\
\langle f, g\rangle & =\sum_{n \in \mathbb{Z}} \overline{a_{n}} b_{n}
\end{aligned}
$$

Proposition 7.17.

Proposition 7.4 on page 154

If $f, g \in L^{2}(\mathbb{T})$, then $f * g \in C(\mathbb{T})$ and

$$
\|f * g\|_{\infty} \leq\|f\|_{2}\|g\|_{2}
$$

Proof

$$
(f * g)(x)=\int_{\mathbb{T}} f(x-y) g(y) d y
$$

If $f, g \in C(\mathbb{T})$, then we can apply the Cauchy-Schwarz Inequality to get

$$
|f * g(x)| \leq\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

Taking the supremum of both sides yields

$$
\|f * g\|_{\infty} \leq\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

If $f, g \in L^{2}(\mathbb{T})$, then there exist sequences $\left(f_{k}\right),\left(g_{k}\right) \in C(\mathbb{T})$ such that $\left\|f-f_{k}\right\|_{2} \rightarrow 0$ and $\left\|g-g_{k}\right\|_{2} \rightarrow 0$ as $k \rightarrow \infty$. Also, the sequence $\left(f_{k} * g_{k}\right) \in C(\mathbb{T})$ is Cauchy with respect to the sup-norm, since

$$
\begin{aligned}
\left\|f_{j} * g_{j}-f_{k} * g_{k}\right\| & \leq\left\|\left(f_{j}-f_{k}\right) * g_{j}\right\|_{\infty}+\left\|f_{k} *\left(g_{j}-g_{k}\right)\right\|_{\infty} \\
& \leq\left\|f_{j}-f_{k}\right\|_{2}\left\|g_{j}\right\|_{2}+\left\|f_{k}\right\|_{2}\left\|g_{j}-g_{k}\right\|_{2} \\
& \leq M\left(\left\|f_{j}-f_{k}\right\|_{2}+\left\|g_{j}-g_{k}\right\|_{2}\right)
\end{aligned}
$$

where $M \geq\left\|f_{j}\right\|_{2}$ and $M \geq\left\|g_{k}\right\|_{2}$, since the sequences converge in $L^{2}(\mathbb{T})$. Since $C(\mathbb{T})$ is complete, the sequence $\left(f_{k} * g_{k}\right)$ converges uniformly to a continuous function $f * g \in C(\mathbb{T})$, and $f * g$ satisfies the inequality.

Theorem 7.18. Convolution Theorem
Theorem 7.5 on page 154 and Notes $1 / 10 / 11$

If $f, g \in L^{2}(\mathbb{T})$, then

$$
\begin{array}{ll}
\text { (Book) } & \widehat{(f * g)}_{n}=\sqrt{2 \pi} \hat{f}_{n} \hat{g}_{n} \\
\text { (Notes) } & \widehat{(f * g)}_{n}=\hat{f}_{n} \hat{g}_{n}
\end{array}
$$

Proof Outline

Compute $\widehat{(f * g)}{ }_{n}$, using Fubini's Theorem to change the order of integration.

Remark 7.19. Alternative bases for L^{2}
page 155 and Notes $1 / 7 / 11$

The non-normalized orthogonal basis:

$$
\begin{gathered}
\left\{e^{i n x}\right\} \\
\hat{f}_{n}=\frac{1}{2 \pi} \int_{\mathbb{T}} f(x) e^{-i n x} d x
\end{gathered}
$$

Sines and Cosines:

$$
\begin{gathered}
\{1, \cos (n x), \sin (n x) \mid n=1,2,3, \ldots\} \\
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \\
a_{0}=\frac{1}{\pi} \int_{\mathbb{T}} f(x) d x \quad a_{n}=\frac{1}{\pi} \int_{\mathbb{T}} f(x) \cos (n x) d x \quad b_{n}=\frac{1}{\pi} \int_{\mathbb{T}} f(x) \sin (n x) d x
\end{gathered}
$$

7.2 $\quad L^{1}$ Functions

Remark 7.20. L ${ }^{1}$ Functions

Notes $1 / 7 / 11$
$L^{1}(\mathbb{T})$ is the space of periodic functions $f: \mathbb{T} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{1}}=\int_{\mathbb{T}}|f(x)| d x<\infty
$$

Note that $L^{1}(\mathbb{T})$ is a Banach space but not a Hilbert space. We can define the Fourier coefficients of f as

$$
c_{n}=\int_{\mathbb{T}} f(x) e^{-i n x} d x
$$

Note that $\left|c_{n}\right| \leq \int|f(x)| d x$. We can write the trigonometric polynomial approximation of f as

$$
f(x) \sim \sum_{n \in \mathbb{Z}} c_{n} e^{i n x}
$$

However, this does not necessarily converge to f.

Lemma 7.21. Riemann-Lebesgue Lemma

Notes $1 / 7 / 11$ and $1 / 10 / 11$

If $f \in L^{1}(\mathbb{T})$ has Fourier coefficients c_{n}, then $c_{n} \rightarrow 0$ as $|n| \rightarrow \infty$.
Proof Outline ($1 / 7 / 11$)

- Prove for smooth functions (use Integration By Parts)
- Approximate non-smooth functions with smooth functions
$\underline{\text { Proof Outline (1/10/11) }}$
- Fix $\epsilon>0$
- The trigonometric polynomials are dense in $L^{1}(\mathbb{T})$, so we can pick a trigonometric polynomial p such that $\|f-p\|_{L^{1}}<\epsilon$
- If $\operatorname{deg} p=N$ and $n>N$, then

$$
\begin{aligned}
|\hat{f}(n)| & =\frac{1}{2 \pi}\left|\int f e^{-i n x} d x\right| \\
& =\frac{1}{2 \pi}\left|\int(f-p) e^{-i n x} d x\right| \quad \text { Note: } \int p e^{-i n x} d x=0 \forall n>N \text { by orthogonality } \\
& \leq \frac{1}{2 \pi}\|f-p\|_{L^{1}} \\
& \leq \frac{\epsilon}{2 \pi}<\epsilon
\end{aligned}
$$

Definition 7.22. Fourier Transform for $L^{1}(\mathbb{T})$
Notes 1/10/11

The Fourier Transform $\mathcal{F}: f \rightarrow \hat{f}, \mathcal{F}: L^{1}(\mathbb{T}) \rightarrow C_{0}(\mathbb{Z})$

$$
\begin{aligned}
& C_{0}(\mathbb{Z})=\left\{\left(c_{n}\right)_{n \in \mathbb{Z}} \mid c_{n} \rightarrow 0 \text { as }|n| \rightarrow \infty\right\} \\
& \left\|\left(c_{n}\right)\right\|_{\infty}=\max _{n \in \mathbb{Z}}\left|c_{n}\right|
\end{aligned}
$$

\mathcal{F} is a bounded linear map, with $\|\mathcal{F} f\|_{\infty} \leq\|f\|_{L^{1}}$ Note: \mathcal{F} is not onto.

Example 7.23. \mathcal{F} is not onto
Notes 1/10/11

There is no function whose Fourier coefficients are

$$
\hat{f}(n)=\frac{i \operatorname{sgn}(n)}{\log |n|} \quad|n| \geq 2
$$

7.3 Kernels and Summability Methods

Definition 7.24. Dirichlet Kernel

Notes 1/10/11 and FA 44

The Dirichlet kernel is

$$
\begin{aligned}
& D_{N}(x)=\frac{1}{2 \pi} \sum_{|n| \leq N} e^{i n x}=\frac{1}{2 \pi}\left[\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{x}{2}\right)}\right] \quad x \neq 0 \\
& D_{N}(0)=\frac{1}{2 \pi}(2 N+1)
\end{aligned}
$$

(See the Kernel Overview.)
Derivation of the Dirichlet Kernel

Suppose $f \in L^{1}(\mathbb{T}), f(x) \sim \sum \hat{f}_{n} e^{i n x}$. Define the $N^{\text {th }}$ partial sum of the Fourier series of f as

$$
\begin{aligned}
S_{N}(f)(x) & =\sum_{|n| \leq N} \hat{f}_{n} e^{i n x} \\
& =\frac{1}{2 \pi} \sum_{|n| \leq N}\left(\int f(y) e^{-i n y} d y\right) e^{i n x} \\
& =\frac{1}{2 \pi} \int\left(\sum_{|n| \leq N} e^{i n(x-y)}\right) f(y) d y \\
& =\int D_{N}(x-y) f(y) d y=D_{N} * f
\end{aligned}
$$

Figure 1: Dirichlet kernels.

Example 7.25. D_{N} is not an approximate identity
Notes 1/12/11

The Dirichlet kernel is not an approximate identity.

$$
\begin{aligned}
& \text { (a) } \int D_{N} d x=\int\left(\frac{1}{2 \pi} \sum e^{i n x}\right) d x=\frac{1}{2 \pi} \cdot 2 \pi=1 \\
& \text { (b) } \int \frac{4}{\pi^{2}} \sum_{k=1}^{N} \frac{1}{k} \leq\left|D_{N}\right| d x \leq \frac{4}{\pi^{2}}\left(\sum_{k=1}^{N} \frac{1}{k}\right)+2+\frac{\pi}{4} \\
& \text { As } N \rightarrow \infty, \int\left|D_{N}\right| d x=\frac{4}{\pi} \log N+O(1) \rightarrow \infty \text { as } N \rightarrow \infty \\
& \text { (c) } \text { For } \delta>0, \lim _{N \rightarrow \infty} \int_{|x|>\delta}\left|D_{N}\right| d x \nrightarrow 0
\end{aligned}
$$

Thus, we can't conclude that if $f \in C(\mathbb{T})$ or $f \in L^{1}(\mathbb{T})$ then $D_{N} * f \rightarrow f$ uniformly

Theorem 7.26. Absolute Convergence
HW 3 Problem 2 and FA page 41

If $f \in C(\mathbb{T})$ and its Fourier series is absolutely convergent, $\sum_{n \in \mathbb{Z}}|\hat{f}(n)|<\infty$, then the Fourier series converges uniformly to f.

Let $\mathcal{A}(\mathbb{T})$ denote the space of integrable functions whose Fourier coefficients are absolutely convergent. That is, $f \in \mathcal{F}(\mathbb{T})$ if $\sum_{n \in \mathbb{Z}}|\hat{f}(n)|<\infty$. If $f \in \mathcal{A}(\mathbb{T})$, then $f \in C(\mathbb{T})$.

Definition 7.27. Summability Method: Cesáro Summation

Notes $1 / 12 / 11$ and FA 52

The $N^{\text {th }}$ Cesáro sum of a series is the average of the first N partial sums in the series:

$$
\sigma_{N}=\frac{s_{0}+s_{1}+\ldots+s_{N-1}}{N}
$$

Example 7.28. Cesáro Summation Example
Notes 1/12/11

Consider the series $\sum_{n=1}(-1)^{n}=1-1+1-1+1 \ldots$. Then the nth partial sum is

$$
S_{N}= \begin{cases}1 & N \text { odd } \\ 0 & N \text { even }\end{cases}
$$

Consider the averages of partial sums:

$$
\begin{aligned}
& \sigma_{N}=\frac{S_{1}+\ldots+S_{N}}{N} \\
& \sigma_{N}=\left\{\begin{array}{cl}
\frac{1}{\frac{1}{2}(N+1)} \\
N & \frac{1}{2}+\frac{1}{2 N}
\end{array} \quad N\right. \text { even }
\end{aligned} \rightarrow \frac{1}{2} \text { as } N \rightarrow \infty
$$

Thus, $\sum_{n=1}(-1)^{n}=\frac{1}{2}(\mathrm{C})$.

Theorem 7.29.

Notes 1/14/11

Cesáro summation is regular, meaning that if $\sum a_{n}=s$ then $\sum a_{n}=s$ (C).

Definition 7.30. Fejér Kernel
Notes 1/12/11

The Fejér Kernel is:

$$
\begin{aligned}
& K_{N}(x)=\frac{1}{2 \pi} \sum_{|n| \leq N}\left(1-\frac{|n|}{N+1}\right) e^{i n x} \\
& K_{N}(x)=\frac{1}{2 \pi(N+1)}\left[\frac{\sin \left(\frac{(N+1) x}{2}\right)}{\sin \left(\frac{x}{2}\right)}\right]^{2}
\end{aligned}
$$

(See the Kernel Overview.)
Proof (that the two forms are equivalent)

- Consider

$$
\left[\frac{1}{2}\left(e^{i x}+e^{-i x}\right)-1\right] K_{N}(x)=\frac{1}{2 \pi N}\left(\frac{1}{2} e^{i(N+1) x}+\frac{1}{2} e^{-i(N+1) x}-1\right)
$$

- Use the fact that

$$
\left(\sin \frac{x}{2}\right)^{2}=-\frac{1}{4}\left(e^{i x}-2+e^{-i x}\right)
$$

Derivation of the Fejér Kernel
Form the $N^{\text {th }}$ Cesáro mean of the Fourier series:

$$
\begin{aligned}
\sigma_{N}(f)(x) & =\frac{S_{0} f+S_{1} f+\ldots+S_{N} f}{N+1} \\
& =\frac{1}{2 \pi} \sum_{|n| \leq N}\left(1-\frac{|n|}{N+1}\right) \hat{f}(n) e^{i n x} \\
& =K_{N} * f
\end{aligned}
$$

Figure 2: Fejér kernels.

Theorem 7.31.

Notes 1/12/11
K_{N} is an approximate identity. If $f \in C(\mathbb{T})$, then $\sigma_{N} f=K_{N} * f \rightarrow f$ uniformly and if $f \in L^{p}(\mathbb{T})$, then $\sigma_{N} f=K_{N} * f \rightarrow f$ in $L^{p}(\mathbb{T})$.

Corollary 7.32. $1 / 12 / 11$

Suppose $f, g \in L^{1}(\mathbb{T})$ and $\hat{f}=\hat{g}$. Then $f=g$.

Proof

- Set $h=f-g$
- Then $\hat{h}(n)=0$
- $K_{N} * h \rightarrow h$ in L^{1}
- $K_{N} * h=0 \forall N$, so $h=0 \Rightarrow f=g$

Note: we could have used the original approximate identity for this proof.
Definition 7.33. Summability Method: Abel Summation
Notes $1 / 14 / 11$

$$
\begin{align*}
& S=\sum_{n=0}^{\infty} a_{n} \\
& S=\lim _{r \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} r^{n} \tag{A}
\end{align*}
$$

Theorem 7.34.
Notes $1 / 14 / 11$

Abel summation is regular.

Proof

- We will use summation by parts. Suppose $S=\sum_{n=0}^{\infty} a_{n}, S_{n}=\sum_{k=0}^{n} a_{k}, S_{n} \rightarrow S$ as $n \rightarrow \infty$

$$
\begin{array}{rlrl}
\sum_{n=0}^{\infty} a_{n} r^{n} & =a_{0}+\sum_{n=1}^{\infty}\left(S_{n}-S_{n-1}\right) r^{n} & \left(\text { Since } a_{n}=S_{n}-S_{n-1}\right) \\
& =a_{0}+\sum_{n=1}^{\infty}\left(S_{n}-S_{n} r^{n+1}\right) & \quad \text { (re-index) } \\
& =a_{0}+(1-r) \sum_{n=1}^{\infty}\left(S_{n} r^{n}\right)-S_{0} r & \\
& =(1-r) \sum_{n=0}^{\infty} S_{n} r^{n} & \left(S_{0}=a_{0}\right) \\
\left|\sum_{n=0}^{\infty}\left(a_{n} r^{n}\right)-s\right| & =(1-r)\left|\sum_{n=0}^{\infty}\left(S_{n}-S\right) r^{n}\right| \leq(1-r) \sum_{n=0}^{\infty}\left|S_{n}-S\right| r^{n} & S=(1-r) \sum_{n=0}^{\infty} r^{n} \\
& & S-r) \sum_{n=0}^{\infty} S r^{n}
\end{array}
$$

- Fix $\epsilon>0$. Choose N such that $\left|S_{n}-S\right|<\epsilon / 2$ for $n>N$. Then

$$
\left|\sum_{n=0}^{\infty} a_{n} r^{n}-S\right|<(1-r) \sum_{n=0}^{N}\left|S_{n}-S\right| r^{n}+\frac{\epsilon}{2} \underbrace{(1-r) \sum_{n=N+1}^{\infty} r^{n}}_{\leq 1}
$$

- Choose $(1-r)<\delta$, where $\delta \sum_{n=0}^{N}\left|S_{n}-S\right|<\epsilon / 2$
- $n>N \Rightarrow\left|\sum_{n=0}^{\infty} a_{n} r^{n}-S\right|<\epsilon / 2+\epsilon / 2=\epsilon$

Theorem 7.35. Tauber \mathcal{E} Littlwood
Notes 1/14/11

Suppose that $\lim _{r \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} r^{n}$ exists and $n a_{n}=O(1)$ as $n \rightarrow \infty$. (i.e. there is an M such that $\left|n a_{n}\right| \leq M \forall n$.) Then $\sum a_{n}$ exists (and is equal to the limit).

Definition 7.36. Poisson Kernel
Notes $1 / 14 / 11$

Identify \mathbb{T} as the unit circle in \mathbb{C}, i.e.

$$
\begin{aligned}
& \mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\} \Leftrightarrow z=e^{i \theta} \\
& f(\theta) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n \theta} \\
& \hat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i n \theta} d \theta \\
& f_{r}(\theta)=\sum_{n \in \mathbb{Z}} \hat{f}(n) r^{|n|} e^{i n \theta} \\
&=P_{r} * f(\theta)
\end{aligned}
$$

The Poisson kernel is

$$
\begin{aligned}
& P_{r}(\theta)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n \theta}, \quad 0<r<1 \\
& P_{r}(\theta)=\frac{1}{2 \pi}\left[\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}\right] \\
& P_{r}(0)=\frac{1}{2 \pi} \frac{1-r^{2}}{(1-r)^{2}}
\end{aligned}
$$

(See the Kernel Overview.)

Figure 3: Poisson kernels.

Remark 7.37. Properties of the Poisson Kernel
Notes 1/14/11

- The Poisson kernel is not a trigonometric polynomial
- The Poisson kernel satisfies:
(a) $\int P_{r}(\theta) d \theta=1$
(b) $P_{r} \geq 0$
(c) $P_{r}(\theta) \rightarrow 0$ uniformly as $r \rightarrow 1^{-}$on $\delta<|\theta|<\pi$

Theorem 7.38.

Notes 1/14/11
P_{r} is an approximate identity as $r \rightarrow 1^{-}$.

Corollary 7.39.
Notes 1/14/11

If $f \in L^{p}(\mathbb{T}), 1 \leq p<\infty$, then $P_{r} * f \rightarrow f$ as $r \rightarrow 1^{-}$.
If $f \in C(\mathbb{T})$, then $P_{r} * f \rightarrow f$ uniformly.

Remark 7.40. Kernel Overview

Dirichlet

- Equations:

$$
\begin{aligned}
& -D_{N}(x)=\frac{1}{2 \pi} \sum_{|n| \leq N} e^{i n x} \\
& -D_{N}(x)=\frac{1}{2 \pi}\left[\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{x}{2}\right)}\right], \quad x \neq 0 \\
& -D_{N}(0)=\frac{1}{2 \pi}(2 N+1)
\end{aligned}
$$

- Summability Method: Standard
- Approximate Identity: No

Fejér

- Equations:

$$
\begin{aligned}
& -K_{N}(x)=\frac{1}{2 \pi} \sum_{|n| \leq N}\left(1-\frac{|n|}{N+1}\right) e^{i n x} \\
& -K_{N}(x)=\frac{1}{2 \pi(N+1)}\left[\frac{\sin \left(\frac{(N+1) x}{2}\right)}{\sin \left(\frac{x}{2}\right)}\right]^{2}
\end{aligned}
$$

- Summability Method: Cesáro
- Approximate Identity: Yes

Poisson

- Equations:
$-P_{r}(\theta)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n \theta}, \quad 0<r<1$
$-P_{r}(\theta)=\frac{1}{2 \pi}\left[\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}\right]$
$-P_{r}(0)=\frac{1}{2 \pi} \frac{1-r^{2}}{(1-r)^{2}}$
- Summability Method: Abel
- Approximate Identity: Yes, as $r \rightarrow 1^{-}$

7.4 Harmonic Functions

Definition 7.41. Harmonic

Notes 1/19/11

Let $\Omega \subset \mathbb{R}^{n}$ be an open set.
$u: \Omega \rightarrow \mathbb{R}$ is harmonic on Ω if $\Delta u=0$ in Ω.
Recall: $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}}$

Remark 7.42. Harmonic ${ }^{6}$ Analytic Functions

Notes 1/19/11

There is a close connection in 2-D between harmonic and analytic (holomorphic) functions.

$$
\begin{aligned}
& F: \Omega \rightarrow \mathbb{C} \\
& F(z)=u(x, y)+i v(x, y)
\end{aligned}
$$

where u, v satisfy the Cauchy-Riemann equations:

$$
\left.\begin{array}{c}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array}\right\} \Rightarrow u_{x x}+v_{y y}=0
$$

Example 7.43. $\Delta u=0$ on the Complex Unit Disk

Notes 1/19/11

Consider the Dirichlet problem on $D=\left\{(x, y) \subset \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$:

$$
\begin{aligned}
& \Delta u=0 \text { in } D \\
& u=f \text { on } \partial D=\pi
\end{aligned}
$$

Here $f \in C(\partial D)$.
Want $u \in C^{2}(D) \cap C(\bar{D})$.
Use separation of variables:

$$
u(r, \theta)=F(r) G(\theta)
$$

We get that:

$$
\begin{aligned}
& G(\theta)=e^{i n \theta} \\
& F(r)=A r^{n}+B r^{-n} \quad n \neq 0 \\
& F(r)=A+B \ln r \quad n=0
\end{aligned}
$$

We want the solution to belong to $C^{2}(D)$, so we set

$$
\begin{aligned}
F(r) & =r^{|n|}, \quad n \in \mathbb{Z} \\
\Rightarrow u(r, \theta) & =\sum_{n \in \mathbb{Z}} c_{n} r^{|n|} e^{i n \theta}
\end{aligned}
$$

We want that:

$$
\begin{aligned}
u(1, \theta) & =f(\theta)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n \theta} \\
\Rightarrow c_{n} & =\hat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i n \theta} d \theta
\end{aligned}
$$

Note that:

$$
u(r, \theta)=\underbrace{\left(P_{r} * f\right)(\theta)}_{\text {Green's function }}=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n \theta}
$$

Remark 7.44.

Notes 1/19/11
$P_{r}(\theta)$ is a $C^{\infty}(D)$ function of r, θ in $0 \leq r<1$, and

$$
\Delta P_{r}(\theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial P_{r}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} P_{r}}{\partial \theta^{2}}=0
$$

Theorem 7.45.

Notes 1/19/11

Suppose that $f \in C(\partial D)$. Then $u(r, \theta)=\left(P_{r} * f\right)(\theta)$ is a solution of

$$
\left\{\begin{array}{cl}
\Delta u=0 & \text { in } D \\
u=f & \text { on } \partial D
\end{array}\right.
$$

Moreover, $u \in C^{\infty}(D) \cap C(\bar{D})$.
Proof

- $u(r, \theta)=\int_{\mathbb{T}} P_{r}(\theta-\phi) f(\phi) d \phi$ (by Lebesgue Dominated Convergence Theorem)
- So $u \in C^{\infty}(D)$, and $\Delta u=0$
- Moreover, $P_{r} * f \rightarrow f$ uniformly as $r \rightarrow 1^{-}$
- So $u \in C(\bar{D})$

Theorem 7.46.

Notes 1/19/11

There is a unique solution $u \in C^{2}(D) \cap C(\bar{D})$ of the Dirichlet problem. (Can be proved using the maximum principle and/or energy estimates.)

Corollary 7.47.

Notes 1/19/11

Every harmonic function $u \in C^{2}(D) \cap C(\bar{D})$ is smooth and has the mean value property:

$$
u(r=0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

7.5 Hausdorff-Young Inequality

Remark 7.48. Background Info/Review

Notes 1/21/11

- Function Spaces
- Let $1 \leq p<\infty$. If $f \in L^{p}(\mathbb{T})$, then $f: \mathbb{T} \rightarrow \mathbb{C}$ and $\|f\|_{p}=\left(\int_{\mathbb{T}}|f|^{p} d x\right)^{1 / p}<\infty$.
$-f=g$ in L^{p} if $f=g$ a.e.
- In $L^{\infty},\|f\|_{\infty}=\operatorname{ess} \sup _{\mathbb{T}}|f(x)|=\inf _{\text {measure } N=0} \sup \{|f(x)| \mid x \in \mathbb{T} \backslash N\}$
- Sequence Spaces
- Let $1 \leq q<\infty$. If $\hat{f} \in \ell^{q}(\mathbb{Z}), \hat{f}: \mathbb{Z} \rightarrow \mathbb{C}$, then $\|\hat{f}\|_{q}=\left(\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{q}\right)^{1 / q}<\infty$
$-\operatorname{In} \ell^{\infty},\|\hat{f}\|_{\infty}=\sup _{n \in \mathbb{Z}}|\hat{f}(n)|$
- Question: When is $\mathcal{F}: L^{p}(\mathbb{T}) \rightarrow \ell^{q}(\mathbb{Z}), f \mapsto \hat{f}$, a bounded linear map?
$-\mathcal{F}: L^{2} \rightarrow \ell^{2}$
* $\|\mathcal{F} f\|_{\ell^{2}}=\frac{1}{\sqrt{2 \pi}}\|f\|_{L^{2}}$
* \mathcal{F} is onto
$-\mathcal{F}: L^{1} \rightarrow C_{0} \subset \ell^{\infty}$
* $\|\mathcal{F} f\|_{\ell^{\infty}} \leq \frac{1}{2 \pi}\|f\|_{L^{1}}$

Theorem 7.49. Hausdorff-Young Theorem/Inequality
Notes 1/21/11

Suppose $1 \leq p \leq 2$ and $2 \leq p^{\prime} \leq \infty$ are Hölder conjugates $\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$.
Then $\mathcal{F}: L^{p}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ is a bounded linear map, i.e. $\|\hat{f}\|_{\ell^{p^{\prime}}} \leq C_{p}\|f\|_{L^{p}}$.

Remark 7.50.

Notes 1/21/11

1. Interpolation result (Riesz-Thorin Theorem)
2. \mathcal{F} is not onto if $1 \leq p<2$.

- Ex: $p=1, p^{\prime}=\infty$, then $f \in L^{1} \rightarrow \hat{f} \in C_{0} \Rightarrow$ not all of ℓ^{∞}
- $\sum_{|n| \geq 2} \frac{i \operatorname{sgn}(n)}{\log n} e^{i n x}$ is not the Fourier series of any L^{1} function

3. This result does not hold for $2<p \leq \infty$
4. If $f \in L^{p}$ (or even if $f \in C$), one can't say much about the Fourier coefficients \hat{f} beyond the fact that $f \in L^{p}$ so $\hat{f} \in \ell^{2}$

- Example:

$$
\begin{aligned}
f(x) & =\sum_{n=2}^{\infty} \frac{e^{i n \log n}}{n^{1 / 2}(\log n)^{2}} e^{i n x} \\
\hat{f}(n) & =\frac{e^{i n \log n}}{n^{1 / 2}(\log n)^{2}} \\
\sum|\hat{f}(n)|^{2} & =\sum \frac{1}{n(\log n)^{4}}<\infty
\end{aligned}
$$

$\hat{f} \in \ell^{2}$ so $f \in L^{2}$. Is $\hat{f} \in \ell^{p}$ for $p<2$, e.g. $p=2-\epsilon$?

$$
\sum|\hat{f}(n)|^{2-\epsilon}=\sum \frac{1}{n^{1-\epsilon / 2}(\log n)^{4-2 \epsilon}}=\infty
$$

So $\hat{f} \notin \ell^{p^{\prime}}$ for any $p^{\prime}<2$

7.6 Fourier Series of Differentiable Functions (Section 7.2 in H\&N)

Definition 7.51. Fourier Series Differentiation
Notes 1/24/11

$$
\begin{aligned}
f(x) & =\sum_{n \in \mathbb{Z}} c_{n} e^{i n x} \\
f^{\prime}(x) & =\sum_{n \in \mathbb{Z}} i n c_{n} e^{i n x} \\
\mathcal{F} & : \frac{d}{d x} \mapsto i n
\end{aligned}
$$

Proposition 7.52.

Notes 1/24/11

If $f \in C^{1}(\mathbb{T})$, then

$$
\widehat{f}^{\prime}(n)=i n \hat{f}(n)
$$

(Actually, it is sufficient that $f \in L^{1}(\mathbb{T})$.)

See Definition 7.56 and Proposition 11.21.

Definition 7.53. Orders

Notes 1/24/11

If $\phi, \psi: \mathbb{Z} \rightarrow \mathbb{C}$, we say that

- $\phi=O(\psi)$ as $|n| \rightarrow \infty$ if there exists C such that $|\phi(n)| \leq C|\psi(n)| \forall n \in \mathbb{Z}$
- $\phi=o(\psi)$ as $|n| \rightarrow \infty$ if $\lim _{|n| \rightarrow \infty}\left|\frac{\phi(n)}{\psi(n)}\right|=0$

Theorem 7.54.

Notes 1/24/11

If $f \in C^{1}(\mathbb{T})$, then $\hat{f}(n)=o\left(\frac{1}{n}\right)$ as $|n| \rightarrow \infty$
If $f \in C^{k}(\mathbb{T})$, where $k \in \mathbb{N}$, then $\hat{f}(n)=o\left(\frac{1}{n^{k}}\right)$ as $|n| \rightarrow \infty$

Proof

- $\widehat{f}^{\prime}(n)=i n \hat{f}(n)$ if $f \in C^{1}$
- $\hat{f}(n)=\frac{1}{i n} \widehat{f}^{\prime}(n), n \neq 0$, and $\widehat{f}^{\prime}(n) \rightarrow 0$ as $|n| \rightarrow \infty$ by the Riemann-Lebesgue Lemma
- So $\hat{f}(n)=o\left(\frac{1}{n}\right)$ as $|n| \rightarrow \infty$
- In general, $\hat{f}(n)=\frac{1}{(i n)^{k}} \widehat{f^{k}}(n)=o\left(\frac{1}{n^{k}}\right)$

Corollary 7.55.

page 157 and Notes $1 / 24 / 11$

If $f \in C^{\infty}(\mathbb{T})$, then $\lim _{|n| \rightarrow \infty}|n|^{k} \hat{f}(n)=0 \forall k \in \mathbb{N}$.
In other words, the Fourier coefficients of smooth functions form a rapidly decreasing sequence that decreases faster than any polynomial. Heuristically, a smooth function contains a small amount of high frequency components.

Compare to Theorem 11.18.

Definition 7.56. Weak L^{2}-derivatives (1)
Notes 1/24/11

Suppose that $f \in L^{2}(\mathbb{T})$ such that $\sum_{n \in \mathbb{Z}} n^{2}|\hat{f}(n)|^{2}<\infty$. Then we define the weak L^{2}-derivative $g=f^{\prime} \in L^{2}(\mathbb{T})$ by

$$
g(x)=\sum_{n \in \mathbb{Z}} i n \hat{f}(n) e^{i n x}
$$

See Proposition 7.52 and Proposition 11.21.

Definition 7.57. Sobolev Space (1)
page 158 and Notes $1 / 24 / 11$

$$
\begin{aligned}
& H^{1}(\mathbb{T})=\left\{f \in L^{2}(\mathbb{T}) \mid f^{\prime} \in L^{2}(\mathbb{T})\right\} \\
& \langle f, g\rangle_{H^{1}}=\int_{\mathbb{T}}\left(\bar{f} g+\overline{f^{\prime}} g^{\prime}\right) d x=\sum_{n \in \mathbb{Z}}\left(1+n^{2}\right) \overline{\hat{f}(n)} g(n) \\
& \|f\|_{H^{1}}=\left[\int_{\mathbb{T}}\left(|f|^{2}+\left|f^{\prime}\right|^{2}\right) d x\right]^{1 / 2}
\end{aligned}
$$

In other words, $f \in H^{1}(\mathbb{T})$ iff f and its weak derivative f^{\prime} (defined by integration by parts) belong to $L^{2}(\mathbb{T})$.

Definition 7.58. Integration By Parts

Notes $1 / 24 / 11$

For $f, g \in H^{1}$:

$$
\begin{aligned}
\int_{\mathbb{T}} \overline{f^{\prime}} g d x & =2 \pi \sum \overline{\hat{f}^{\prime}(n)} \hat{g}(n) \\
& =2 \pi \sum \overline{\operatorname{in\hat {f}}(n)} \hat{g}(n) \\
& =-2 \pi \sum \overline{\hat{f}(n)} i n \hat{g}(n) \\
& =-2 \pi \sum \overline{\hat{f}(n)} \widehat{g^{\prime}}(n) \\
& =-\int_{\mathbb{T}} \bar{f} g^{\prime} d x
\end{aligned}
$$

Definition 7.59. Weak Derivative (2) page 159 and Notes $1 / 24 / 11$

A function $g \in L^{1}(\mathbb{T})$ is the weak derivative of a function $f \in L^{1}(\mathbb{T})$, written $g=f^{\prime}$, if for every $\phi \in C^{\infty}(\mathbb{T})$ we have

$$
\int_{\mathbb{T}} f \phi^{\prime} d x=-\int_{\mathbb{T}} g \phi d x
$$

In other words, we are using integration by parts $\left(\int_{\mathbb{T}} \overline{f^{\prime}} g d x=-\int_{\mathbb{T}} \bar{f} g^{\prime} d x\right)$, to define f^{\prime} pointwise a.e. We determine $\hat{g}(n) \forall n$ by choosing $\phi=e^{-i n x}$.

Compare to Distributional Derivative, Definition 11.10.

Example 7.60. Weak Derivative of $f(x)=|x|$
Notes 1/26/11

$$
f(x)=|x| \quad-\pi<x<\pi
$$

$f \in C(\mathbb{T})$, but its standard derivative $f^{\prime} \notin C(\mathbb{T})$ because $f^{\prime}(0)$ and $f^{\prime}(\pi)$ don't exist. We shall see if $g=f^{\prime}$ (weak derivative) exists. We want:

$$
\begin{aligned}
\int g \phi d x & =-\int f \phi^{\prime} d x \\
& =-\int_{0}^{\pi} x \phi^{\prime} d x+\int_{-\pi}^{0} x \phi^{\prime} d x \\
& =-\left.x \phi\right|_{0} ^{\pi}+\int_{0}^{\pi} \phi d x+\left.x \phi\right|_{-\pi} ^{0}-\int_{-\pi}^{0} \phi d x \\
& ==\pi \phi(\pi)+\underline{\pi} \phi(-\pi)+\int_{-\pi}^{\pi} \operatorname{sgn} x \phi d x
\end{aligned}
$$

We conclude that $\int f \phi x=-\int g \phi d x \forall \phi \in C^{\infty}(\mathbb{T})$ if $g(x)=\operatorname{sgn} x$.

Example 7.61. Weak Derivative of $f(x)=\operatorname{sgn} x$
Notes $1 / 26 / 11$

$$
\begin{aligned}
\int h \phi d x & =-\int g \phi^{\prime} d x \\
& =-\int_{0}^{\pi} \phi^{\prime} d x+\int_{-\pi}^{0} \phi^{\prime} d x \\
& =-[\phi(\pi)-\phi(0)]+[\phi(0)-\phi(-\pi)] \\
& =2[\phi(0)-\phi(\pi)]
\end{aligned}
$$

There is no such $h \in L^{1}$. To see this, take $\phi=\frac{1}{2 \pi} e^{-i n x} \in C^{\infty}(\mathbb{T})$.

$$
\hat{h}(n)=\frac{1}{\pi}\left[1-e^{i n \pi}\right]=\left\{\begin{array}{cl}
\frac{2}{\pi} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

This contradicts the Riemann-Lebesge Lemma, and therefore there is no such $h \in L^{1}$.

Proposition 7.62.

Notes $1 / 26 / 11$
f is weakly differentiable with $f \in L^{1}$ iff it is absolutely continuous.

Definition 7.63. Absolutely Continuous

http://en.wikipedia.org/wiki/Absolute_continuity\#Absolute_continuity_of_functions
f is absolutely continuous if it has a derivative f^{\prime} a.e., the derivative is Lebesgue integrable, and

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t
$$

Theorem 7.64.

Notes 1/26/11

If f is weakly differentiable with weak derivative $g=f^{\prime} \in L^{1}(\mathbb{T})$, then

$$
\hat{g}(n)=i n \hat{f}(n)
$$

$\underline{\text { Proof }}$

$$
\hat{g}(n)=\frac{1}{2 \pi} \int g(x) e^{-i n x} d x=-\frac{1}{2 \pi} \int f(x) e^{-i n x} d x=i n \hat{f}(n)
$$

Proposition 7.65.

Notes $1 / 26 / 11$

A function $f \in L^{2}(\mathbb{T})$ has a weak derivative $g \in L^{2}(\mathbb{T})$ iff

$$
\sum_{n \in \mathbb{Z}} n^{2}|\hat{f}(n)|^{2}<\infty
$$

and then

$$
g(x)=\sum_{n \in \mathbb{Z}} i n \hat{f}(n) e^{i n x}
$$

Definition 7.66. Sobolev Space (2)
Notes $1 / 26 / 11$

The Sobolev space $W^{1, p}(\mathbb{T}), 1 \leq p \leq \infty$, consists of all functions $f: \mathbb{T} \rightarrow \mathbb{C}$ s.t. $f \in L^{p}(\mathbb{T})$, $f^{\prime} \in L^{p}(\mathbb{T})$. If $p=2$, we write $W^{1,2}(\mathbb{T})=H^{1}(\mathbb{T})$ (where the H is because it is a Hilbert space).

A function $f \in H^{1}(\mathbb{T})$ iff

$$
\sum_{n \in \mathbb{Z}}\left(1+n^{2}\right)|\hat{f}(n)|^{2}<\infty
$$

and

$$
\begin{aligned}
\|f\|_{H^{1}} & =\left(\int|f|^{2} d x+\int\left|f^{\prime}\right|^{2} d x\right)^{1 / 2} \\
& =\left(\|f\|_{L^{2}}^{2}+\left\|f^{\prime}\right\|_{L^{2}}^{2}\right)^{1 / 2} \\
& =\left(2 \pi \sum_{n \in \mathbb{Z}}\left(1+n^{2}\right)|\hat{f}(n)|^{2}\right)^{1 / 2}
\end{aligned}
$$

Theorem 7.67. Sobolev Embedding Theorem

Notes 1/26/11

If $f \in H^{1}(\mathbb{T})$ then $f \in C(\mathbb{T})$ and

$$
\|f\|_{\infty} \leq C\|f\|_{H^{1}}
$$

$J: H^{1} \rightarrow C$ (Embedding), $f \mapsto f$.

$\underline{\text { Proof }}$

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}|\hat{f}(n)| & =\sum_{n \in \mathbb{Z}} \frac{1}{\left(1+n^{2}\right)^{1 / 2}}\left(1+n^{2}\right)^{1 / 2}|\hat{f}(n)| \\
& \leq\left(\sum_{n \in \mathbb{Z}} \frac{1}{\left(1+n^{2}\right)^{1 / 2}}\right)\left(\sum_{n \in \mathbb{Z}}\left(1+n^{2}\right)|\hat{f}(n)|\right) \\
& \leq C\|f\|_{H^{1}}
\end{aligned}
$$

It follows that $f \in C(\mathbb{T})$ because the Fourier series converges uniformly to f (see Theorem 7.26) and

$$
\|f\|_{\infty} \leq \sum_{n \in \mathbb{Z}}|\hat{f}(n)| \leq C\|f\|_{H^{1}}
$$

7.7 Chapter Summary

This chapter explores the spaces $L^{p}(\mathbb{T}), p \in[1, \infty)$, with special attention given to the Hilbert space $L^{2}(\mathbb{T})$. These spaces are the completion of $C(\mathbb{T})$ with respect to the L^{p}-norm; thus, $C(\mathbb{T})$ is dense in $L^{p}(\mathbb{T})$ for $p \in[1, \infty)$. Since \mathbb{T} has finite Lebesgue measure, we can use Hölder's Inequality to show that for $p>q,\|\cdot\|_{p} \geq\|\cdot\|_{q}$, which implies that $L^{p}(\mathbb{T}) \subset L^{q}(\mathbb{T})$. We define the convolution of two functions and what it means for a family of functions to be an approximate identity, and we use these tools to prove the Weierstrass Approximation Theorem, which says that the trigonometric polynomials are dense in $C(\mathbb{T})$ with respect to the uniform norm. Since uniform convergence implies L^{2} convergence, it follows that the functions $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$ form an orthonormal basis for $L^{2}(\mathbb{T})$. Thus, for all $f \in L^{2}(\mathbb{T})$, we have that

$$
f(x)=\sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n x}
$$

where the equality is in the L^{2} sense. A result from Carleson tells us that the Fourier series of f converges pointwise to f a.e.

Next we explore some properties of Fourier series and Fourier coefficients. Let $f, g \in L^{2}(\mathbb{T})$. We use the density of $C(\mathbb{T})$ in $L^{2}(\mathbb{T})$ to prove the Convolution Theorem, which allows us to express the Fourier coefficients of $f * g$ in terms of those of f and $g:(\widehat{(f * g})_{n}=\sqrt{2 \pi} \hat{f}_{n} \hat{g}_{n}$. Parseval's Theorem allows us to compute $\langle f, g\rangle$ using the Fourier coefficients of f and $g:\langle f, g\rangle=\sum_{n=-\infty}^{\infty} \overline{\hat{f}_{n}} \hat{g}_{n}$.

Now we examine the Fourier series of differentiable functions. Using integration by parts, we show that

$$
\hat{f}_{n}^{\prime}=i n \hat{f}_{n} .
$$

This gives us the concept of a weak derivative, since the derivative of f may not be continuous; e.g. $f(x)=|x|$. We define the Sobolev space $H^{k}(\mathbb{T})$ as the space of $L^{2}(\mathbb{T})$ functions with k weak derivatives. And since the boundary terms on \mathbb{T} vanish, we have that $\left\langle f^{\prime}, g\right\rangle=-\left\langle f, g^{\prime}\right\rangle$ for $f, g \in H^{1}(\mathbb{T})$. Thus, we may define the weak derivative of a function using integration by parts: $g \in L^{1}(\mathbb{T})$ is the weak derivative of $f \in L^{1}(\mathbb{T})$ if

$$
\int_{\mathbb{T}} f \phi^{\prime} d x=-\int_{\mathbb{T}} g \phi d x \quad \forall \phi \in C^{\infty}(\mathbb{T}) .
$$

Finally, we prove a special case of the Sobolev Embedding Theorem: if $f \in H^{k}(\mathbb{T})$ for $k>1 / 2$, then $f \in C(\mathbb{T})$.
In addition, Hunter briefly discussed $L^{1}(\mathbb{T})$. We can define the Fourier series of an L^{1} function, but we cannot guarantee that it converges to the function. Our main result is the Riemann-Lebesgue Lemma, which says that the Fourier coefficients of an L^{1} function decay to zero as $n \rightarrow \infty$. Hunter then discussed 3 kernels: the Dirichlet kernel (standard summation), Fejér kernel (Cesáro summation), and Poisson kernel (Abel summation). These kernels are related to the concept of approximate identities, and we convolve the kernels with a function f. He covered harmonic functions, and our main result is that we can use the Poisson kernel to solve the two-dimensional Laplace equation.

11 Distributions and the Fourier Transform

11.1 Periodic Distributions

Definition 11.1. Test Functions

Notes $1 / 28 / 11$ and http://en.wikipedia.org/wiki/Distribution_\(mathematics\) and Hunter's Notes page 51

We define our space of test functions as:
$\mathcal{D}(\mathbb{T})=C^{\infty}(\mathbb{T})$ with the following topology:
$\varphi_{n} \rightarrow \varphi \in \mathcal{D}$ if $\varphi_{n}^{(k)} \rightarrow \varphi^{(k)}$ uniformly for all $k=0,1,2, \ldots$ Note that this topology is not obtained from any norm, but rather it is derived.

Definition 11.2. Distribution

Notes $1 / 28 / 11$ and Hunter's Notes page 51

A distribution is a continuous linear functional, T, that maps a set of test functions, $\mathcal{D}(\mathbb{T})$, onto the set of complex numbers. The space of distributions is denoted by $\mathcal{D}^{\prime}(\mathbb{T})$. For $T \in \mathcal{D}^{\prime}(\mathbb{T}), \varphi \in \mathcal{D}(\mathbb{T})$, we write:

$$
\langle T, \varphi\rangle=T(\varphi)
$$

$\mathcal{D}^{\prime}(\mathbb{T})$ is the topological dual space of the distributions on \mathbb{T} (i.e. $\mathcal{D}(\mathbb{T})$), with the topology defined as follows: $T_{n} \rightharpoonup T$ in \mathcal{D}^{\prime} if $\left\langle T_{n}, \varphi\right\rangle \rightarrow\langle T, \varphi\rangle$ in $\mathbb{C} \forall \varphi \in \mathcal{D}$.

$$
\begin{aligned}
& T: \mathcal{D}(\mathbb{T}) \rightarrow \mathbb{C} \\
& \text { Linear: }\langle T, \lambda \varphi+\mu \psi\rangle=\lambda\langle T, \varphi\rangle+\mu\langle T, \psi\rangle \\
& \text { Continuous: If } \varphi_{n} \rightarrow \varphi \in \mathcal{D}, \text { then }\left\langle T, \varphi_{n}\right\rangle \rightarrow\langle T, \varphi\rangle \in \mathbb{C}
\end{aligned}
$$

Compare Distributional Convergence, $T_{n} \rightharpoonup T$ in \mathcal{D}^{\prime} if $\left\langle T_{n}, \varphi\right\rangle \rightarrow\langle T, \varphi\rangle$, to Weak Convergence (Definition 8.41): $x_{n} \rightharpoonup x$ if $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle \quad \forall y \in \mathcal{H}$.

Definition 11.3. Seminorm

Notes 1/28/11

Our topology on \mathcal{D} is obtained from a countable family of seminorms:

$$
\|\varphi\|_{k}=\sup _{x \in \mathbb{T}}\left|\varphi^{(k)}(x)\right|, \quad k=0,1,2, \ldots
$$

A seminorm has the same properties as a norm except that it may assign length zero to nonzero vectors.

Example 11.4. Seminorms

Notes 1/28/11

$$
d(\varphi, \psi)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{\|\varphi-\psi\|_{k}}{1+\|\varphi-\psi\|_{k}}
$$

- This is not a norm because you can't pull out a constant
- This turns \mathcal{D} into a Fréchet space (a complete, metrizable topological vector space topology defined by a countable family of seminorms)
- We could instead use norms to define the topology on $\mathcal{D}(\mathbb{T})$:

$$
\|\varphi\|_{C^{k}}=\sum_{j=0}^{k}\|\varphi\|_{j}
$$

Remark 11.5.

Notes 1/28/11

Note that the differentiation operator

$$
D: \mathcal{D}(\mathbb{T}) \rightarrow \mathcal{D}(\mathbb{T}), \quad D(\varphi)=\varphi^{\prime}
$$

is continuous: if $\varphi_{n} \rightarrow \varphi \in \mathcal{D}$, then $D \varphi_{n} \rightarrow D \varphi \in \mathcal{D}$. This is because there are inifinitely many semi-norms.

Example 11.6. Regular Distribution

page 292 and Notes 1/28/11

If $f: \mathbb{T} \rightarrow \mathbb{C}$ is integrable, $f \in L^{1}(\mathbb{T})$, define

$$
\begin{aligned}
& T_{f}: \mathcal{D}(\mathbb{T}) \rightarrow \mathbb{C} \\
& T_{f}(\varphi)=\int_{\mathbb{T}} f \varphi d x
\end{aligned}
$$

$\left|T_{f}(\varphi)\right| \leq \sup |\varphi| \cdot \int|f| d x<\infty$, so T_{f} is well-defined. It is a distribution because it satisfies:

1. Linearity: (1) $T_{f}(\varphi+\psi)=\int f(\varphi+\psi) d x=T_{f}(\varphi)+T_{f}(\psi)$. (2) $T_{f}(c \varphi)=c T_{f}(\varphi)$
2. Continuity: If $\varphi_{n} \rightarrow 0$ in \mathcal{D}, then $\left|T_{f}\left(\varphi_{n}\right)\right| \leq \sup \left|\varphi_{n}\right|\|f\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. So $T_{f}\left(\varphi_{n}\right) \rightarrow 0$ and T_{f} is continuous.

We identify f with T_{f}. Thus, $L^{1}(\mathbb{T}) \subset D^{1}(\mathbb{T})$.
We call T_{f} a regular distribution. A regular distribution is a distribution that is given by the integration of a test function φ against a function f.

Definition 11.7. Principal Value Distribution

page 293

A principal value distribution is a singular distribution, denoted by p.v. $(1 / x)$, and its action on a test function φ is given by

$$
\text { p.v. } \frac{1}{x}(\varphi)=\lim _{\epsilon \rightarrow 0^{+}} \int_{|x|>\epsilon} \frac{\varphi(x)}{x} d x
$$

Example 11.8.

Notes $1 / 28 / 11$

Consider the periodic δ-function (actually a distribution, not a function).

$$
\begin{aligned}
& \langle\delta, \varphi\rangle=\varphi(0) \\
& \langle\delta, \varphi+\psi\rangle=(\varphi+\psi)(0)=\varphi(0)+\psi(0)=\langle\delta, \varphi\rangle+\langle\delta, \psi\rangle \\
& \langle\delta, c \varphi\rangle=c\langle\delta, \varphi\rangle
\end{aligned}
$$

$\varphi_{n} \rightarrow 0$ implies $\varphi_{n}(0) \rightarrow 0$, and therefore δ is a continuous linear functional.
δ is not regular. Proof:

- Suppose $\langle\delta, \varphi\rangle=\int f \varphi d x$ for some $f \in L^{1}$.
- Consider $\varphi_{n}(x)=\left[\frac{1+\cos x}{2}\right]^{n}$
- $\left\langle\delta, \varphi_{n}\right\rangle=1 \forall n$, but $\int f \varphi_{n} d x \rightarrow 0$ as $n \rightarrow \infty$ by the Lebesge-Dominated Convergence Theorem if $f \in L^{1}$
- Thus, there is no function $f \in L^{1}$ such that $\int f \varphi d x=\varphi(0)$

Example 11.9.

Notes 1/28/11

$$
\text { Let } T_{n}=\left\{\begin{aligned}
\frac{1}{2} n & |x| \leq \frac{1}{n} \\
0 & \frac{1}{n} \leq|x| \leq \pi
\end{aligned}\right.
$$

Then $\int_{-\pi}^{\pi} T_{n} d x=1 \forall n$. Claim: $\left\langle T_{n}, \varphi\right\rangle=\frac{n}{2} \int_{1 / n}^{1 / n} \varphi(x) \rightarrow \varphi(0)$ as $n \rightarrow \infty$. Proof:

$$
\begin{aligned}
\left|\frac{n}{2} \int_{-1 / n}^{1 / n} \varphi(x) d x-\varphi(0)\right| & =\frac{n}{2}\left|\int_{-1 / n}^{1 / n}[\varphi(x)-\varphi(0)] d x\right| \\
& \leq \frac{n}{2}\left[\sup _{|x| \leq 1 / n}|\varphi(x)-\varphi(0)|\right] \cdot \frac{2}{n} \\
& \leq \sup _{|x| \leq 1 / n}|\varphi(x)-\varphi(0)| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Definition 11.10. Distributional Derivative

Every distribution $T \in \mathcal{D}^{\prime}(\mathbb{T})$ has a distributional derivative $T^{\prime} \in \mathcal{D}(\mathbb{T})$ that is given by

$$
\left\langle T^{\prime}, \phi\right\rangle=-\left\langle T, \phi^{\prime}\right\rangle \quad \forall \phi \in \mathcal{D}(\mathbb{T})
$$

Compare to Weak Derivative (2), Definition 7.59.

Definition 11.11. Motivation for Distributional Derivatives

Notes 1/31/11

Suppose $f \in C^{\infty}$ is a smooth function. Consider $T_{f^{\prime}}$:

$$
\left\langle T_{f^{\prime}}, \varphi\right\rangle=\int f^{\prime} \varphi d x=-\int f \varphi^{\prime} d x=-\left\langle T_{f}, \varphi^{\prime}\right\rangle
$$

Want: $\left(T_{f^{\prime}}\right)=\left(T_{f}\right)^{\prime}$

This defines the distributional derivative.

1. Linearity: $\left\langle T^{\prime}, a \varphi+b \psi\right\rangle=-\left\langle T,(a \varphi+b \psi)^{\prime}\right\rangle=-\left\langle T, a \varphi^{\prime}+b \psi^{\prime}\right\rangle=-a\left\langle T, \varphi^{\prime}\right\rangle-b\left\langle T, \psi^{\prime}\right\rangle=$ $a\left\langle T^{\prime}, \varphi\right\rangle+b\left\langle T^{\prime}, \psi\right\rangle$
2. Continuity: Suppose $\varphi_{n} \rightarrow \varphi$ in \mathcal{D}. Consider $\left\langle T^{\prime}, \varphi\right\rangle$.
$\left\langle T^{\prime}, \varphi_{n}\right\rangle=-\left\langle T, \varphi_{n}^{\prime}\right\rangle \rightarrow-\left\langle T, \varphi^{\prime}\right\rangle=\left\langle T^{\prime}, \varphi\right\rangle$, because T is continuous on \mathcal{D} and $D: \varphi \rightarrow \varphi^{\prime}$ is continuous on \mathcal{D}

Example 11.12.
Notes $1 / 31 / 11$

$$
\begin{aligned}
f(x) & =|x|, \quad|x| \leq \pi \\
f^{\prime}(x) & =\operatorname{sgn} x=g(x)
\end{aligned}
$$

Compute the distributional derivative of g :

$$
\begin{aligned}
\left\langle g^{\prime}, \varphi\right\rangle & =-\left\langle g, \varphi^{\prime}\right\rangle \\
& =-\int_{0}^{\pi} \varphi^{\prime} d x+\int_{-\pi}^{0} \varphi^{\prime} d x \\
& =-[\varphi(\pi)-\varphi(0)]+[\varphi(0)-\varphi(\pi)] \\
& =2 \varphi(0)-2 \varphi(\pi) \\
& =2\left\langle\delta_{0}, \varphi\right\rangle-2\left\langle\delta_{\pi}, \varphi\right\rangle \\
& =\left\langle 2 \delta_{0}-2 \delta_{\pi}, \varphi\right\rangle \\
g^{\prime} & =2 \delta_{0}-2 \delta_{\pi} \\
& =2\left(\delta-\tau_{\pi} \delta\right)
\end{aligned}
$$

Where τ_{π} means translation by π and δ_{a} is the δ-"function" supported at a :

$$
\left\langle\delta_{a}, \varphi\right\rangle=\varphi(a)
$$

Example 11.13.
Notes $1 / 31 / 11$

Compute δ^{\prime} :

$$
\left\langle\delta^{\prime}, \varphi\right\rangle=-\left\langle\delta, \varphi^{\prime}\right\rangle=-\varphi^{\prime}(0)
$$

Definition 11.14. Fourier Coefficients

Notes $1 / 31 / 11$

If $T \in \mathcal{D}^{\prime}(\mathbb{T})$, define $\hat{T}(n)=\frac{1}{2 \pi}\left\langle T, e^{-i n x}\right\rangle$.

Example 11.15.

Notes $1 / 31 / 11$

Compute the Fourier coefficients of δ :

$$
\begin{aligned}
& \hat{\delta}(n)=\frac{1}{2 \pi}\left\langle\delta, e^{-i n x}\right\rangle=\frac{1}{2 \pi} e^{0}=\frac{1}{2 \pi} \\
& \delta(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} e^{i n x}
\end{aligned}
$$

Remark 11.16.

$1 / 31 / 11$

There are 3 contexts in which to look at Fourier series:

- Continuous functions \Rightarrow converge uniformly
- L^{2} functions \Rightarrow converge in L^{2}
- Distribution functions \Rightarrow converge in the distributional sense

Example 11.17.
Notes $1 / 31 / 11$

$$
P_{r}(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n x}
$$

Formally, as $r \rightarrow 1^{-}, P_{r}(x) \rightharpoonup \frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n x}=\delta(x)$

Theorem 11.18.

Notes $1 / 31 / 11$
$\varphi \in \mathcal{D}$ iff $(\hat{\varphi}(n))$ is rapidly decreasing, i.e.

$$
|n|^{k} \hat{\varphi}(n) \rightarrow 0 \text { as } n \rightarrow \infty \forall k \geq 0
$$

and the Fourier series of φ converges to φ in \mathcal{D}.

Compare to Corollary 7.55.

Proof

- $\varphi \in C^{k} \Rightarrow|n|^{k} \hat{\varphi}(n) \rightarrow 0$ by the Riemann-Lebesgue Lemma, so if $\varphi \in C^{\infty}$, then the $\hat{\varphi}(n)$ are rapidly decreasing
- Sobolev Embedding Theorem: If $\hat{\varphi}(n)$ is rapidly decreasing, then $\varphi \in H^{k}(\mathbb{T}) \forall k$ implies that

$$
\sum\left(1+n^{2}\right)|\hat{\varphi}(n)|^{2}<\infty
$$

- Hence, $\varphi \in C^{k-1}(\mathbb{T}) \forall k$. So $\varphi \in C^{\infty}$.
- Similarly, $\sum_{|n| \leq N} \hat{\varphi}(n) e^{i n x} \rightarrow \varphi$ in $H^{k} \forall k$
- So $\sum_{|n| \leq N} \hat{\varphi}(n) e^{i n x} \rightarrow \varphi$ in $C^{k-1} \forall k$
- So $\sum_{|n| \leq N} \hat{\varphi}(n) e^{i n x}$ converges in \mathcal{D}

Definition 11.19. $S(\mathbb{Z})$

Notes 2/2/11
$S(\mathbb{Z})$ is the space of rapidly decreasing sequences, $\left(c_{n}\right)$, such that

$$
\lim _{n \rightarrow \infty}|n|^{k} c_{n}=0 \quad \forall k=0,1,2, \ldots
$$

Remark 11.20.

Notes 2/2/11
$\mathcal{F}: C^{\infty}(\mathbb{T}) \rightarrow S(\mathbb{Z})$
$\mathcal{F}: \varphi \rightarrow(\hat{\varphi}(n))$
If $\varphi \in C^{\infty}(\mathbb{T})$, then $S_{N} \varphi=\sum_{|n| \leq N} \hat{\varphi}(n) e^{i n x} \rightarrow \varphi$ in \mathcal{D}.
If $T \in \mathcal{D}^{\prime}(\mathbb{T})$, then $\hat{T}(n)=\frac{1}{2 \pi}\left\langle T, e^{-i n x}\right\rangle$

Proposition 11.21.

Notes 2/2/11

$$
\widehat{T}^{\prime}(n)=i n \hat{T}(n)
$$

See Proposition 7.52 and Definition 7.56.

Proof.

$$
\begin{aligned}
\widehat{T}^{\prime}(n) & =\frac{1}{2 \pi}\left\langle T^{\prime}, e^{-i n x}\right\rangle=-\frac{1}{2 \pi}\left\langle T,\left(e^{-i n x}\right)^{\prime}\right\rangle=i n \cdot \frac{1}{2 \pi}\left\langle T, e^{-i n x}\right\rangle \\
& =\operatorname{in} \hat{T}(n)
\end{aligned}
$$

Definition 11.22. Slow Growth

Notes 2/2/11

A sequence $\left(c_{n}\right)$ has slow growth if there exist k, M such that $\left|c_{n}\right| \leq M\left(1+n^{2 k}\right)^{1 / 2} \forall n$.
Equivalently, $\left|c_{n}\right| \leq M|n|^{k} \forall n \neq 0$.

Lemma 11.23.
Notes 2/2/11

If $T \in \mathcal{D}^{\prime}$, then $(\hat{T}(n))$ has slow growth.

Proof. If $T \in \mathcal{D}^{\prime}$ then T has some finite order k such that

$$
|\langle T, \varphi\rangle| \leq C\|\varphi\|_{C^{k}}
$$

Then

$$
|\hat{T}(n)|=\left|\left\langle T, e^{-i n x}\right\rangle\right| \leq C\left\|e^{-i n x}\right\|_{C^{k}} \leq C\left(1+n^{2 k}\right)^{1 / 2}
$$

Example 11.24. Weierstrass Nowhwere Differentiable Function
Notes 2/2/11

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cos \left(3^{n} x\right)
$$

$\sum \frac{1}{2^{n}}<\infty$, so $f \in \mathcal{A}(\mathbb{T})$.

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}} \sin \left(3^{n} x\right)
$$

f is nowhere differentiable, although it does have a distributional derivative.

Theorem 11.25.

Notes 2/2/11

If $T \in \mathcal{D}^{\prime}(\mathbb{T})$ and $S_{N} T=\sum_{|n| \leq N} \hat{T}(n) e^{i n x} \in C^{\infty}(\mathbb{T})$, then $S_{N} T \rightharpoonup T$ in \mathcal{D}^{\prime} as $N \rightarrow \infty$.
Ex: $\delta(x)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} e^{i n x}$

Proof.

$$
\begin{aligned}
\left\langle S_{N} T, \varphi\right\rangle & =\left\langle\sum_{|n| \leq N} \hat{T}(n) e^{i n x}, \varphi\right\rangle=\sum_{|n| \leq N}\left\langle\hat{T}(n) e^{-i n x}, \varphi\right\rangle=\sum_{|n| \leq N} \hat{T}(n) \int e^{i n x} \varphi(x) d x \\
& =2 \pi \sum_{|n| \leq N} \hat{T}(n) \hat{\varphi}(-n)=2 \pi \sum_{|n| \leq N}\left\langle T, e^{-i n x}\right\rangle \cdot \frac{1}{2 \pi} \hat{\varphi}(-n)=\left\langle T, \sum_{|n| \leq N} \hat{\varphi}(-n) e^{-i n x}\right\rangle \\
& =\left\langle T, S_{N} \varphi\right\rangle \rightarrow\langle T, \varphi\rangle \text { as } n \rightarrow \infty
\end{aligned}
$$

So $S_{N} T \rightarrow T$ as $N \rightarrow \infty$.

Theorem 11.26.

Notes 2/2/11

If $\left(c_{n}\right)$ is a sequence of slow growth, $\left(c_{n}\right) \in S^{\prime}(\mathbb{Z})$, then there exists a distribution T such that $\hat{T}(n)=c_{n}$.

Proof. Define T by

$$
\langle T, \varphi\rangle=2 \pi \sum_{n \in \mathbb{Z}} c_{n} \hat{\varphi}(-n)
$$

Remark 11.27.
Notes $2 / 2 / 11$
$\mathcal{F}: f \mapsto \hat{f}(n)$

$$
\begin{array}{rlr}
\mathcal{D}(\mathbb{T})=C^{\infty}(\mathbb{T}) & \leftrightarrow S(\mathbb{Z}) \\
& C(\mathbb{T}) \supset \mathcal{A}(\mathbb{T}) \leftrightarrow \ell^{\prime}(\mathbb{Z}) \\
L^{2}(\mathbb{T}) & \leftrightarrow \ell^{2}(\mathbb{Z}) \\
& L^{1}(\mathbb{T}) \rightarrow C_{0}(\mathbb{Z}) \\
\mathcal{D}^{\prime}(\mathbb{T}) & \leftrightarrow S^{\prime}(\mathbb{Z}) &
\end{array}
$$

- $C^{\infty} \subset L^{2}(\mathbb{T}) \subset \mathcal{D}^{\prime}(\mathbb{T})$
- $S(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset S^{\prime}(\mathbb{Z})$

8 Bounded Linear Operators on a Hilbert Space

8.1 Orthogonal Projections

Definition 8.1. Direct Sum

page 187 and Notes $2 / 4 / 11$

If M and N are subspaces of a linear space X such that every $x \in X$ can be written uniquely as $x=y+z$ with $y \in M$ and $z \in N$, then we say that $X=M \oplus N$ is the direct sum of M and N, and we call N a complementary subspace of M in X. The decomposition $x=y+z$ is unique if and only if $M \cap N=\{0\}$.

Definition 8.2. Projection, Idempotent, Self-Adjoint
page $187 \& 188$ and Notes $2 / 4 / 11$

Given a direct sum decomposition, $X=M \oplus N$, define the projection $P: X \rightarrow X$ onto M along N by

$$
P(m+n)=m, \quad m \in M, \quad n \in N
$$

All projections are linear and idempotent, meaning that $P^{2}=P$, because

$$
P^{2}(m+n)=P(m)=m
$$

Theorem 8.3.

page 188 and Notes 2/4/11

Any linear map $P: X \rightarrow X$ with $P^{2}=P$ is a projection. Specifically, it is the projection onto ran P along ker P.

Proof.

- $x=P(x)+(x-P(x))$
- $P^{2}(x)=P(x) \quad \Rightarrow \quad P(x) \in \operatorname{ran} P$
- $P(x-P(x))=P x-P^{2} x=P x-P x=0 \quad \Rightarrow \quad x-P(x) \in \operatorname{ker} P$
- Suppose $x \in \operatorname{ker} P \cap \operatorname{ran} P$
$-x \in \operatorname{ran} P \quad \Rightarrow \quad x=P y$
$-x \in \operatorname{ker} P \quad \Rightarrow \quad 0=P x=P^{2} y=P y=x=0$
- Thus, $x=0$, and ker $P \cap \operatorname{ran} P=\{0\}$
- Thus, $X=\operatorname{ran} P \oplus \operatorname{ker} P$

Remark 8.4. Bounded Projections

Notes 2/4/11

Question: Given a projection $P: X \rightarrow X, X$ a Banach space, when can we say that P is bounded?

Answer: We need ran P closed and complemented by a closed subspace $N=\operatorname{ker} P$

Note: The kernel of a bounded operator is always closed; the range need not be.

Definition 8.5. Orthogonal Projections, Self-Adjoint

Notes $2 / 4 / 11$ and $2 / 7 / 11$

Let \mathcal{H} be a Hilbert space and let $M \subset \mathcal{H}$ be a closed linear subspace. Then by the Projection Theorem,

$$
\mathcal{H}=M \oplus M^{\perp}, \quad M^{\perp}=\{y \in \mathcal{H} \mid y \perp m \forall m \in M\}
$$

We define the orthogonal projection $P: \mathcal{H} \rightarrow \mathcal{H}$ onto M along M^{\perp}.

An orthogonal projection P on a Hilbert space \mathcal{H} is

- Idempotent: $P^{2}=P$
- Self-Adjoint: $\langle x, P y\rangle=\langle P x, y\rangle$

Proof. To see that a projection P on a Hilbert space \mathcal{H} is self-adjoint, let

$$
x=m+n, \quad y=p+q, \quad \text { where } \quad m, p \in M, \quad n, q \in N
$$

Compute:

$$
\begin{aligned}
& \langle x, P y\rangle=\langle m+n, p\rangle=\langle m, p\rangle+\langle n, p\rangle=\langle m, p\rangle \\
& \langle P x, y\rangle=\langle m, p+q\rangle=\langle m, p\rangle+\langle m, q\rangle=\langle m, p\rangle
\end{aligned}
$$

Lemma 8.6.
page 188 and Notes 2/7/11

If P is a nonzero othogonal projection then $\|P\|=1$

Proof.

$$
\|P x\|^{2}=\langle P x, P x\rangle=\left\langle x, P^{2} x\right\rangle=\langle x, P x\rangle \leq\|x\|\|P x\|
$$

Either $\|P x\|=0$ or $\|P x\| \leq\|x\|$. Since $\|P x\| \neq 0 \forall x$, it must be the case that $\|P x\| \leq\|x\|$. Then

$$
\|P\|=\sup \frac{\|P x\|}{\|x\|} \leq 1
$$

If $P \neq 0$, then there exists $y \in \mathcal{H}$ such that $P y \neq 0$. Setting $x=P y$ in the previous equation yields

$$
\|P\| \geq \frac{\|P \cdot P x\|}{\|P x\|}=1
$$

So $\|P\|=1$.

Theorem 8.7.

page 189 and Notes 2/7/11

If P is an orthogonal projection, then $\mathcal{H}=M \oplus M^{\perp}=\operatorname{ran} P \oplus \operatorname{ker} P$, where $M=\operatorname{ran} P$ and $M^{\perp}=\operatorname{ker} P$ are closed subspaces. Conversely, if M is any closed subspace of \mathcal{H}, then there exists an orthogonal projection with $M=\operatorname{ran} P$ and $M^{\perp}=\operatorname{ker} P$.

Example 8.8. Even \mathcal{G} Odd Functions

page 189 and Notes 2/7/11

Let $\mathcal{H}=L^{2}(\mathbb{R})$ and let

$$
\begin{aligned}
& M=\text { space of even functions, } f(-x)=f(x) \\
& N=\text { space of odd functions, } f(-x)=-f(x)
\end{aligned}
$$

$M \perp N$, since $\int \bar{f} g d x=0$ for f odd, g even. Define

- Even Projection: $P: \mathcal{H} \rightarrow \mathcal{H}$ onto $M, P f(x)=\frac{1}{2}[f(x)+f(-x)]$
- Odd Projection: $Q: \mathcal{H} \rightarrow \mathcal{H}$ onto $N, Q f(x)=\frac{1}{2}[f(x)-f(-x)]$
- Note: $Q=I-P$

Check that P is self-adjoint:

$$
\langle P f, g\rangle=\int_{\mathbb{R}} \frac{1}{2} \overline{[f(x)+f(-x)]} g(x) d x=\int_{\mathbb{R}} \frac{1}{2} \bar{f}(x) g(x)+\frac{1}{2} \bar{f}(x) g(-x) d x=\langle f, P g\rangle
$$

Example 8.9.

Notes 2/7/11

Let $\mathcal{H}=L^{2}(\mathbb{T})$. Define $P f=\frac{1}{2 \pi} \int_{\mathbb{T}} f d x, P: \mathcal{H} \rightarrow \mathcal{H}$.

$$
\text { Given: } f=\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n x}
$$

Then: $P f=\hat{f}(0)$

- Idempotent: $P^{2}=P$ since $P f$ is a constant, and $P 1=1$
- Self-Adjoint: $\langle P f, g\rangle=\int \overline{\left[\frac{1}{2 \pi} \int f d x\right]} g d x=\frac{1}{2 \pi} \int \bar{f} d x \int g d x=\langle f, 1\rangle \cdot \frac{1}{2 \pi} \int g d x=\langle f, P g\rangle$
ran $P=$ constant functions $=<1>($ space spanned by 1$)$
$\operatorname{ker} P=$ functions with zero mean (i.e. $\hat{f}(0)=0$)
ran $P \perp$ ker P

Example 8.10. Fourier Projections

Notes 2/7/11

We can define the orthogonal projection of f onto the N th partial sum of its Fourier series:

$$
P_{N} f=\sum_{|n| \leq N} \hat{f}(n) e^{i n x}
$$

Similarly, we can define the projection onto the positive n part of its Fourier series:

$$
\begin{gathered}
P f=\sum_{n=0}^{\infty} \hat{f}(n) e^{i n x} \\
(I-P) f=\sum_{n=-\infty}^{-1} \hat{f}(n) e^{i n x}
\end{gathered}
$$

Example 8.11.
page 189 and Notes 2/7/11

Let $\mathcal{H}=L^{2}(\mathbb{R})$. If $A \subset \mathbb{R}$ is some Lebesgue measurable set, define

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

Then

$$
P_{A} f=\chi_{A} f
$$

is an orthogonal projection of $L^{2}(\mathbb{R})$ onto the subspace of functions with support contained in \bar{A}.

8.2 The Dual of a Hilbert Space

Theorem 8.12. Riesz Representation Theorem
page 191 and Notes 2/7/11

Given: a Hilbert space \mathcal{H}, its dual space $\mathcal{H}^{*}=\mathcal{B}(\mathcal{H}, \mathbb{C})$ (the set of bounded linear maps $\varphi: \mathcal{H} \rightarrow \mathbb{C}$ with $\left.\|\varphi\|_{\mathcal{H}^{*}}=\sup \frac{|\varphi(x)|}{\|x\|}<\infty\right)$.

Every $\varphi \in \mathcal{H}^{*}$ can be given by $\varphi(x)=\langle y, x\rangle$ for some $y \in \mathcal{H}$, and $\|\varphi\|=\|y\|$. Conversely, every $y \in \mathcal{H}$ corresponds to a $\varphi \in \mathcal{H}^{*}$. The map $J: \varphi \mapsto y$ is an isometric, antilinear isomorphism of \mathcal{H}^{*} onto \mathcal{H}.

$$
\begin{array}{ll}
\text { Antilinear: } & J(\varphi+\psi)=J(\varphi)+J(\psi) \\
& J(\lambda \varphi)=\bar{\lambda} J(\varphi)
\end{array}
$$

Proof.

- Suppose $\varphi \in \mathcal{H}^{*}$. We want to find $y \in \mathcal{H}$ such that $\varphi(x)=\langle y, x\rangle$
- Suppose $\varphi \neq 0$. Then $\operatorname{ker} \varphi \neq \mathcal{H}$ and $\operatorname{ker} \varphi$ is closed because φ is bounded
- There exists $z \in(\operatorname{ker} \varphi)^{\perp}$ (by the Projection Theorem)
- Consider $P: \mathcal{H} \rightarrow \mathcal{H}, P x=\frac{\varphi(x)}{\varphi(z)} P z$. Claim: this is an orthogonal projection.
- Idempotent: $P^{2} x=P\left(\frac{\varphi(x)}{\varphi(z)} z\right)=\frac{\varphi(x)}{\varphi(z)} P z=\frac{\varphi(x)}{\varphi(z)} z \quad$ (since $\left.P z=z\right)$
- Self-Adjoint: $\langle x, P y\rangle=\langle P x, y\rangle$
- H$=\operatorname{ran} P \oplus \operatorname{ker} P, \quad$ ran $P=\langle z\rangle, \quad \operatorname{ker} P=\operatorname{ker} \varphi$
- $x \in \mathcal{H}, \quad x=\alpha z+w, \quad w \in \operatorname{ker} \varphi, \quad \alpha=\frac{\langle z, x\rangle}{\|z\|^{2}}$
- $\varphi(x)=\alpha \varphi(z)=\frac{\langle z, x\rangle}{\|z\|^{2}} \varphi(z)=\langle y, x\rangle, \quad y=\frac{\bar{\varphi}(z)}{\|z\|^{2}} z$

8.3 The Adjoint of an Operator

Definition 8.13. Adjoint

page 193 and Notes 2/9/11

Given a bounded linear map $A \in \mathcal{B}(\mathcal{H})$, its adjoint $A^{*} \in \mathcal{B}(\mathcal{H})(\leftarrow$ proved in Proposition 8.15) is the linear map that satisfies

$$
\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle \quad \forall x, y \in \mathcal{H}
$$

Remark 8.14. Adjoint: Existence and Uniqueness
page 193 and Notes 2/9/11

To define A^{*} such that $A^{*} x=z$, consider $\varphi_{x}: \mathcal{H} \rightarrow \mathbb{C}, \varphi_{x}(y)=\langle x, A y\rangle$. Then

$$
\begin{aligned}
\left\|\varphi_{x}(y)\right\| & \leq\|x\|\|A y\| \leq\|x\|\|A\|\|y\| \\
\left\|\varphi_{x}\right\| & \leq\|A\|\|x\|
\end{aligned}
$$

So φ_{x} is a bounded linear functional. By the Riesz Representation Theorem, there is a unique $z \in \mathcal{H}$ such that

$$
\varphi_{x}(y)=\langle z, y\rangle
$$

Define $A^{*} x=z$. Then

$$
\begin{aligned}
& \langle x, A y\rangle=\varphi_{x}(y)=\langle z, y\rangle=\left\langle A^{*} x, y\right\rangle \\
& \langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle \quad \forall x, y \in \mathcal{H}
\end{aligned}
$$

Proposition 8.15.

Notes 2/9/11

If $A \in \mathcal{B}(\mathcal{H})$ then $A^{*} \in \mathcal{B}(\mathcal{H})$ and
(1) $\quad\left\|A^{*}\right\|=\|A\|$
(2) $\|A\|^{2}=\left\|A^{*} A\right\|$
(See also Corollary 8.34.)

Proof.

$$
\begin{aligned}
& \left\|A^{*}\right\|=\sup _{\|x\|=1}\left\|A^{*} x\right\| \quad \text { (See Lemma } 8.26 \text { in the book) } \\
& \quad=\sup _{\|x\|=\|y\|=1}\left|\left\langle y, A^{*} x\right\rangle\right|=\sup _{\|x\|=\|y\|=1}|\langle A y, x\rangle|=\sup _{\|y\|=1}\|A y\|=\|A\| \\
& \|A\|^{2}=\sup _{\|x\|=1}\|A x\|^{2}=\sup _{\|x\|=1}|\langle A x, A x\rangle|=\sup _{\|x\|=1}\left|\left\langle x, A^{*} A x\right\rangle\right| \\
& \quad \leq\left\|A^{*} A\right\| \quad \text { (See Corollary } 8.27 \text { in the book) } \\
& \left\|A^{*} A\right\| \leq\left\|A^{*}\right\|\|A\|=\|A\|^{2} \\
& \left\|A^{*} A\right\|
\end{aligned}=\|A\|^{2} \quad l
$$

Remark 8.16.
Notes 2/9/11
$\mathcal{B}(\mathcal{H})$ is a C^{*}-algebra.

$$
\|A B\| \leq\|A\|\|B\| \quad *: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H}), * *=\text { identity } \quad\left\|A^{*}\right\|=\|A\|
$$

Remark 8.17. Generalizations

Notes 2/9/11

1. Given: $A: \mathcal{H} \rightarrow K, A^{*}: K \rightarrow \mathcal{H}$, where \mathcal{H}, K are Hilbert spaces.
$\langle x, A y\rangle_{K}=\left\langle A^{*} x, y\right\rangle_{H} \quad \forall y \in \mathcal{H}, x \in K$
A^{*} is the Hilbert space adjoint.
2. Given: $A: X \rightarrow Y, A^{\prime}: Y^{\prime} \rightarrow X^{\prime}$, where X, Y are Banach spaces and X^{\prime} is the dual space of X.
$\langle\psi, A x\rangle_{Y \times Y^{\prime}}=\left\langle A^{\prime} \psi, x\right\rangle_{X \times X^{\prime}} \forall x \in X, \psi \in Y^{\prime}$
A^{\prime} is the dual operator or Banach space adjoint.

Example 8.18.
page 193 and Notes $2 / 9 / 11$ and Notes $2 / 11 / 11$

Let $\mathcal{H}=\mathbb{C}^{n}$. Then $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is given by a matrix $\left(a_{i j}\right)$.

$$
\begin{aligned}
& y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad x=\left(x_{1}, \ldots, x_{n}\right), \quad y=\left(y_{1}, \ldots, y_{n}\right) \\
&\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} \\
&\langle x, A y\rangle=\sum_{i=1}^{n} \overline{x_{i}}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right)=\sum_{j=1}^{n}\left(\overline{\sum_{i=1}^{n} \overline{a_{i j}} x_{i}}\right) y_{j} \\
&=\left\langle A^{*} x, y\right\rangle \\
& \text { If } z=A^{*} x \\
& z_{j}=\sum_{i=1}^{n} \overline{a_{i j}} x_{i}=\sum_{j=1}^{n} \overline{a_{j i}} x_{j}
\end{aligned}
$$

- A^{*} has matrix $\left(\overline{a_{j i}}\right)$, which is the conjugate transpose of $\left(a_{i j}\right)$
- $\left(A^{*} A\right)$ is Hermitian, positive definite
- $\left(A^{*} A\right)^{*}=\left(A^{*} A\right)^{*}=A^{*} A$
- $\left\langle x, A^{*} A x\right\rangle=\langle A x, A x\rangle \geq 0$
- $A^{*} A$ has orthogonal eigenvectors that form a basis of \mathbb{C}^{n} with eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n} \geq 0$
- $\left\|A^{*} A\right\|=\max _{1 \leq j \leq n}\left|\mu_{j}\right|=\sigma\left(A^{*} A\right)=$ the spectral radius of $A^{*} A$
- $\|A\|=\sqrt{\sigma\left(A^{*} A\right)}$

Example 8.19.
page 194 and Notes 2/9/11

Let $\mathcal{H}=L^{2}([0,1]),\langle f, g\rangle=\int_{0}^{1} \overline{f(x)} g(x) d x$.
Define the integral operator $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ by

$$
K f(x)=\int_{0}^{1} k(x, y) f(y) d y, \quad k:[0,1] \times[0,1] \rightarrow \mathbb{C}
$$

(Note: $k(x, y)$ is the kernel of the integral operator K. It is not related to the null space.) Ex: Assume that k is Hilbert-Schmidt: k is measurable on $[0,1] \times[0,1]$ and

$$
\begin{aligned}
\|K\|^{2} & \leq \int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y<\infty \\
\langle f, K g\rangle & =\int_{0}^{1} \overline{f(x)}\left(\int_{0}^{1} k(x, y) g(y) d y\right) d x \\
& =\int_{0}^{1}\left(\overline{\int_{0}^{1} f(x) \overline{k(x, y)} d x}\right) g(y) d y \\
& =\left\langle K^{*} f, g\right\rangle
\end{aligned}
$$

Since

$$
\begin{aligned}
K^{*} f(y) & =\int_{0}^{1} \overline{k(x, y)} f(y) d x \\
K^{*} f(x) & =\int_{0}^{1} \overline{k(y, x)} f(y) d y
\end{aligned}
$$

Thus, K^{*} is an integral operator with conjugate transpose level of k.

Example 8.20.
page 194 and Notes 2/9/11

Recall the right and left shift operators, respectively:

$$
S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \quad T\left(x_{1}, x_{2}, x_{3} \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

T is the adjoint of S, i.e. $T=S^{*}$. Also, $S=T^{*}$.

Example 8.21. Solvability of Linear Equations

Notes $2 / 11 / 11$

Consider $A: \mathcal{H} \rightarrow \mathcal{H}, A x=y$. Suppose for some $y \in \mathcal{H}$ we have a solution for $x \in \mathcal{H}$.

Let $z \in \operatorname{ker} A^{*}$. Then

$$
\langle z, A x\rangle=\left\langle A^{*} z, x\right\rangle=\langle z, y\rangle
$$

Thus, a necessary condition for solvability is that $y \perp z \forall z \in \operatorname{ker} A^{*}$, i.e. $y \perp \operatorname{ker} A^{*}$.

Theorem 8.22.

page 194 and Notes $2 / 11 / 11$

If $A \in \mathcal{B}(\mathcal{H})$, then $\mathcal{H}=\overline{\operatorname{ran} A} \oplus\left(\operatorname{ker} A^{*}\right)$, and

$$
\overline{\operatorname{ran} A}=\left(\operatorname{ker} A^{*}\right)^{\perp} \quad \operatorname{ker} A=\left(\operatorname{ran} A^{*}\right)^{\perp}
$$

Proof. From Example 8.21, if $y \in \operatorname{ran} A$ then $y \in\left(\operatorname{ker} A^{*}\right)^{\perp}$.

$$
\begin{aligned}
& \operatorname{ran} A \subset\left(\operatorname{ker} A^{*}\right)^{\perp} \\
& \overline{\operatorname{ran} A} \subset\left(\operatorname{ker} A^{*}\right)^{\perp} \quad \text { since orthogonal complements are closed }
\end{aligned}
$$

If $y \in(\operatorname{ran} A)^{\perp}$ then

$$
\begin{aligned}
\langle A x, z\rangle & =0 \forall x \in \mathcal{H} \\
\left\langle x, A^{*} y\right\rangle & =0 \forall x \in \mathcal{H}
\end{aligned}
$$

This implies that $A^{*} y=0$, so $y \in \operatorname{ker} A^{*}$.

$$
\begin{gathered}
(\operatorname{ran} A)^{\perp} \subset \operatorname{ker} A^{*} \\
\overline{\operatorname{ran} A}=(\operatorname{ran} A)^{\perp \perp} \supset\left(\operatorname{ker} A^{*}\right)^{\perp}
\end{gathered}
$$

Corollary 8.23.
page 195 and Notes $2 / 11 / 11$

If $A \in \mathcal{B}(\mathcal{H})$ has closed range (ran A is a closed linear subspace), then $A x=y$ is solvable iff $y \perp \operatorname{ker} A^{*}$.

Example 8.24.

Notes 2/11/11

If \mathcal{H} is finite dimensional, or A has finite rank, then $\operatorname{ran} A$ is closed and Corollary 8.23 applies.

Example 8.25.

page 196 and Notes $2 / 11 / 11$

Recall the left (T) and right (S) shift operators. $S^{*}=T, T^{*}=S$.

1. $\mathcal{H}=\overline{\operatorname{ran} S} \oplus \operatorname{ker} S^{*}=\overline{\operatorname{ran} S} \oplus \operatorname{ker} T$
2. $\mathcal{H}=\overline{\operatorname{ran} T} \oplus \operatorname{ker} T^{*}=\overline{\operatorname{ran} T} \oplus \operatorname{ker} S$

- $\operatorname{ran} S=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2} \mid x_{1}=0\right\} \quad$ - $\operatorname{ran} T=\ell^{2}(\mathbb{N})$
- $\operatorname{ker} S=\{0\}$
- $\operatorname{ker} T=\left\{\left(x_{1}, 0,0,0, \ldots\right) \mid x_{1} \in \mathbb{C}\right\}$
$S x=y$ is solvable iff $y \perp \operatorname{ker} T$, and the solution is unique.
$T x=y$ is solvable for all $y \in \ell^{2}(\mathbb{N})$, but the solution is not unique.

Example 8.26.

Notes 2/11/11

Let $\mathcal{H}=\ell^{2}(\mathbb{N}), A\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(x, \frac{1}{2} x_{2}, \ldots, \frac{1}{n} x_{n}, \ldots\right)$.

$$
[A]=\left(\begin{array}{cccccc}
1 & & & & & \\
& \frac{1}{2} & & & & \\
& & \frac{1}{3} & & & \\
& & & \ddots & & \\
& & & & \frac{1}{n} & \\
& & & & & \ddots
\end{array}\right), \quad A^{*}=A \text { (self-adjoint) }
$$

$\operatorname{ker} A=\operatorname{ker} A^{*}=\{0\}$
$\mathcal{H}=\overline{\operatorname{ran} A} \oplus \operatorname{ker} A$

Given $y=\left(y_{1}, y_{2}, \ldots\right) \in \ell^{2}(\mathbb{N})$, does there exist $x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}(\mathbb{N})$ such that $A x=y ?$
$x \in \ell^{2}(\mathbb{N}) \Leftrightarrow \sum n^{2}\left|y_{n}\right|<\infty$
$\operatorname{ran} A=\left\{\left.\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}(\mathbb{N})\left|\sum n^{2}\right| x_{n}\right|^{2}<\infty\right\}$
$\operatorname{ran} A \neq \mathcal{H}$, so A is not onto.
$\mathrm{Ex}: M=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}, 0,0, \ldots\right)\right\} \subset \operatorname{ran} A$
M is dense in $\ell^{2}(\mathbb{N})$, so $\overline{\operatorname{ran} A}=\ell^{2}(\mathbb{N}), \quad \ell^{2}(\mathbb{N})=\overline{\operatorname{ran} A} \oplus \operatorname{ker} A^{*}$

Consider: $A x=y, y \perp \operatorname{ker} A^{*}=\operatorname{ker} A=\{0\} \forall y \in \ell^{2}(\mathbb{N})$. This is not solvable for every $y \in \ell^{2}(\mathbb{N})$, only for $y \in \operatorname{ran} A$, and $\operatorname{ran} A$ is a dense, non-closed subspace of $\ell^{2}(\mathbb{N})$.

8.4 Self-Adjoint and Unitary Operators

Definition 8.27. Self-Adjoint

page 197 and 2/14/11

A bounded operator $A: \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space \mathcal{H} is self-adjoint if $A^{*}=A$.

Equivalently, A is self-adjoint iff

$$
\langle x, A y\rangle=\langle A x, y\rangle \quad \forall x, y \in \mathcal{H}
$$

Example 8.28. Self-Adjoint Operators

Notes 2/14/11

1. $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n},[A]^{*}=[A]$
$A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[A]^{T}=[A]$
2. $\mathcal{H}=L^{2}(\mathbb{R})$. Suppose $a: \mathbb{R} \rightarrow \mathbb{C}$ is bounded and measurable. Define $M: \mathcal{H} \rightarrow \mathcal{H}, M f=a f$. $\|M f\|_{2} \leq\|a\|_{\infty}\|f\|_{2}$.
$M^{*} f=\bar{a} f, M^{*}=M$ if $a: \mathbb{R} \rightarrow \mathbb{R}$.
3. Orthogonal projections: $P^{2}=P=P^{*}$ (self-adjoint)
4. Given $T \in \mathcal{B}(\mathcal{H}), A=T^{*} T$ is self-adjoint.
$T=A+i B, A=\frac{1}{2}\left(T^{*}+T\right), B=\frac{1}{2 i}\left(T^{*}-T\right)$
$A^{*}=A, B^{*}=B$
5. The shift operators are NOT self-adjoint because $S^{*}=T \neq S$

Definition 8.29. Bilinear Forms, Sesquilinear

page 197 and Notes 2/14/11

Let $A: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator. We define the bilinear form $a: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ by

$$
a(x, y)=\langle x, A y\rangle
$$

We say that a is sesquilinear because

$$
\begin{aligned}
& a(x, \lambda y+\mu z)=\lambda a(x, y)+\mu a(x, z) \\
& a(\lambda x+\mu y, z)=\bar{\lambda} a(x, z)+\bar{\mu} a(x, z)
\end{aligned}
$$

Definition 8.30. Hermitian Symmetric 63 Symmetric
page 197 and Notes 2/14/11

Suppose A is self-adjoint. Then

$$
\begin{gathered}
\langle x, A y\rangle=\langle A x, y\rangle=\overline{\langle y, A x\rangle} \\
a(x, y)=\overline{a(x, y)}
\end{gathered}
$$

We say that a is Hermitian symmetric. In the real case, we have $a(x, y)=a(y, x)$, and we say that this is symmetric.

Definition 8.31. Quadratic Form

page 197 and Notes 2/14/11

Given $A: \mathcal{H} \rightarrow \mathcal{H}$, we define the quadratic form $q: \mathcal{H} \rightarrow \mathbb{C}$ by

$$
q(x)=\langle x, A x\rangle=a(x, x)
$$

If A is self-adjoint, then $a(x, x)=\overline{a(x, x)}$, so $a(x, x)$ is real for all $x \in \mathcal{H}$.

Definition 8.32. Positive, Positive Definite
page 198 and Notes 2/14/11

A self-adjoint operator A is positive or positive definite if $\langle x, A x\rangle=a(x, x)>0$ for all $x \in \mathcal{H}, x \neq 0$.

Theorem 8.33.

page 198 and Notes 2/14/11

If A is self-adjoint then

$$
\|A\|=\sup _{x \neq 0} \frac{|\langle x, A x\rangle|}{\|x\|^{2}}=\sup _{\|x\|=1}|\langle x, A x\rangle|
$$

Note: compare this to $\|A\|=\sup _{\|x\|=1}|\langle A x, A x\rangle|^{1 / 2}$ (see part 2 of Proposition 8.15).

Proof.

$$
|\langle x, A x\rangle| \leq\|x\|\|A x\| \leq\|A\|\|x\|^{2} \quad \text { (Cauchy-Schwarz) }
$$

Let $\alpha=\sup _{\|x\| \neq 0} \frac{|\langle x, A x\rangle|}{\|x\|^{2}} \leq\|A\|$. Then $|\langle x, A x\rangle| \leq \alpha\|x\|^{2} \leq\|A\|\|x\|^{2}$. The parallelogram law states that

$$
\langle x, A y\rangle=\frac{1}{4}\{\langle x+y, A(x+y)\rangle-\langle x-y, A(x-y)\rangle-i\langle x+i y, A(x+i y)\rangle+i\langle x-i y, A(x-i y)\rangle\}
$$

In general,

$$
\|A\|=\sup _{\|x\|=\|y\|=1}|\langle x, A y\rangle|
$$

and this does not require self-adjoint. If A is self-adjoint, the first 2 terms in the parallelogram law expression are real and the last 2 are imaginary. We can multiply y by $e^{i \theta}$ so that $e^{i \theta}\langle x, A y\rangle=\langle x, A z\rangle$ is real, where $z=y e^{i \theta}$. Then we have

$$
\begin{aligned}
e^{i \theta}\langle x, A y\rangle & =\langle x, A z\rangle \\
& =\frac{1}{4}\{\langle x+z, A(x+z)\rangle-\langle x-z, A(x-z)\rangle\} \\
|\langle x, A y\rangle| & \leq \frac{1}{4}|\langle x+z, A(x+z)\rangle|+\frac{1}{4}|\langle x-z, A(x-z)\rangle| \\
& \leq \frac{\alpha}{4}\left(\|x+z\|^{2}+\|x-z\|^{2}\right) \\
& \leq \frac{\alpha}{2}\left(\|x\|^{2}+\|z\|\right) \quad(\text { by the parallelogram rule (not law)) } \\
\|A\| & \leq \sup _{\|x\|=\|y\|=1}|\langle x, A y\rangle| \leq \frac{\alpha}{2}\left(\|x\|^{2}+\|y\|^{2}\right) \leq \frac{\alpha}{2}(1+1)=\alpha
\end{aligned}
$$

Corollary 8.34.
page 199

If A is a bounded operator on a Hilbert space then $\left\|A^{*} A\right\|=\|A\|^{2}$. If A is self-adjoint, then $\left\|A^{2}\right\|=\|A\|^{2}$.

The proof follows directly from Proposition 8.15.

Definition 8.35. Unitary Operators
pages $199 \& 200$ and Notes $2 / 14 / 11$

An operator $U: \mathcal{H} \rightarrow \mathcal{H}$ is unitary if

$$
U^{*} U=U U^{*}=I, \quad \text { i.e. } U^{*}=U^{-1}
$$

Note that

$$
\langle U x, U y\rangle=\left\langle U^{*} U x, y\right\rangle=\langle x, y\rangle
$$

so U preserves norms and inner products. Furthermore, if $\left\{e_{n} \mid n \in \mathbb{N}\right\}$ is an orthonormal basis of \mathcal{H}, then so is $\left\{U e_{n} \mid n \in \mathbb{N}\right\}$.

Example 8.36.

Notes 2/14/11

1. $U: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with matrix

$$
[U]=\left(\begin{array}{rc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right), \quad|a|^{2}+\left|b^{2}\right|=1, \quad a, b \in \mathbb{C}
$$

In the real case, $a=\cos \theta, b=\sin \theta$, and U is rotation by θ.
2. The right shift operator S on $\ell^{2}(\mathbb{N})$ is not unitary because

$$
S^{*}=T, \quad S^{*} S=I, \quad S S^{*}=P \neq I
$$

3. If $A^{*}=A$ then $U=e^{i A}$ is unitary, where

$$
\begin{aligned}
e^{i A} & =I+(i A)+\cdots+\frac{1}{n!}(i A)^{n}+\ldots \\
U^{*} & =e^{-i A} \\
U^{*} U & =I
\end{aligned}
$$

Example 8.37. Quantum Mechanics

Notes 2/14/11

In quantum mechanics we have the Hamiltonian operator H, with $H^{*}=H$. We also have $U(t)=$ $e^{i t H}, U: \mathcal{H} \rightarrow K, U^{*}: K \rightarrow \mathcal{H} . U$ is unitary if $U^{*} U=I_{H}$ and $U U^{*}=I_{K}$. We say that 2 Hilbert spaces are isometric if they are unitarily equivalent.

Example 8.38.
page 201 and Notes $2 / 14 / 11$

$$
\begin{aligned}
& \mathcal{F}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z}) \quad \text { is unitary } \\
& \mathcal{F} f=\hat{f}, \quad \hat{f}(n)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{T}} f(x) e^{-i n x} d x
\end{aligned}
$$

Definition 8.39. Normal Operators

Notes 2/16/11

If $T: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded linear operator on a Hilbert space \mathcal{H}, then T is normal if

$$
\left[T^{*}, T\right] \equiv T^{*} T-T T^{*}=0 \quad \text { i.e. } \quad T^{*} T=T T^{*}
$$

Self-adjoint and unitary operators are normal.

Example 8.40.

Notes 2/16/11

1. Self-adjoint and unitary operators are normal
2. The shift operators on $\ell^{2}(\mathbb{N})$ are not normal
3. Any multiplication operator is normal

$$
\begin{aligned}
& M: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}) \\
& (M f)(x)=m(x) f(x), \quad m \in L^{\infty}(\mathbb{R}) \\
& M^{*} f=\bar{m} f \\
& M^{*} M f=\bar{m} m f=m \bar{m} f=M M^{*} f
\end{aligned}
$$

Special cases
(a) If m is real-valued then $M=M^{*}$, so M is self-adjoint. For
(b) For M to be unitary, we must have $m=e^{i \theta}$.

8.6 Weak Convergence in a Hilbert Space

Definition 8.41. Weak Convergence

page 204 and Notes 2/16/11

A sequence $\left(x_{n}\right)$ in a Hilbert space \mathcal{H} converges weakly to $x \in \mathcal{H}$, written $x_{n} \rightharpoonup x$, if

$$
\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle \quad \forall y \in \mathcal{H}
$$

Compare to Distributional Convergence (Definition 11.2): $T_{n} \rightharpoonup T$ in \mathcal{D}^{\prime} if $\left\langle T_{n}, \varphi\right\rangle \rightarrow\langle T, \varphi\rangle$.

Definition 8.42. Strong Convergence

Notes 2/16/11

We write strong (norm) convergence as $x_{n} \rightarrow x$ if $\left\|x_{n}-x\right\| \rightarrow 0$.

Remark 8.43. Weak vs. Strong Convergence

Notes 2/16/11

If $x_{n} \rightarrow x$, then $x_{n} \rightharpoonup x$ because

$$
\left|\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right| \leq\left\|x_{n}-x\right\|\|y\| \quad \text { (Cauchy-Schwarz) }
$$

In a finite dimensional space, the converse is true, but this is not the case in infinite dimensional spaces.

Weak convergence $=$ component-wise convergence

Example 8.44.

page 204 and Notes 2/16/11

Let \mathcal{H} be a separable Hilbert space and let $\left\{e_{n} \mid n \in \mathbb{N}\right\}$ be a separable orthonormal basis. Then $e_{n} \rightharpoonup 0$ as $n \rightarrow \infty$ because

$$
\left\langle e_{n}, y\right\rangle=y_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { because } \quad \sum\left|y_{n}\right|^{2}<\infty
$$

But $\left(e_{n}\right)$ doesn't converge strongly because

$$
\left\|e_{n}-e_{m}\right\|=\sqrt{2} \quad \forall n \neq m
$$

and so the sequence is not Cauchy and hence not convergent.

Example 8.45.

Notes 2/16/11

Define an unbounded sequence $\left(x_{n}\right)$ by $x_{n}=n e_{n}$. We know that

$$
\left\langle x_{n}, e_{m}\right\rangle \rightarrow 0 \quad \Rightarrow \quad\left\langle x_{n}, y\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \forall y=\sum_{m=1}^{m} c_{m} e_{m}
$$

Let $y_{1}=\sum \frac{1}{m} e_{m}$. Then

$$
\left\langle x_{n}, y\right\rangle=\frac{1}{n} \cdot n=1 \quad \forall n
$$

Let $y_{2}=\sum \frac{1}{m^{3 / 4}} e_{m} \in \mathcal{H}$. Then

$$
\left\langle x_{n}, y\right\rangle=\frac{1}{n^{3 / 4}} \cdot n \rightarrow 0
$$

Thus, $\left(x_{n}\right)$ does not converge weakly.

Theorem 8.46. Uniform Boundedness Theorem
page 204

Suppose that $\left\{\varphi_{n}: X \rightarrow \mathbb{C} \mid n \in \mathbb{N}\right\}$ is a set of functionals on a Banach space X such that the set of complex numbers $\left\{\varphi_{n}(x) \mid n \in \mathbb{N}\right\}$ is bounded for each $x \in X$. Then $\left\{\left\|\varphi_{n}\right\| \mid n \in \mathbb{N}\right\}$ is bounded.

Theorem 8.47.

Notes 2/16/11

If $x_{n} \rightharpoonup x$ then $\left\{\left\|x_{n}\right\| \mid n \in \mathbb{N}\right\}$ is bounded.

Proof. Define $\varphi_{n}: \mathcal{H} \rightarrow \mathbb{C}$ by $\varphi_{n}(y)=\left\langle x_{n}, y\right\rangle$. Then $\varphi_{n} \in \mathcal{H}^{*}$. By the uniform boundedness theorem (Theorem 8.46),

$$
\begin{aligned}
& \left|\varphi_{n}(y)\right| \leq M \quad \forall y \in \mathcal{H}, n \in \mathbb{N} \\
& \left\{\left|\varphi_{n}(y)\right| \mid n \in \mathbb{N}\right\} \text { is bounded for each } y \in \mathcal{H}, \text { so }\left\{\left\|\varphi_{n}\right\| \mid n \in \mathbb{N}\right\} \text { is bounded }
\end{aligned}
$$

Theorem 8.48.

page 205 and Notes $2 / 16 / 11$

Let $D \subset \mathcal{H}$ be a dense subset. Then $x_{n} \rightharpoonup x$ iff
(a) $\left\{\left\|x_{n}\right\| \mid n \in \mathbb{N}\right\}$ is bounded
(b) $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle \quad \forall y \in D$

Proposition 8.49.

page 208 and Notes 2/16/11

$$
\text { If } x_{n} \rightharpoonup x \text {, then }\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|
$$

Proof.

$$
\begin{gathered}
\|x\|^{2}=\langle x, x\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, x\right\rangle \leq\|x\| \liminf _{n \rightarrow \infty}\left\|x_{n}\right\| \\
\left\langle x_{n}, x\right\rangle \leq\left\|x_{n}\right\|\|x\| \quad \text { (Cauchy-Schwarz) }
\end{gathered}
$$

Note: if $a_{n} \leq b_{n}, a_{n} \rightarrow a$, then $a \leq \liminf b_{n}$.

$$
\left\|x_{n}-x\right\|^{2}=\left\langle x_{n}-x, x_{n}-x\right\rangle=\left\|x_{n}\right\|^{2}-\left\langle x, x_{n}\right\rangle-\left\langle x_{n}, x\right\rangle+\|x\|^{2}
$$

If $x_{n} \rightharpoonup x$, then $\left\|x_{n}\right\| \rightarrow\|x\|$, and

$$
\left\|x_{n}-x\right\|^{2} \rightarrow\|x\|^{2}-\langle x, x\rangle-\langle x, x\rangle+\|x\|^{2}=0
$$

Example 8.50. Example for Proposition 8.49
Notes 2/16/11

$$
\begin{array}{lll}
x_{1}=e_{1} & x_{n} \rightharpoonup 0 \\
x_{2}=2 e_{2} \\
x_{3}=e_{3} & & \\
x_{4}=2 e_{4} & \liminf _{n \rightarrow \infty}=1
\end{array} \quad\left\|x_{n}\right\|= \begin{cases}1 & n \text { odd } \\
2 & n \text { even }\end{cases}
$$

...

Example 8.51. Weak Convergence \nRightarrow Strong Convergence

Notes 2/16/11

(a) Oscillation:

(1) Let $\mathcal{H}=L^{2}(\mathbb{T}), f_{n}(x)=e^{i n x} \rightharpoonup 0$ as $n \rightarrow \infty$

Proof. $\left\|f_{n}\right\|=\sqrt{2 \pi}$ is bounded, and $\left\langle e^{i n x}, \varphi\right\rangle \rightarrow 0$ as $n \rightarrow \infty$ for all trig polynomials φ, and the trig polynomials are dense in $L^{2}(\mathbb{T})$.
(2) Let $\mathcal{H}=L^{2}(\mathbb{R})$. Recall that $C_{C}^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ are the smooth functions with compact support, and they are dense in $L^{2}(\mathbb{R})$. Then $f_{n} \rightharpoonup f$ iff
i. $\|f\| \leq M$ (bounded)
ii. $\int f_{n} \varphi d x \rightarrow \int f \varphi d x \forall \varphi \in C_{C}^{\infty}(\mathbb{R})$

Consider $f_{n}(x)=\psi(x) \sin (n \pi x)$, where $\psi \in C_{C}^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Then $f_{n} \rightharpoonup 0$ as $n \rightarrow \infty$, but $f_{n} \nrightarrow 0$ as $n \rightarrow \infty$. (See proof below)
(b) Concentration: Consider

$$
f_{n}(x)=\left\{\begin{array}{rl}
n^{1 / 2} & 0<x<\frac{1}{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

i. $\left\|f_{n}\right\|^{2}=\int_{0}^{1 / 2}\left(n^{1 / 2}\right)^{2} d x=1$
ii. $\forall \varphi \in C_{C}^{\infty}(\mathbb{R}), \quad\left|\int f_{n} \varphi d x\right|=\left|n^{1 / 2} \int_{0}^{1 / n} \varphi d x\right| \leq n^{1 / 2} \cdot \frac{1}{n}\|\varphi\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ So $f_{n} \rightharpoonup 0$ as $n \rightarrow \infty$
Does f_{n} converge strongly to 0 ? No, because $\left\|f_{n}\right\|=1 \forall n$. (See below for more details)
(c) Escape to Infinity:

$$
f_{n}(x)= \begin{cases}1 & n<x<n+1 \\ 0 & \text { otherwise }\end{cases}
$$

i. $\left\|f_{n}\right\|_{L^{2}}=1$, so f_{n} is bounded.
ii. $\int f_{n} \varphi d x \rightarrow 0$ as $n \rightarrow \infty \forall \varphi \in C_{C}^{\infty}(\mathbb{R})$

Thus, $f_{n} \rightharpoonup 0$, but $f_{n} \nrightarrow 0$ because $\left\|f_{n}\right\|=1 \forall n$.

Proof. (a2)
i. $\left\|f_{n}\right\|^{2}=\int \psi^{2}(x) \sin ^{2}(n \pi x) d x \leq \int \psi^{2}(x) d x \leq\|\psi\|^{2}$
ii. Suppose $\varphi \in C_{C}(\mathbb{R})$.

$$
\begin{aligned}
\int f_{n}(x) \varphi(x) d x & =\int \psi(x) \sin (n \pi x) \varphi(x) d x \\
& \left.=\int \frac{\cos (n \pi x)}{n \pi}[\varphi(x) \psi(x)]^{\prime} d x \quad \quad \text { (IBP, no boundary terms because } \varphi \in C_{C}(\mathbb{R})\right) \\
\left|\int f_{n} \varphi d x\right| & \leq \frac{1}{n \pi} \int(|\varphi \psi|)^{\prime} d x \\
& \leq \frac{c}{n}
\end{aligned}
$$

So $\int f_{n} \varphi d x \rightarrow 0$ as $n \rightarrow \infty$, and thus $f_{n} \rightharpoonup f$.

Does $\left(f_{n}\right)$ converge strongly? i.e., does $f_{n} \rightarrow 0$? (see Remark 8.52)
If $\psi \neq 0$, then

$$
\left\|f_{n}\right\|^{2}=\int \psi^{2}(x) \sin ^{2}(n \pi x) d x=\int \psi^{2}(x) \cdot \frac{1}{2}[1-\cos (2 n \pi x)] d x \rightarrow \frac{1}{2}\|\psi\|^{2} \neq 0
$$

In fact, if we set $g_{n}=f_{n}^{2}=[\psi(x)]^{2} \sin ^{2}(n \pi x)$, then $g_{n} \rightarrow \frac{1}{2} \psi^{2}(x)$ because

$$
\begin{aligned}
\int g_{n}(x) \varphi(x) d x & =\int \psi^{2}(x) \sin ^{2}(n \pi x) \varphi(x) d x \\
& =\frac{1}{2} \int \psi^{2} \varphi d x-\frac{1}{2} \int \varphi^{2} \psi \cos (2 \pi n x) d x \\
& \rightarrow \frac{1}{2} \int \psi^{2} \varphi d x
\end{aligned}
$$

So $g_{n} \rightharpoonup \frac{1}{2} \psi^{2}$

Proof. (b)

$$
g_{n}= \begin{cases}n & 0<x<\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

$\left\|g_{n}\right\|=\sqrt{n},\left(g_{n}\right)$ is unbounded, so $g_{n} \not \neg g$. In fact, $g_{n} \rightharpoonup \delta \in \mathcal{D}^{\prime}(\mathbb{R})$.

$$
h_{n}=\left\{\begin{array}{rl}
n^{1 / 4} & 0<x<\frac{1}{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

$\left\|h_{n}\right\|=0$, and $\left(h_{n}\right)$ is strongly and weakly convergent to $0 . \frac{1}{2}$ is the critical value for L^{2}, and $\frac{1}{p}$ is the critical value for L^{p}.

Remark 8.52.

If $f_{n} \rightharpoonup f$ and $f_{n} \rightarrow g$, then we must have $f=g$ because

$$
\begin{aligned}
& \left\langle f_{n}, h\right\rangle \rightarrow\langle f, h\rangle \forall h \in \mathcal{H} \\
& \left\langle f_{n}, h\right\rangle \rightarrow\langle g, h\rangle \forall h \in \mathcal{H}
\end{aligned}
$$

Since $\langle f, h\rangle=\langle g, h\rangle \forall h$, we have that $f=g$.

8.7 The Banach-Alaoglu Theorem

Definition 8.53. Weakly Sequentially Compact
page 208 and Notes 2/23/11

A set $K \subset \mathcal{H}$ is weakly sequentially compact if for any sequence $\left(x_{n}\right) \subset K$ there exists a subsequence $\left(x_{n_{k}}\right)$ such that $x_{n_{k}} \rightharpoonup x \in K$.

Theorem 8.54. Banach-Alaoglu Theorem
page 208 and Notes $2 / 23 / 11$

Suppose that \mathcal{H} is a separable Hilbert space and $\bar{B}=\{x \in \mathcal{H} \mid\|x\| \leq 1\}$ is the closed unit ball. Then \bar{B} is weakly sequentially compact.

Remarks

1. \bar{B} is not strongly compact if \mathcal{H} is infinite-dimensional. Ex: $\left\{e_{n}\right\}$ is an orthonormal basis, but $\left(e_{n}\right)$ has no convergent subsequence
2. This can be thought of as a replacement of the Heine-Borel theorem in the infinite-dimensional case

Proof. Let $\left\{y_{k} \mid k \in \mathbb{N}\right\}$ be a dense subset of \mathcal{H}. Consider $\left(\left\langle x_{n}, y_{1}\right\rangle\right)_{n} \subset \mathbb{C}$. By Cauchy-Schwarz, $\mid\left\langle x_{n}, y\right\rangle \leq\left\|x_{n}\right\|\left\|y_{1}\right\| \leq\left\|y_{1}\right\|$, so the sequence is bounded, and thus there exists a subsequence of $\left(x_{n}\right)$, denoted $\left(x_{n, 1, k}\right)_{k}=\left(x_{1, k}\right)$ such that $\left\langle x_{1, k}, y_{1}\right\rangle$ converges as $k \rightarrow \infty$. Pick a subsequence $\left(x_{2, k}\right)$ of $\left(x_{1, k}\right)$ such that $\left\langle x_{2, k}, y_{2}\right\rangle$ converges as $k \rightarrow \infty$. Let $x_{j}=x_{j, j}$ be the diagonal sequence. Then $\left\langle x_{j}, y_{n}\right\rangle$ converges for every y_{k} as $j \rightarrow \infty$ in this dense subset of \mathcal{H}. This defines a bounded linear functional F on $D=\left\{y_{k} \mid k \in \mathbb{N}\right\}$. By the Bounded Linear Transformation Theorem, this extends to a bounded linear functional $\bar{F}: \mathcal{H} \rightarrow \mathbb{C}$ such that $\bar{F}\left(y_{k}\right)=\lim _{j \rightarrow \infty}\left\langle x_{j}, y_{k}\right\rangle$ for all $k \in \mathbb{N}$. By the Riesz Representation Theorem, there exists $x \in \mathcal{H}$ such that $\left\langle x, y_{k}\right\rangle=\lim _{j \rightarrow \infty}\left\langle x_{j}, y_{k}\right\rangle$ for all $k \in \mathbb{N}$. Since $\left\{y_{k}\right\}$ is dense in \mathcal{H} and $\|x\| \leq 1,\langle x, y\rangle=\lim _{j \rightarrow \infty}\left\langle x_{j}, y\right\rangle$ for all $y \in \mathcal{H}$, and thus $x_{j} \rightharpoonup x .\|x\| \leq \liminf _{j \rightarrow \infty}\left\|x_{j}\right\| \leq 1$, so $x \in \bar{B}$.

Remark 8.55.

Notes 2/23/11

1. We don't need \mathcal{H} to be separable (restrict to a closed subspace spanned by $\left\{x_{n}\right\}$ which is separable)
2. Generalization to Banach spaces: the unit ball of X^{*} is weak-* compact (equivalent to being weak compact if X is reflexive, i.e. $X^{* *}=X$)

Definition 8.56. Weakly Sequentially Closed

Notes 2/23/11

A set $F \subset \mathcal{H}$ is weakly sequentially closed if whenever $\left(x_{n}\right) \subset F$ is a sequence and $x_{n} \rightharpoonup x$, then $x \in F$.

Weakly closed implies strongly closed, but not conversely if \mathcal{H} is infinite-dimensional. For example, let

$$
\begin{aligned}
S & =\{x \in \mathcal{H} \mid\|x\|=1\} \\
\bar{B} & =\{x \in \mathcal{H} \mid\|x\| \leq 1\}
\end{aligned}
$$

S is not weakly closed because $\left(e_{n}\right) \subset S, e_{n} \rightharpoonup 0 \notin S$. \bar{B} is weakly closed because if $x_{n} \rightharpoonup x$, then $\|x\| \leq \liminf \left\|x_{n}\right\|$. The weak closure of S is \bar{B}.

Definition 8.58. Weakly Sequentially Lower Semicontinuous

page 208 and Notes $2 / 23 / 11$

A function $f: D \subset \mathcal{H} \rightarrow \mathbb{R}$ is weakly sequentially lower semicontinuous if

$$
x_{n} \rightharpoonup x \quad \Rightarrow \quad f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

Example: $\|\cdot\|: \mathcal{H} \rightarrow \mathbb{R}$ is weakly sequentially lower semicontinuous.

Remark 8.59.

Notes 2/23/11

Weakly sequentially lower semicontinuous implies strongly sequentially lower semicontinuous, but not conversely.

Theorem 8.60.

page 209 and Notes $2 / 23 / 11$

Suppose that D is a weakly closed, bounded (in norm) subset in a Hilbert space \mathcal{H} and $f: D \rightarrow \mathbb{R}$ is a weakly sequentially lower semicontinuous function. Then f is bounded from below $\left(m=\inf _{x \in D} f(x)>-\infty\right)$ and there exists $x \in D$ such that $f(x)=m$.

8.8 Chapter Summary

We begin by defining what it means for a bounded linear operator P to be a projection (with "opposite" $Q=I-P$), and we explore relationship between projections and direct sum decompositions: P a projection $\Leftrightarrow X=\operatorname{ran} P \oplus \operatorname{ker} P$. We introduce orthogonal projections and show that they are bounded and self-adjoint. We explore the connection between orthogonal projections $P(\Rightarrow \mathcal{H}=\operatorname{ran} P \oplus \operatorname{ker} P)$ and direct sum decompositions (\mathcal{M} closed) $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}\left(\Rightarrow P\right.$, ran $P=\mathcal{M}$, ker $\left.P=\mathcal{M}^{\perp}\right)$.

Recall from Chapter 5 that a linear functional is bounded iff it is continuous. We introduce the Riesz Representation Theorem: for all $\varphi \in \mathcal{H}^{*}$, there exists $y \in \mathcal{H}$ such that $\varphi(x)=\langle y, x\rangle$. This gives us that all Hilbert spaces are self-dual: $\mathcal{H}^{* *}=\mathcal{H}$. This is because the map $J_{1}: \mathcal{H} \rightarrow \mathcal{H}^{*}$ defined by $J_{1} y=\varphi_{y}$ identifies \mathcal{H} with its dual space, \mathcal{H}^{*}. Similarly, we can define a map J_{2} that identifies \mathcal{H}^{*} with its dual space, $\mathcal{H}^{* *}$.

Thus, \mathcal{H} and $\mathcal{H}^{* *}\left(\right.$ and $\left.\mathcal{H}^{*}\right)$ have the same cardinality. And since we know (Chapter 5) that for every $x \in \mathcal{H}$ we can define a functional $F_{x} \in \mathcal{H}^{* *}$ by $F_{x}(\varphi)=\varphi(x)$, we therefore know that all linear functionals in $\mathcal{H}^{* *}$ are of this form.

We use the Riesz Representation Theorem to prove the existence of the adjoint of a bounded operator on a Hilbert space: $\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle$. Examples:

- Matrix: $A^{*}=A^{T}\left(\overline{A^{T}}\right.$ if A is complex)

$$
-\langle x, A y\rangle=x^{T} A y,\left\langle A^{*} x, y\right\rangle=\left(A^{*} x\right)^{T} y=x^{T}\left(A^{*}\right)^{T} y
$$

- Integral operator $K f(x)=\int_{0}^{1} k(x, y) f(y) d y: K^{*} f(x)=\int_{0}^{1} \overline{k(y, x)} f(y) d y$
- Shift operators: $S^{*}=T, T^{*}=S$

We verify that for a bounded linear operator A, a solvability condition for $A x=y$ is that $\langle y, z\rangle=0$ for all $z \in \operatorname{ker} A^{*} \Leftrightarrow \operatorname{ran} A \subset\left(\operatorname{ker} A^{*}\right)^{\perp}$. We use this fact to prove that for a bounded linear operator A,

$$
\overline{\operatorname{ran} A}=\left(\operatorname{ker} A^{*}\right)^{\perp}, \quad \operatorname{ker} A=\left(\operatorname{ran} A^{*}\right)^{\perp} .
$$

Equivalently,

$$
\mathcal{H}=\underbrace{\left(\operatorname{ker} A^{*}\right)^{\perp}}_{\operatorname{ran} A} \oplus \underbrace{(\operatorname{ran} A)^{\perp}}_{\text {ker } A^{*}} .
$$

Next we have some definitions. We define what it means for a bounded linear operator to be self-adjoint, and we prove that for a bounded self-adjoint operator A,

$$
\|A\|=\sup _{\|x\|=1}|\langle x, A x\rangle|, \quad\left\|A^{*} A\right\|=\|A\|^{2}
$$

Examples:

- A matrix is self-adjoint if it is symmetric (or Hermitian, if it is complex).
- An integral operator $K f(x)=\int_{0}^{1} k(x, y) f(y) d y$ is self-adjoint if $k(x, y)=\overline{k(y, x)}$

We say that an operator is unitary/orthogonal if it is invertible and $\langle U x, U y\rangle_{\mathcal{H}_{2}}=\langle x, y\rangle_{\mathcal{H}_{1}} \Leftrightarrow U^{*} U=$ $U U^{*}=I$. We say that an operator is normal if $T^{*} T=T T^{*}$. (Self-adjoing and unitary operators are normal.)

Now we revisit weak convergence. For Hilbert spaces, the Riesz Representation Theorem gives us an equivalent definition: $x_{n} \rightharpoonup x$ if $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle \forall y \in \mathcal{H} \Leftrightarrow \varphi\left(x_{n}\right) \rightarrow \varphi(x) \forall \varphi \in \mathcal{H}^{*}$. We mention 3 reasons why a sequence may converge weakly but not strongly: oscillation, concentration, and escape to infinity. We prove that for a weakly convergent sequence $\left(x_{n}\right),\|x\| \leq \lim \inf \left\|x_{n}\right\|$. We also prove that if $\lim \left\|x_{n}\right\|=\|x\|$, then $\left(x_{n}\right)$ converges to x strongly. The Banach-Alaoglu Theorem tells us that the closed unit ball of a Hilbert space is weakly compact.

We define what it means for a function to be convex, and we say a few words about lower semicontinuous functions. We finish the chapter with Mazur's Theorem, which tells us that if $x_{n} \rightharpoonup x$, then there exists a sequence $\left(y_{n}\right)$ of finite convex combinations of $\left\{x_{n}\right\}$ that converges strongly to x.

9 The Spectrum of Bounded Linear Operators

9.0 Introduction

Remark 9.1.
page 215 and Notes $3 / 2 / 11$

Consider the following initial boundary value problem for a variable coefficient, linear equation:

$$
\begin{array}{lr}
u_{t}=u_{x x}-q(x) u & 0<x<1, t>0 \\
u(0, t)=0, u(1, t)=0 & t \geq 0 \\
u(x, 0)=f(x) & 0 \leq x \leq 1
\end{array}
$$

Using separation of variables, we assume

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) u_{n}(x)
$$

where $\left\{u_{n} \mid n \in \mathbb{N}\right\}$ is an orthonormal basis of $L^{2}([0,1])$. We find that

$$
\frac{d a_{n}}{d t}=-\lambda_{n} a_{n} n
$$

and the u_{n} satisfy

$$
-\frac{d^{2} u_{n}}{d x^{2}}+q u_{n}=\lambda_{n} u_{n}
$$

Then the u_{n} are eigenvectors of the linear operator A. Thus, $A u_{n}=\lambda_{n} u_{n}$, where A is defined by

$$
A u=-\frac{d^{2} u}{d x^{2}}+q u
$$

We want a complete set of eigenvectors of A, or equivalently, to diagonalize A. This is an example of what we do in spectral theory.

9.1 Diagonalization of Matrices

Remark 9.2.

page 218 and Notes $3 / 2 / 11$

The concept of the spectrum of an operator on a Banach/Hilbert space is a generalization of eigenvalues for matrices. Let $A \in \mathcal{B}(X)$. When $\operatorname{dim} X<\infty$ then we can identify it with a a matrix \tilde{A}. For any $\lambda \in \mathbb{C}$ we have two possibilities:

1. $\lambda I-A$ is nonsingular $\Leftrightarrow \operatorname{det}(\lambda I-A)=0 \Leftrightarrow(\lambda I-A)^{-1}$ exists
2. $\lambda I-A$ is singular \Leftrightarrow there exists x_{0} such that $(\lambda I-A) x_{0}=0$. Thus, $A x_{0}=\lambda x_{0}, \lambda$ is an eigenvalue, and x_{0} is an eigenvector.

What happens if $\operatorname{dim} X=\infty ? ? ?$

9.2 The Spectrum

Definition 9.3. Resolvent Set
page 218 and Notes $3 / 2 / 11$

The resolvent set of a bounded operator A on a Banach space X is the set

$$
\begin{aligned}
\qquad(A) & =\{\lambda \in \mathbb{C} \mid(\lambda I-A) \text { is invertible }\} \\
\text { (by the bounded inverse theorem) } & =\{\lambda \in \mathbb{C} \mid(\lambda I-A) \in \mathcal{B}(X)\} \\
& =\{\lambda \in \mathbb{C} \mid(\lambda I-A) \text { is 1-1 and onto }\}
\end{aligned}
$$

Definition 9.4. Spectrum
page 218 and Notes $3 / 2 / 11$

The spectrum of A is the set

$$
\begin{aligned}
\sigma(A) & =\mathbb{C} \backslash \rho(A) \\
& =\{\lambda \in \mathbb{C} \mid(\lambda I-A) \text { is not invertible }\}
\end{aligned}
$$

Definition 9.5. Point Spectrum, Continuous Spectrum, Residual Spectrum

 page 219 and Notes $3 / 2 / 11$In general, $\sigma(A)$ can be expressed as $\sigma(A)=\sigma_{p}(A) \cup \sigma_{c}(A) \cup \sigma_{r}(A)$, where

1. $\sigma_{p}(A)=\{\lambda \in \mathbb{C} \mid(\lambda I-A)$ is not 1-1 $\}$
$\sigma_{p}(A)$ is called the point spectrum of A. In this case, since $(\lambda I-A)$ is not 1-1, there exists $x_{0} \in \operatorname{ker}(\lambda I-A)$ such that $(\lambda I-A) x_{0}=0 \Leftrightarrow A x_{0}=\lambda x_{0}$
2. $\sigma_{c}(A)=\{\lambda \in \mathbb{C} \mid(\lambda I-A)$ is 1-1 but not onto and $\overline{\operatorname{ran}(\lambda I-A)}=X\}$
$\sigma_{c}(A)$ is called the continuous spectrum of A
3. $\sigma_{r}(A)=\{\lambda \in \mathbb{C} \mid(\lambda I-A)$ is 1-1 but not onto and $\overline{\operatorname{ran}(\lambda I-A)} \neq X\}$
$\sigma_{r}(A)$ is called the residual spectrum of A

Example 9.6. Point, Continuous, and Residual Spectra Examples
Notes 3/7/11

1. A matrix on \mathbb{C}^{n} has pure point spectrum
2. $M: L^{2}([0,1]) \rightarrow L^{2}([0,1]), f \mapsto x f, \sigma(M)=[0,1]$ has pure continuous spectrum
3. Consider the right shift operator S on $\ell^{2}(\mathbb{N})$. $\lambda=0$ is in the residual spectrum

Example 9.7.

Notes 3/2/11

Consider the Banach space $X=C([0,1])$ with the $\|\cdot\|_{\infty}$ norm. Define $A: X \rightarrow X$ by $A f(x)=x f(x)$. The boundedness of A follows exactly as in HW7 (even though $X=L^{2}([0,1])$ on the HW, since we can take $\sup x=1)$. Find $\sigma(A)$. Claim: $\sigma(A)=\sigma_{r}(A)=[0,1]$.

For any $\lambda \in \mathbb{C}, f \in C([0,1])$, we have

$$
(\lambda I-A) f(x)=(\lambda-x) f(x)=0
$$

If $\lambda \neq x$ then $f(x)=0$. If $\lambda \notin[0,1]$ then $\sigma_{p}=\emptyset$.
For all $\lambda \notin[0,1]$, is $(\lambda I-A)$ onto? For every $g \in C([0,1])$, we want f such that $f(x)(\lambda-x)=$ $g(x) \Rightarrow f(x)=\frac{g(x)}{\lambda-x} \in C([0,1])$, since $\lambda \notin[0,1]$ implies that $\lambda-x \neq 0 \forall x \in[0,1]$. Thus, $(\lambda I-A)$ is onto, and we can conclude that $\sigma(A) \subseteq[0,1]$.
It will be enough to prove the claim to show that $[0,1] \subseteq \sigma_{r}(A)$. Why? $[0,1] \subseteq \sigma_{r}(A) \subseteq \sigma(A) \subseteq[0,1]$.
Pick $\lambda \in[0,1]$. For every $g \in \operatorname{ran}(\lambda I-A)$ we have that

$$
\begin{aligned}
& g(x)=(\lambda-x) f(x) \text { for some } f \in X=C([0,1]) \\
& g(\lambda)=0
\end{aligned}
$$

So $h(x)=1 \notin \operatorname{ran}(\lambda I-A)$, since $g(\lambda)=0 \neq 1$. Therefore $(\lambda I-A)$ is not onto.

If $h \in \overline{\operatorname{ran}(\lambda I-A)}$ then there exists $\left(g_{n}\right) \subset \operatorname{ran}(\lambda I-A)$ such that $g_{n} \rightarrow h . h\left(\lambda=\lim _{n \rightarrow \infty} g_{n}(\lambda)(\lambda I-\right.$ $A)=0$. Thus, $\mathbf{1} \notin \overline{\operatorname{ran}(\lambda I-A)}$, so $\lambda \in \sigma_{r}(A)$.

Example 9.8.
page 219

Example 9.5 on page 219

Definition 9.9. Resolvent

page 220 and Notes $3 / 4 / 11$

For $\lambda \in \rho(A)$, we define the resolvent of A at λ to be

$$
R_{\lambda}=(\lambda I-A)^{-1}, \quad R_{\lambda}: \rho(A) \subset \mathbb{C} \rightarrow \mathcal{B}(\mathcal{H})
$$

Example 9.10. Neumann Series
page 220 and Notes $3 / 4 / 11$

If $\|A\|<1$ then $(I-A)$ is invertible and

$$
(I-A)^{-1}=I+A+A^{2}+\ldots
$$

To show this, we define the partial sum:

$$
S_{N}=I+A+A^{2}+\ldots+A^{N}
$$

Next, we show that the sequence of partial sums is Cauchy:

$$
\begin{aligned}
\left\|A^{M+1}+\ldots+A^{N}\right\| & \leq\left\|A^{M+1}\right\|+\ldots+\left\|A^{N}\right\| \leq\|A\|^{M+1}+\ldots+\|A\|^{N} \\
& \leq \sum_{n=M+1}^{N}\|A\|^{n}
\end{aligned}
$$

$\sum_{n=1}^{\infty}<\infty$ if $\|A\|<1$, so the partial sums are Cauchy. Thus, $\sum_{n=0}^{\infty} A^{n}$ is Cauchy in $\mathcal{B}(\mathcal{H})$, and it converges since $\mathcal{B}(\mathcal{H})$ is complete.
(See Remark 9.12.)

Example 9.11.

Notes 3/4/11

1. If $|\lambda|>\|A\|$ then $\lambda \in \rho(A)$
$(\lambda I-A)^{-1}=\left[\lambda\left(I-\frac{A}{\lambda}\right)\right]^{-1}=\frac{1}{\lambda}\left(I-\frac{A}{\lambda}\right)^{-1}$
\uparrow this exists if $\|A / \lambda\|<1 \Rightarrow\|A\|<|\lambda|$
2. The resolvent set $\rho(A)$ is open in \mathbb{C}

Suppose $\lambda_{0} \in \rho(A)$. We write:

$$
\begin{aligned}
& (\lambda I-A)=\lambda_{0} I-A+\left(\lambda-\lambda_{0}\right) I=\left(\lambda_{0} I-A\right)\left[I+\left(\lambda-\lambda_{0}\right)\left(\lambda_{0} I-A\right)^{-1}\right] \\
& (\lambda I-A)^{-1}=\left[I+\left(\lambda-\lambda_{0}\right)\left(\lambda_{0} I-A\right)^{-1}\right]^{-1}\left(\lambda_{0} I-A\right)^{-1} \\
& \quad \uparrow \text { exists if }\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|\left(\lambda_{0} I-A\right)^{-1}\right\|}
\end{aligned}
$$

3. $R_{\lambda}: \lambda \mapsto(\lambda I-A)^{-1}$
R_{λ} is an operator-valued analytic function on the open set $\rho(A) \subset \mathbb{C}$
4. $\sigma(A) \neq \emptyset$

Remark 9.12.

Notes 3/4/11

In Example 9.10, it is not necessary that $\|A\|<1$ for $(I-A)^{-1}=I+A+A^{2}+\ldots$ to converge.
Rather, we require that $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}<1$.
$r(A)=\sup \{|\lambda| \mid \lambda \in \sigma(A)\}$ is the spectral redius of A. This is the radius of the smallest disc in \mathbb{C} centered at 0 that contains $\sigma(A)$. Also, $r(A) \leq\|A\|$.

Theorem 9.14.
page 220 and Notes $3 / 4 / 11$

$$
r(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n} \quad \text { (and the limit exists) }
$$

Proof. Let $a_{n}=\log \left\|A^{n}\right\|$. (If $\left\|A^{n}\right\|=0$ for some n, i.e. A is nilpotent, then $r(A)=0$.) Then

$$
\begin{aligned}
a_{m+n} & =\log \left\|A^{m+n}\right\| \\
& \leq \log \left\|A^{n}\right\|+\log \left\|A^{n}\right\| \\
& \leq a_{m}+a_{n} \quad \text { (subadditive) }
\end{aligned}
$$

We want to show that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists, where $\frac{a_{n}}{n}=\log \left\|A^{n}\right\|^{1 / n}$. Fix n, m and write $n=m p+q$ with $0 \leq q<m$. Then we have

$$
\begin{aligned}
& a_{n}=a_{m p+q} \leq a_{m p}+a_{q} \\
& \frac{a_{n}}{n} \leq \frac{a_{m p}}{n}+\frac{a_{q}}{n}
\end{aligned}
$$

Note that $a_{m p} \leq p a_{m}$. Let $n \rightarrow \infty$ with m fixed. Then $\frac{p}{n} \rightarrow \frac{1}{m}$ as $n \rightarrow \infty$, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n} \leq \frac{a_{m}}{m} \tag{9.1}
\end{equation*}
$$

Taking the limit of (9.1) as $m \rightarrow \infty$, we obtain

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n} \leq \liminf _{m \rightarrow \infty} \frac{a_{m}}{m}
$$

So $\limsup _{n \rightarrow \infty} \frac{a_{n}}{n}=\limsup _{n \rightarrow \infty} \frac{a_{n}}{n}$, and the sequence converges.

Example 9.15. Example for Theorem 9.14

Notes 3/4/11

$$
\begin{aligned}
A & =\mu I \\
\lambda I-A & =(\lambda-\mu) I \\
\sigma(A) & =\mu
\end{aligned}
$$

$$
\begin{aligned}
\|A\| & =|\mu|=r(A) \\
\left\|A^{n}\right\|^{1 / n} & =|\mu|
\end{aligned}
$$

Corollary 9.16.
page 221 and Notes $3 / 4 / 11$

If A is self-adjoint then $r(A)=\|A\|$.

Proof. $\left\|A^{2}\right\|=\|A\|^{2}$ and $\left\|A^{2^{n}}\right\|=\|A\|^{2^{n}}$, so $\liminf _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}=\|A\|$ by taking the subsequence $n=2^{m}$.

9.3 The Spectral Theorem for Compact, Self-Adjoint Operators

9.3.1 Bounded, Self-Adjoint Operators

Theorem 9.17.

page 222 and Notes $3 / 7 / 11$

If A is bounded and self-adjoint, then every eigenvalue of A is real and eigenvectors with different eigenvalues are orthogonal.

Related to Theorem 9.21.

Proof. If $A x=\lambda x$, then

$$
\begin{aligned}
& \langle x, A x\rangle=\langle x, \lambda x\rangle=\lambda\|x\|^{2} \\
& \langle A x, x\rangle=\langle\lambda x, x\rangle=\bar{\lambda}\|x\|^{2}
\end{aligned}
$$

If A is self-adjoint (and $x \neq 0$), then $\lambda=\bar{\lambda} \Rightarrow \lambda \in \mathbb{R}$.
Case: A has pure point spectrum.
If $A x=\lambda x$ and $A y=\mu y, x, y \neq 0, \lambda \neq \mu$, then

$$
\left.\begin{array}{l}
\langle x, A y\rangle=\mu\langle x, y\rangle \\
\langle A x, y\rangle=\bar{\lambda}\langle x, y\rangle=\lambda\langle x, y\rangle
\end{array}\right\} A=A^{*}, \text { so } \mu\langle x, y\rangle=\lambda\langle x, y\rangle
$$

If $\lambda \neq \mu$, then $\langle x, y\rangle=0$, i.e. $x \perp y$.
What about the continuous and residual spectra?

$$
\begin{aligned}
\|(A-\lambda I) x\|^{2} & =\langle(A-a I) x-i b x,(A-a I) x-i b x\rangle \quad \text { where } \lambda=a+i b \\
& =\langle(A-a I) x,(A-a I) x\rangle+\underline{\langle-i b x,(A-a I) x\rangle}+\underline{\langle(A-a I) x,-i b x\rangle}+\langle-i b x,-i b x\rangle \\
& =\|(A-a I) x\|^{2}+b^{2}\|x\|^{2} \\
& \geq b^{2}\|x\|^{2}
\end{aligned}
$$

Continuous Spectrum: See Proposition 9.18 and Remark 9.19.
Residual Spectrum: See Proposition 9.20.

Proposition 9.18.

page 223 and Notes $3 / 7 / 11$

$$
|\operatorname{Im} \lambda| \cdot\|x\| \leq\|(A-a I) x\|
$$

Remark 9.19.

Notes 3/7/11

Proposition 9.18 says that if $(A-\lambda I) x=y$, then $|\operatorname{Im} \lambda| \cdot\|x\| \leq\|y\|$. This means that if $\lambda \in \mathbb{R}$, we can estimate the solution, x, in terms of the RHS, y.

Applying this to the proof of Theorem 9.17, we see that if $\lambda \in \mathbb{C} \backslash \mathbb{R}$, it follows that
(a) $(A-\lambda I)$ is 1-1 because if $(A-\lambda I) x=0$ then $|\operatorname{Im} \lambda|\|x\|=0 \Rightarrow x=0$.
(b) $(A-\lambda I)$ has closed range. If $y_{n}=(A-\lambda I) x_{n}, y_{n} \in \operatorname{ran}(A-\lambda I), y_{n} \rightarrow y$, then we can bound

$$
\underbrace{\left\|x_{m}-x_{n}\right\|}_{\therefore \text { Cauchy }} \leq C \underbrace{\left\|y_{m}-y_{n}\right\|}_{\text {Cauchy }}
$$

So $x_{n} \rightarrow x,(A-\lambda I) x=y$, and $y \in \operatorname{ran}(A-\lambda I)$. So if $\lambda \in \mathbb{C} \backslash \mathbb{R}$, then $(A-\lambda I)$ is $1-1$ with closed range, so there is no complex-valued continuous spectrum.

Proposition 9.20.

page 224 and Notes $3 / 7 / 11$

If A is bounded and self-adjoint, then the residual spectrum is empty.

Proof. If λ is in the residual spectrum, then there exists $y \in \mathcal{H}$ such that $\langle(A-\lambda I) x, y\rangle=0 \forall x \in \mathcal{H}$, so $y \perp \overline{\operatorname{ran}(A-\lambda I)}, y \neq 0$. Since A is self-adjoint, $\langle x,(A-\bar{\lambda} I) y\rangle=0 \forall x \in \mathcal{H}$. This implies that $(A-\bar{\lambda} I) y=0$, so y is an eigenvector of A with eigenvalue $\bar{\lambda}$. We have 2 cases:

1. $\lambda \in \mathbb{C} \backslash \mathbb{R} \Rightarrow$ impossible (A has real eigenvalues)
2. $\lambda \in \mathbb{R}$. Then λ is in the point and residual spectra \Rightarrow impossible.

Theorem 9.21.

page 223 and Notes $3 / 7 / 11$

If A is a bounded, self-adjoint operator on a Hilbert space \mathcal{H}, then $\sigma(A)$ is real and contained in the interval $[-\|A\|,\|A\|]$. The residual spectrum is empty.

Related to Theorem 9.17.

Proposition 9.22.

page 223

If A is a bounded operator on a Hilbert space (not necessarily self-adjoint!) and $\lambda \in \sigma_{r}(A)$, then $\bar{\lambda} \in \sigma_{p}\left(A^{*}\right)$. In other words, $\sigma_{r}(A) \subseteq \sigma_{p}\left(A^{*}\right)$.

Bounded, self-adjoint operators have

- Spectral radius $r(A)=\|A\|$ (See Corollary 9.16)
- Real eigenvalues (See Theorem 9.17)
- Orthogonal eigenvectors (See Theorem 9.17)
- Empty residual spectrum (See Proposition 9.20)

9.3.2 Compact Operators

Definition 9.24. Compact Operator

Notes 3/9/11
$K: \mathcal{H} \rightarrow \mathcal{H}, D \in \mathcal{B}(\mathcal{H})$ is compact if it maps bounded sets to precompact sets.

Remark 9.25. Precompact

Notes 3/9/11

Remember: a set is precompact if it is bounded and "almost" finite-dimensional.

Example 9.26. The Hilbert Cube
page 230 and Notes 3/9/11

Let $\mathcal{H}=\ell^{2}(\mathbb{N})$. The Hilbert cube

$$
C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)| | x_{n} \left\lvert\, \leq \frac{1}{n}\right.\right\}
$$

is closed and precompact. Hence, C is a compact subset of \mathcal{H}.

Example 9.27. Diagonal Operators Are Compact
page 230

The diagonal operator : $\ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ defined by

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{n} x_{n}, \ldots\right)
$$

is compact iff $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Example 9.28. Compactness of Operators

Notes 3/9/11

1. Any operator with finite $\operatorname{rank}(\operatorname{rank} A=\operatorname{dim} \operatorname{ran} A)$ is compact
2. $I: \mathcal{H} \rightarrow \mathcal{H}$ is not compact if $\operatorname{dim} \mathcal{H}=\infty$
3. $L^{2}([0,1]), K f(x)=\int_{0}^{x} f(y) d y$ is a compact operator. If $\|f\|_{L^{2}} \leq M$, then

$$
\left|\int_{0}^{x} f(y) d y\right| \leq \int_{0}^{1}|f(y)| d y \leq\left(\int_{0}^{1}|f(y)|^{2} d y\right)^{1 / 2} \leq M
$$

Define $F(x)=\int_{0}^{x} f(y) d y$. Then

$$
\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right|=\left|\int_{x_{1}}^{x_{2}} f(y) d y\right| \leq\left(\int_{x_{1}}^{x_{2}} 1 \cdot d y\right)^{1 / 2}\left(\int_{x_{1}}^{x_{2}}|f(y)|^{2} d y\right)^{1 / 2} \leq M\left|x_{2}-x_{1}\right|^{1 / 2}
$$

$\{K f \mid\|f\| \leq M\}$ is bounded and equicontinuous. Thus, $H^{2}([0,1])$ is compactly embedded in $L^{2}([0,1])$. It follows that $\left\{K f \mid\|f\|_{L^{2}} \leq M\right\}$ is precompact in $C([0,1])$ by Arzela-Ascoli, so it is precompact in $L^{2}([0,1])$.

If $f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)$, then $K f(x)=\sum_{n=1}^{\infty} \frac{b_{n}}{n \pi}-\sum_{n=1}^{\infty} \frac{b_{n}}{n \pi} \cos (n \pi x)$

9.3.3 Compact, Self-Adjoint Operators

Remark 9.29.

page 223 and Notes $3 / 9 / 11$

Given: $A: \mathcal{H} \rightarrow \mathcal{H}, A$ is compact and self-adjoint, \mathcal{H} is a separable Hilbert space We will prove:

1. A has at least one eigenvalue
2. If A leaves a subspace $M \subset \mathcal{H}$ invariant $(A: M \rightarrow M)$, then A leaves M^{\perp} invariant, and $\mathcal{H}=M \oplus M^{\perp}$

Idea: if we have $A \varphi_{n}=\lambda_{n} \varphi_{n}$, then we can get the largest eigenvalue by maximizing $A\left(\sum c_{n} \varphi_{n}\right)=$ $\sum \lambda_{n} c_{n} \varphi_{n}$.

Theorem 9.30.

page 225 and Notes $3 / 9 / 11$

Suppose $A: \mathcal{H} \rightarrow \mathcal{H}$ is compact and self-adjoint. Then A has an eigenvector with eigenvalue λ with $\lambda=\|A\|$ and $/$ or $\lambda=-\|A\|$.

Proof. Recall: since A is self-adjoint, $\|A\|=\sup _{\|x\|=1}|\langle x, A x\rangle|$. Choose a sequence $\left(x_{n}\right) \subset \mathcal{H}$ with $\left\|x_{n}\right\|=1$
and $\left\langle x_{n}, A x_{n}\right\rangle \rightarrow \lambda$ as $n \rightarrow \infty, \lambda= \pm\|A\|$. Then we have

$$
\begin{array}{rll}
\left\|(A-\lambda I) x_{n}\right\|^{2} & = & \left\langle(A-\lambda I) x_{n},(A-\lambda I) x_{n}\right\rangle \\
& =\left\langle A x_{n}, A x_{n}\right\rangle-2 \lambda\left\langle x_{n}, A x_{n}\right\rangle+\lambda^{2}\left\langle x_{n}, x_{n}\right\rangle \\
= & \underbrace{\left\|A x_{n}\right\|^{2}}-2 \lambda\left\langle x_{n}, A x_{n}\right\rangle+\lambda^{2} \\
& \leq\|A\|^{2}\left\|x_{n}\right\|^{2}=\lambda^{2} & \\
\leq & 2 \lambda^{2}-2 \lambda\left\langle x_{n}, A x_{n}\right\rangle & \rightarrow 0 \text { as } n \rightarrow \infty
\end{array}
$$

So $(A-\lambda I) x_{n} \rightarrow 0$ as $n \rightarrow \infty$, and thus $x_{n}-\frac{1}{\lambda} A x_{n} \rightarrow 0$ (assuming $\lambda \neq 0$, in which case $\|A\|=0$ and everything is an eigenvalue). Since $\left(x_{n}\right)$ is bounded $\left(\left\|x_{n}\right\|=1 \forall n\right), A x_{n} \rightarrow y$ by the compactness of A. So $x_{n} \rightarrow \frac{y}{\lambda}$ and $(A-\lambda I) y=0 .\|y\|=\lambda \neq 0$, since $\left\|x_{n}\right\|=1$ and $x_{n} \rightarrow y$. So A has eigenvector y with eigenvalue λ.

Proposition 9.31.

page 224 and Notes $3 / 9 / 11$

1. Any nonzero eigenvalue of a compact, self-adjoint operator has a finite multiplicity (multiplicity \equiv the dimension of the eigenspace).
2. If λ_{n} is a sequence of eigenvalues and $\lambda_{n} \rightarrow L$, then we must have that $L=0$.

Theorem 9.32. Spectral Theorem for Compact, Self-Adjoint Operators

 page 225 and Notes $3 / 11 / 11$If $A: \mathcal{H} \rightarrow \mathcal{H}$ is a compact, self-adjoint operator on a Hilbert space \mathcal{H} then there is a finite or countably infinite sequence $\left(\lambda_{n}\right)$ of nonzero real eigenvalues and orthogonal eigenvectors $\left(\varphi_{n}\right)$ such that

$$
A \varphi_{n}=\lambda_{n} \varphi_{n}
$$

where $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots . \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ if there are infinitely many λ_{n} 's and

$$
\begin{aligned}
A x & =\sum_{n} \lambda_{n}\left\langle\varphi_{n}, x\right\rangle \varphi_{n} \\
x & =\sum\left\langle\varphi_{n}, x\right\rangle \varphi_{n}+n \quad \text { where } n \in \operatorname{ker} A, \quad \text { ker } A \perp \underbrace{\left\langle\varphi_{n}\right\rangle}_{\text {span }}
\end{aligned}
$$

Let $P_{n}: \mathcal{H} \rightarrow \mathcal{H}$ be the orthogonal projection onto the eigenspace with eigenvalue λ_{n} (eigenvectors of bounded, self-adjoint operators are orthogonal; see Theorem 9.17). Then

$$
A=\sum \lambda_{n} P_{n}
$$

We are representing A as a sum of linear projections because $\lambda_{n} \rightarrow 0$, and so the sum converges uniformly.

Proof. To see that the sum converges uniformly to A, we compute

$$
\left\|A x-\sum_{n=1}^{N} \lambda_{n} P_{n} x\right\|=\sum_{n=N+1}^{\infty}\left|\lambda_{n}\left\langle\varphi_{n}, x\right\rangle \varphi_{n}\right|^{2} \leq\left|\lambda_{N+1}\right|^{2}\|x\|^{2}
$$

Also, if we let P_{0} be the orthogonal projection onto $\operatorname{ker} A$, then

$$
P_{0}+\sum P_{n}=I
$$

is strongly convergent. This is an example of what's called "resolution of the identity." Note that the λ_{i} 's gave us uniform convergence above. For bounded (and unbounded) self-adjoint operators with continuous spectrum we need to use resolutions of identity that involve integrals (instead of sums).

9.4 Functions of Operators $=$ Functional Calculus

Definition 9.33. Function of an Operator

page 232 and Notes 3/11/11

If $f: \sigma(A) \subset \mathbb{C} \rightarrow \mathbb{C}$ is a bounded function, then we define

$$
f(A)=\sum f\left(\lambda_{n}\right) P_{n}+f(0) P_{0}
$$

- f is uniformly convergent if $f\left(\lambda_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$
- f is strongly convergent if $f\left(\lambda_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$

Note that $\sigma(A)=\left\{\lambda_{n}\right\} \cup\{0\}$ if $\operatorname{dim} H=\infty$

- If there are finitely many λ_{n}, then $0 \in \sigma_{p}(A)$
- If there are countably many λ_{n}, then $0 \in \sigma_{c}(A)$

Example 9.34

Notes 3/11/11

Suppose A is a positive (see Definition 8.32), self-adjoint compact operator. Then

$$
\langle x, A x\rangle \geq 0 \quad \text { implies } \quad \lambda_{n} \geq 0 \forall n
$$

We can define the positive square root of A as

$$
\begin{aligned}
\sqrt{A} & =\sum \lambda_{n}^{1 / 2} P_{n} \\
(\sqrt{A})^{2} & =\sum \lambda_{n} P_{n}=A
\end{aligned}
$$

In general, if A is compact then
$T=A^{*} A$ is positive and self-adjoint because $\quad\langle x, T x\rangle=\left\langle x, A^{*} A x\right\rangle=\langle A x, A x\rangle \geq 0$

$$
\sqrt{T}=|A|, \quad|A|^{2}=T=A^{*} A
$$

Definition 9.35. Polar Decomposition

page 217 and Notes 3/11/11
$A=U|A|$, where $U: \operatorname{ran}|A| \rightarrow \operatorname{Im} A$ is a unitary operator

Definition 9.36. Fredholm Operator, Index

Notes 3/11/11

A bounded operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is Fredholm if
(a) $\operatorname{ran} A$ is closed
(b) $\operatorname{dim} \operatorname{ker} A$ is finite
(c) $\operatorname{codim} \operatorname{ran} A$ is finite $\Leftrightarrow \operatorname{dim} \operatorname{ker} A^{*}$ is finite

- codim $\operatorname{ran} A=\operatorname{dim} \operatorname{ker} A^{*}$ (recall that $\mathcal{H}=\operatorname{ran} A \oplus \operatorname{ker} A^{*}$ when $\operatorname{ran} A$ is closed)

We define the index by

$$
\text { index } A=\operatorname{dim}(\operatorname{ker} A)-\operatorname{codim}(\operatorname{ran} A)=\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right)
$$

Example 9.37. Fredholm or not?

Notes 3/11/11
(a) I is Fredholm with index $=0$
(b) $A\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right)$ is not Fredholm because the range is not closed
(c) The right shift operator, S, is Fredholm with index $=-1$

If A is Fredholm with $\operatorname{index}(A)=0$ then we have Fredholm alternative for solving the equation $A x=y$, and there are 2 possibilities:

1. A is one-to-one and we can solve the equation for every $y \in \mathcal{H}$
2. A is not one-to-one, and we can only solve the equation if $y \perp \operatorname{ker} A^{*}$

Theorem 9.38. Riesz-Schauder Theorem

Notes 3/11/11

If K is a compact, self-adjoint operator and $\lambda \neq 0$ then $A=\lambda I-K$ is Fredholm with index 0 .

9.5 Chapter Summary

$$
\begin{array}{rll}
U^{*} A U & =U^{*}(A U)=U^{*}\left(A\left[\begin{array}{lll}
u_{1} & u_{2} & \cdots \\
u_{k}
\end{array}\right]\right) \\
& =U^{*}\left[\begin{array}{llll}
A u_{1} & A u_{2} & \cdots & A u_{k}
\end{array}\right] \\
& =U^{*}\left[\begin{array}{llll}
\lambda_{1} u_{1} & \lambda_{2} u_{2} & \cdots & \lambda_{k} u_{k}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\lambda_{1} e_{1} & \lambda_{2} e_{2} & \cdots & \lambda_{k} e_{k}
\end{array}\right] & \text { (because } \left.U^{*} u_{k}=e_{k}\right) \\
& =\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{k}
\end{array}\right]=D
\end{array}
$$

Operator	Spectrum	Point	Continuous	Residual						
Bounded, Linear	Closed \& Nonempty, $r(A)=\lim \left\\|A^{n}\right\\|^{1 / n}$			$\begin{gathered} \lambda \in \sigma_{r}(A) \Rightarrow \\ \bar{\lambda} \in \sigma_{p}\left(A^{*}\right) \end{gathered}$						
Bounded, Self-Adjoint	$\begin{gathered} \sigma(A) \subset[-\\|A\\|,\\|A\\|] \\ r(A)=\\|A\\| \\ \hline \end{gathered}$	real	real	empty						
Compact, Self-Adjoint		$\begin{gathered} -\\|A\\| \in \sigma_{p}(A) \text { or } \\ \\|A\\| \in \sigma_{p}(A) \end{gathered}$	$\begin{gathered} \sigma_{c}(A)=\{0\} \text { or } \\ \sigma_{c}(A)=\emptyset \\ \hline \end{gathered}$	empty						

