Document: Math 201C (Spring 2011)
Professor: Shkoller
Latest Update: June 2, 2013
Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents

1 Measure Theory 3
2 Other Important Stuff 7
3 Summaries 9
3.1 Chapter 1: L^{p} Spaces 9
3.2 Chapter 2: The Sobolev Spaces $H^{k}(\Omega)$ for Integers $k \geq 0$ 10
3.3 Chapter 3: The Fourier Transform 10
3.4 Chapter 4: The Sobolev Spaces $H^{s}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}$ 11
3.5 Chapter 5: Fractional-Order Sobolev spaces on Domains with Boundary 12
3.6 Chapter 6: The Sobolev Spaces $H^{s}\left(\mathbb{T}^{n}\right), s \in \mathbb{R}$ 12
4 Things That Are Inescapable 13
5 Tricks \& Techniques 14
6 Mollifiers 15
7 Inequalities 16
8 Definitions 18
A 3-28-11 23
B Section 3-29-11 25
C 3-30-11 28
D 4-1-11 32
E 4-4-11 34
F 4-6-11 (Sobolev Spaces) 37
G 4-8-11 40
H 4-11-11 43
I 4-13-11 46
J 4-15-11 49
K 4-18-11 52
L 4-20-11 55
M 4-22-11 57

N 4-25-11
O 4-27-11 64
P
4-29-11 $\quad 67$
Q 5-6-11 70
Q. 1 Fourier Transform . 71

R 5-9-11 72
S 5-10-11 (Section) 76
T 5-11-11 80
U 5-13-11 83
V 5-16-11 85
W 5-18-11 89
X 5-20-11: Fourier Series Revisited 92
Y 5-23-11 97
Z 5-24-11 (Section) 100
A 5-25-11 105
B 5-27-11 110
B. 1 Compensated Compactness . 111

C 5-31-11 (Section) 113

1 Measure Theory

Theorem 1.1. Fubini's Theorem
http://en.wikipedia.org/wiki/Fubini\'s_theorem

Suppose A and B are complete measure spaces. Suppose $f(x, y)$ is $A \times B$ measurable. If

$$
\int_{A \times B}|f(x, y)| d(x, y)<\infty
$$

where the integral is taken with respect to a product measure on the space over $A \times B$, then

$$
\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y=\int_{A \times B} f(x, y) d(x, y)
$$

the first two integrals being iterated integrals with respect to two measures, respectively, and the third being an integral with respect to a product of these two measures.

Corollary:

If $f(x, y)=g(x) h(y)$ for some functions g and h, then

$$
\int_{A} g(x) d x \int_{B} h(y) d y=\int_{A \times B} f(x, y) d(x, y)
$$

the third integral being with respect to a product measure.

Theorem 1.2. Tonelli's Theorem

http://en.wikipedia.org/wiki/Fubini\'s_theorem\#Tonelli.27s_theorem

Suppose that A and B are σ-finite measure spaces, not necessarily complete. If either

$$
\int_{A}\left(\int_{B}|f(x, y)| d y\right) d x<\infty \text { or } \int_{B}\left(\int_{A}|f(x, y)| d x\right) d y<\infty
$$

then

$$
\int_{A \times B}|f(x, y)| d(x, y)<\infty
$$

and

$$
\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y=\int_{A \times B} f(x, y) d(x, y)
$$

Tonelli's theorem is a successor of Fubini's theorem. The conclusion of Tonelli's theorem is identical to that of Fubini's theorem, but the assumptions are different. Tonelli's theorem states that on the product of two -finite measure spaces, a product measure integral can be evaluated by way of an iterated integral for nonnegative measurable functions, regardless of whether they have finite integral. A formal statement of Tonelli's theorem is identical to that of Fubini's theorem, except that the requirements are now that (X, A, μ) and (Y, B, ν) are σ-finite measure spaces, while f maps $X \times Y$ to $[0, \infty]$.

Theorem 1.4. Cauchy-Schwarz Inequality http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

Formal Statement: For all vectors x, y of an inner product space,

$$
\begin{aligned}
|\langle x, y\rangle|^{2} & \leq\langle x, x\rangle\langle y, y\rangle \\
|\langle x, y\rangle| & \leq\|x\|\|y\|
\end{aligned}
$$

Square of a Sum:

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right|^{2} \leq \sum_{i=1}^{n}\left|x_{i}\right|^{2} \sum_{i=1}^{n}\left|y_{i}\right|^{2}
$$

In L^{2} :

$$
\left|\int f(x) g(x) d x\right|^{2} \leq \int|f(x)|^{2} d x \int|g(x)|^{2} d x
$$

Theorem 1.5. Hölder's Inequality
Theorem 12.54 on page 356

Let $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(X, \mu)$ and $g \in L^{q}(X, \mu)$, then $f g \in L^{1}(X, \mu)$ and

$$
\underbrace{\left|\int f g d \mu\right|}_{\|f g\|_{1}} \leq\|f\|_{p}\|g\|_{q}
$$

Note: The Cauchy-Schwartz Inequality is a special case of Hölder's Inequality for $p=q=2$.

Theorem 1.6. Minkowski's Inequality
201A Notes 11/3/10

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{q}, \quad \frac{1}{p}+\frac{1}{q}=1
$$

Theorem 1.7. Young's Inequality
Theorem 12.58 on page 359

Let $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then $f * g \in L^{r}\left(\mathbb{R}^{n}\right)$ and

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Theorem 1.8. Lebesgue Dominated Convergence Theorem
Theorem 12.35 on page 348

Suppose that $\left(f_{n}\right)$ is a sequence of integrable functions, $f_{n}: X \rightarrow \mathbb{R}$, on a measure space (X, \mathcal{A}, μ) that converges pointwise to a limiting function $f: X \rightarrow \overline{\mathbb{R}}$. If there is an integrable function $g: X \rightarrow[0, \infty]$ such that

$$
\left|f_{n}(x)\right| \leq g(x) \quad \forall x \in X, n \in \mathbb{N}
$$

then f is integrable and

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

Theorem 1.9. Monotone Convergence Theorem
Theorem 12.33 on page 347

Suppose that $\left(f_{n}\right)$ is a monotone increasing sequence of nonnegative, measurable functions $f_{n}: X \rightarrow$ $[0, \infty]$ on a measurable space (X, \mathcal{A}, μ). Let $f: X \rightarrow[0, \infty]$ be the pointwise limit, i.e.

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

Then

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

Lemma 1.10. Fatou's Lemma

Theorem 12.34 on page 347

If $\left(f_{n}\right)$ is any sequence of nonnegative measurable functions $f_{n}: X \rightarrow[0, \infty]$ on a measure space (X, \mathcal{A}, μ), then

$$
\int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Equivalently,

$$
\limsup _{n \rightarrow \infty} \int f_{n} d \mu \leq \int\left(\limsup _{n \rightarrow \infty} f_{n}\right) d \mu
$$

Theorem 1.11. Lebesgue Differentiation Theorem http://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem

For a Lebesgue integrable function f on \mathbb{R}^{n}, the indefinite integral is a set function which maps a measurable set A to the Lebesgue integral of $f \cdot \mathbf{1}_{A}$, written as:

$$
\int_{A} f d \lambda
$$

The derivative of this integral at x is defined to be

$$
\lim _{B \rightarrow x} \frac{1}{|B|} \int_{B} f d \lambda
$$

where $|B|$ denotes the volume of a ball centered at x, and $B \rightarrow x$ means that the radius of the ball is going to zero. The Lebesgue differentiation theorem states that this derivative exists and is equal to $f(x)$ at almost every point $x \in \mathbb{R}^{n}$.

2 Other Important Stuff

Theorem 2.1. Divergence Theorem
http://en.wikipedia.org/wiki/Divergence_theorem

$$
\int_{\Omega}(\nabla \cdot \mathbf{F}) d V=\int_{\partial \Omega}(\mathbf{F} \cdot \mathbf{n}) d S
$$

Theorem 2.2. Mean Value Theorem
http://en.wikipedia.org/wiki/Mean_value_theorem

If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Definition 2.3. Laplacian Operator for a Radial Function
http://mathworld.wolfram.com/Laplacian.html

For a radial function $g(x)$, the Laplacian is

$$
\Delta g=\frac{2}{r} \frac{d g}{d r}+\frac{d^{2} g}{d r^{2}}
$$

Theorem 2.4. Green's Theorem
http://en.wikipedia.org/wiki/Green\'s_theorem

Let $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (thus, Q is vector-valued). Then

$$
\int_{\Omega} \operatorname{div} Q d V=\int_{\partial \Omega} Q \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal. Also,

$$
\int_{\Omega}(u \Delta v-v \Delta u)=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right)
$$

Definition 2.5. Divergence
http://en.wikipedia.org/wiki/Divergence

Let $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, Q(\mathbf{x})=\left(Q_{1}(\mathbf{x}), Q_{2}(\mathbf{x}), \ldots, Q_{n}(\mathbf{x})\right)$. Then the divergence operator div $: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{div} Q=\nabla \cdot Q=\frac{\partial Q_{1}}{\partial x_{1}}+\frac{\partial Q_{2}}{\partial x_{2}}+\cdots+\frac{\partial Q_{n}}{\partial x_{n}}
$$

Note that the Laplacian operator can be rewritten as

$$
\Delta=\operatorname{div} \cdot \operatorname{grad}
$$

3 Summaries

3.1 Chapter 1: L^{p} Spaces

This Chapter begins by defining an L^{p} space and then introduces key theorems from measure theory (see the "Measure Theory" section). First we look at the L^{p} spaces, $1 \leq p<\infty$. Using these measure theory results, we prove that the L^{p} spaces are Banach spaces (i.e. complete normed linear spaces). For a sequence of functions $\left(f_{n}\right)$, we remark that: convergence in $L^{p}(X) \nLeftarrow$ pointwise convergence a.e. However, it is true that if $f_{n} \rightarrow f$ pointwise a.e. and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$, then $f_{n} \rightarrow f$ in $L^{p}(X)$. Next, we prove that $L^{\infty}(X)$ is a Banach space.

Now we consider L^{p} vs. L^{q}. In general, there is no inclusion relation. For example, if $f(x)=\frac{1}{\sqrt{x}}$, then $f \in L^{1}(0,1)$ but $f \notin L^{2}(0,1)$. Conversely, if $f(x)=\frac{1}{x}$, then $f \in L^{2}(1, \infty)$ but $f \notin L^{1}(1, \infty)$. We then discuss density in $L^{p}(X)$. We define mollifiers (see the Mollifiers section), the open subset

$$
\Omega_{\epsilon}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\epsilon\},
$$

and the set

$$
L_{\mathrm{loc}}^{p}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \mid u \in L^{p}(\tilde{\Omega}) \quad \forall \tilde{\Omega} \subset \subset \Omega\right\}
$$

p	Functions	Are dense in...
$1 \leq p<\infty$	Simple functions, $f=\sum_{i=1}^{n} a_{i} \mathbf{1}_{E_{i}}$	$L^{p}(X)$
$1 \leq p<\infty$	$C^{0}(\Omega)=C(\Omega)$	$L^{p}(\Omega), \Omega \subset \mathbb{R}^{n}$ bounded
$1 \leq p<\infty$	$C^{\infty}\left(\Omega_{\epsilon}\right)$ (i.e. $\left.f^{\epsilon}\right)$	$L_{\text {loc }}^{p}(\Omega)$

Next, we define the dual space and present the Riesz representation theorem. Note that $L^{1}(X) \subset L^{\infty}(X)^{\prime}$, and the inclusion is strict. We define what it means for a sequence of linear functionals (ϕ_{j}) to converge in the weak-* topology.

Definition 3.1. Weak Convergence, Weak-* Convergence

Hunter's 218 Notes (page 7)

A sequence $\left(x_{n}\right)$ in X converges weakly to $x \in X$, written $x_{n} \rightharpoonup x$, if $\left(\omega, x_{n}\right) \rightarrow(\omega, x)$ for every $\omega \in X^{*}$. A sequence $\left(\omega_{n}\right)$ in X^{*} converges weak-* to $\omega \in X^{*}$, written $\omega_{n} \stackrel{*}{\rightharpoonup} \omega$, if $\left(\omega_{n}, x\right) \rightarrow(\omega, x)$ for every $x \in X$.

If X is reflexive, meaning that $X^{* *}=X$, then weak and weak-* convergence are equivalent.
Alaoglu's Lemma tells us that for a Banach space \mathcal{B}, the closed unit ball in \mathcal{B}^{\prime} is weak-* compact. For $1 \leq p<\infty$, we define what it means for a sequence of functions $\left(f_{n}\right)$ to converge weakly. Next, we claim that for $1<p<\infty, L^{p}(X)$ is weak compact: for a bounded subsequence $\left(f_{n}\right)$, there exists a weakly convergent subsequence $f_{n_{k}}$. For $p=\infty$, we have that $L^{\infty}(X)$ is weak-* compact. A simple result using Hölder's inequality is that L^{p} convergence implies weak convergence. We also prove that if $f_{n} \rightharpoonup f$ in L^{p}, then $\left\{\left\|f_{n}\right\|_{p}\right\}$ is bounded (uniform boundedness theorem) and $\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}$. We conclude this chapter with Young's inequality:

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}, \quad \text { where } 1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q} .
$$

3.2 Chapter 2: The Sobolev Spaces $H^{k}(\Omega)$ for Integers $k \geq 0$

We begin by defining the space of test functions, $\mathcal{D}(\Omega)=C_{0}^{\infty}(\Omega)$, and from this we get the integration by parts formula. We define the Sobolev spaces, $W^{k, p}(\Omega)$, and the special case $H^{k}(\Omega)=W^{k, 2}(\Omega)$. We prove that these are Banach spaces.

Next we want to approximate $W^{k, p}(\Omega)$ functions by smooth functions. We prove that $u^{\epsilon} \in C^{\infty}\left(\Omega_{\epsilon}\right)$ for all $\epsilon>0$, and that $u^{\epsilon} \rightarrow u$ in $W_{\text {loc }}^{k, p}(\Omega)$ as $\epsilon \rightarrow 0$.

We introduce the Hölder spaces, which interpolate between $C^{0}(\bar{\Omega})$ and $C^{1}(\bar{\Omega})$. For $0<\gamma \leq 1$, the $C^{0, \gamma}(\bar{\Omega})$ Hölder space consists of the functions

$$
\begin{aligned}
\|u\|_{C^{0, \gamma}(\bar{\Omega})} & :=\|u\|_{C^{0}(\bar{\Omega})}+[u]_{C^{0, \gamma}(\bar{\Omega})}<\infty, \\
\text { where } \quad[u]_{C^{0, \gamma}(\bar{\Omega})} & :=\max _{\substack{x, y \in \Omega \\
x \neq y}}\left(\frac{|u(x)-u(y)|}{|x-y|^{\gamma}}\right) .
\end{aligned}
$$

We have that $C^{0, \gamma}(\bar{\Omega})$ is a Banach space.
We prove that if a function has a weak derivative, then it is differentiable a.e. and its weak derivative equals its classical derivative a.e. We define the space $W_{0}^{1, p}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. We define $H^{-1}(\Omega)$ as the dual space of $H_{0}^{1}(\Omega)$.

Theorems covered include:

- Sobolev Embedding Theorem (2-D)
- Morrey's Inequality
- Sobolev Embedding Theorem ($k=1$)
- Gagliardo-Nirenberg Inequality
- Poincaré Inequalities
- Gagliardo-Nirenberg Inequality for $W^{1, p}(\Omega)$
- Gagliardo-Nirenberg Inequality for $W_{0}^{1, p}(\Omega)$
- Rellich's Theorem

3.3 Chapter 3: The Fourier Transform

We begin by defining the Fourier transform, $\mathcal{F}: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{F} f(\xi)=\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x
$$

and its adjoint (equivalently, its inverse for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$),

$$
\mathcal{F}^{*} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(\xi) e^{i x \cdot \xi} d \xi
$$

Plancherel's Theorem tells us that for $u, v \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\langle\mathcal{F} u, \mathcal{F} v\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}=\langle u, v\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} .
$$

Here we have used the definition of the space of Schwartz functions (of rapid decay):

$$
\begin{aligned}
\mathcal{S}\left(\mathbb{R}^{n}\right) & =\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{\infty}\left(\mathbb{R}^{n}\right) \forall \alpha, \beta \in \mathbb{Z}_{+}^{n}\right\} \\
& =\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right)\left|\langle x\rangle^{k}\right| D^{\alpha} u \mid \leq C_{k, \alpha} \forall k \in \mathbb{Z}_{+}\right\}, \quad \text { where }\langle x\rangle=\sqrt{1+|x|^{2}} .
\end{aligned}
$$

We note that $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$. The second equality motivates the definition of the semi-norm

$$
p_{k}(u)=\sup _{x \in \mathbb{R}^{n},|\alpha| \leq k}\langle x\rangle^{k}\left|D^{\alpha} u(x)\right|
$$

and the metric

$$
d(u, v)=\sum_{k=0}^{\infty} 2^{-k} \frac{p_{k}(u-v)}{1+p_{k}(u-v)}
$$

on $\mathcal{S}\left(\mathbb{R}^{n}\right)$. We say that a sequence $u_{j} \rightarrow u$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ if $p_{k}\left(u_{j}-u\right) \rightarrow 0$ for all $k \in \mathbb{Z}_{+}$. We define the space of tempered distributions as $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, i.e., the set of continuous linear functionals on $\mathcal{S}\left(\mathbb{R}^{n}\right)$. We define the distributional derivative $D: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{aligned}
\langle D T, u\rangle & =-\langle T, D u\rangle \quad \forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right) \\
\left\langle D^{\alpha} T, u\right\rangle & =(-1)^{|\alpha|}\left\langle T, D^{\alpha} u\right\rangle \quad \forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

We define the Fourier transform on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), \mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, by

$$
\langle\mathcal{F} T, u\rangle=\langle T, \mathcal{F} u\rangle \quad \forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right),
$$

and similarly for \mathcal{F}^{*}. Using the density of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$ in $L^{2}\left(\mathbb{R}^{n}\right)$, we extend the Fourier transform to $L^{2}\left(\mathbb{R}^{n}\right)$. We prove the Hausdorff-Young Inequality and the Riemann-Lebesgue Lemma. We prove two theorems regarding the Fourier transforms of convolutions. First, if $u, v \in L^{1}\left(\mathbb{R}^{n}\right)$ then $u * v \in L^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\mathcal{F}(u * v)=(2 \pi)^{n / 2} \mathcal{F} u \mathcal{F} v .
$$

The second result generalizes the first: suppose $1 \leq p, q, r \leq 2$ satisfy $\frac{1}{r}+1=\frac{1}{p}+\frac{1}{q}$. Then for $u \in L^{p}\left(\mathbb{R}^{n}\right)$ and $v \in L^{q}\left(\mathbb{R}^{n}\right), \mathcal{F}(u * v) \in L^{\frac{r}{r-1}}\left(\mathbb{R}^{n}\right)$, and

$$
\mathcal{F}(u * v)=(2 \pi)^{n / 2} \mathcal{F} u \mathcal{F} v .
$$

3.4 Chapter 4: The Sobolev Spaces $H^{s}\left(\mathbb{R}^{n}\right), s \in \mathbb{R}$

We begin by defining the Sobolev spaces $H^{s}\left(\mathbb{R}^{n}\right)$, where s is not restricted to the integers, as

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid\langle\xi\rangle^{s} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\} \\
& =\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid \Lambda^{s} u \in L^{2}\left(\mathbb{R}^{n}\right)\right\},
\end{aligned}
$$

where $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$ and $\Lambda^{s} u=\mathcal{F}^{*}\left(\langle\xi\rangle^{s} \hat{u}\right)$. We define an inner product on $H^{2}\left(\mathbb{R}^{n}\right)$ as

$$
\langle u, v\rangle_{H^{s}\left(\mathbb{R}^{n}\right)}=\left\langle\Lambda^{s} u, \Lambda^{s} v\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \quad \forall u, v \in H^{2}\left(\mathbb{R}^{n}\right),
$$

and the norm is defined accordingly. We have that for all $s \in \mathbb{R},\left[H^{s}\left(\mathbb{R}^{n}\right)\right]^{\prime}=H^{-s}\left(\mathbb{R}^{n}\right)$.

3.5 Chapter 5: Fractional-Order Sobolev spaces on Domains with Boundary

3.6 Chapter 6: The Sobolev Spaces $H^{s}\left(\mathbb{T}^{n}\right), s \in \mathbb{R}$

For $u \in L^{1}\left(\mathbb{T}^{n}\right)$ and $k \in \mathbb{Z}^{n}$, we define

$$
\begin{aligned}
\mathcal{F} u(k) & =\hat{u}_{k}=(2 \pi)^{-n} \int_{\mathbb{T}^{n}} e^{-i k \cdot x} u(x) d x \\
\mathcal{F}^{*} u(x) & =\sum_{k \in \mathbb{Z}^{n}} \hat{u}_{k} e^{i k \cdot x}
\end{aligned}
$$

We let $\mathfrak{s}=\mathcal{S}\left(\mathbb{Z}^{n}\right)$ denote the space of rapidly decreasing functions \hat{u} on \mathbb{Z}^{n}, where

$$
p_{N}(u)=\sup _{k \in \mathbb{Z}^{n}}\langle k\rangle^{N}\left|\hat{u}_{k}\right|<\infty \quad \forall N \in \mathbb{N} .
$$

4 Things That Are Inescapable

- Dominated Convergence Theorem (DCT)
- Monotone Convergence Theorem (MCT)
- Convolutions
- Green's Theorem

5 Tricks \& Techniques

- when $\Omega=B(0,1)$, define $B_{\delta}=B(0,1)-B(0, \delta)$
- FTC to get a difference
- FTC to get $u(x)$ from $\partial_{j} u(x)$
- polar coordinates
- (Assume that) the weak derivative is equal to the classical derivative almost everywhere
- Use that if

$$
\int_{\Omega} u(x) \phi(x) d x=0 \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

then $u=0$ a.e. in Ω.

- Choose your coordinate system centered around x, which allows us to assume $x=0$
- Use an indicator function to allow us to extend the integral to a bigger region
- Identify potential singularities and rule them out (e.g. by L'Hospital's rule)
- Cut-off functions, such as

$$
g(x)= \begin{cases}1 & x \in\left[0, \frac{1}{2}\right] \\ 0 & x \in\left[\frac{3}{4}, \infty\right)\end{cases}
$$

- $\partial_{x_{j}} \eta_{\epsilon}(x-y)=-\partial_{y_{j}} \eta_{\epsilon}(x-y)$
- Integrate from $-\infty$ to x or from 0 to x

6 Mollifiers

Standard Mollifier

$$
\begin{aligned}
\eta(x) & =\left\{\begin{aligned}
C e^{\frac{1}{|x|^{2}-1}} & |x|<1 \\
0 & |x| \geq 1
\end{aligned}\right. \\
\eta_{\epsilon}(x) & =\epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right)
\end{aligned}
$$

Indicator Mollifier

$$
\frac{1}{h} \mathbf{1}_{[0, h]}
$$

Poisson Kernel

$$
p_{r}(\theta)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \theta}=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

From HW3

$$
\begin{aligned}
\eta(x) & =\frac{1}{\pi} \cdot \frac{1}{1+x^{2}} \\
\eta_{\epsilon}(x) & =\frac{1}{\pi} \cdot \frac{\epsilon}{\epsilon^{2}+\xi^{2}}
\end{aligned}
$$

7 Inequalities

Theorem 7.1. Sobolev ($n=2$)
page 30

For $k p \geq 2$,

$$
\max _{x \in \mathbb{R}^{2}}|u(x)| \leq C\|u\|_{W^{k, p}\left(\mathbb{R}^{2}\right)}
$$

Theorem 7.2. Sobolev $(k=1)$
page 36

Implied by Morrey's Inequality.

$$
\|u\|_{C^{0,1-n / p}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

Theorem 7.3. Morrey's Inequality

page 33
"A refinement and extension of Inequality 7.1 (Sobolev for $n=2$)."

For $n<p \leq \infty$:

$$
|u(x)-u(y)| \leq C r^{1-n / p}\|D u\|_{L^{p}(B(x, 2 r))} \quad \forall u \in C^{1}\left(\mathbb{R}^{n}\right)
$$

Contrast with: Gagliardo-Nirenberg Inequality 7.4.

Theorem 7.4. Gagliardo-Nirenberg

 page 38For $1 \leq p<n$:

$$
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C_{p, n}\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where

$$
p^{*}=\frac{n p}{n-p} .
$$

This holds for every $u \in W^{1, p}\left(\mathbb{R}^{n}\right) \Leftarrow$ since we need at least 1 derivative.

Contrast with: Morrey's Inequality 7.3.

Theorem 7.5.

page 41

For $1 \leq q<\infty$:

$$
\|u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \leq C \sqrt{q}\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)}
$$

where $u \in H^{1}\left(\mathbb{R}^{2}\right)$.

Compare to: Theorem 7.8.

Theorem 7.6. Gagliardo-Nirenberg for $W^{1, p}(\Omega)$ page 46

For $1 \leq p<n$:

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq C_{p, n, \Omega}\|u\|_{W^{1, p}(\Omega)}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open and bounded with a C^{1} boundary.

Theorem 7.7. Poincaré $1 \equiv$ Gagliardo-Nirenberg for $W_{0}^{1, p}(\Omega)$ page 46

For $1 \leq p<n$ and $1 \leq q \leq p^{*}$:

$$
\|u\|_{L^{q}(\Omega)} \leq C_{p, n, \Omega}\|D u\|_{L^{p}(\Omega)}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open and bounded with a C^{1} boundary.

Theorem 7.8. Poincaré 2

page 46

For all $1 \leq q<\infty$:

$$
\|u\|_{L^{q}(\Omega)} \leq C_{\Omega} \sqrt{q}\|D u\|_{L^{2}(\Omega)}
$$

where $\Omega \subset \mathbb{R}^{2}$ is open and bounded with a C^{1} boundary.

Compare to: Theorem 7.5.

Remark 7.9. Inequality Overview

- Sobolev Inequalities: 7.1 and 7.2
- Morrey's Inequality: 7.3
- Gagliardo-Nirenberg Inequality (Main): 7.4
- Gagliardo-Nirenberg Inequalities (Secondary): 7.6 and 7.7
- Poincaré Inequalities: 7.7 and 7.8

8 Definitions

Definition 8.1. Weak \mathfrak{G} Weak-* Convergence
page 18

If

$$
\int_{X} f_{n} \phi(x) d x \rightarrow \int_{X} f(x) \phi(x) d x \quad \forall \phi \in L^{q}(X), \quad q=\frac{p}{p-1}
$$

then

- $(p \neq \infty) f_{n} \rightharpoonup f$ in $L^{p}(X)$ weakly.
- $(p=\infty) f_{n} \stackrel{*}{\rightharpoonup} f$ in $L^{\infty}(X)$ weak-*.

The reason for this distinction is because $L^{\infty}(\Omega)^{\prime} \neq L^{1}(\Omega)$. Rather, $L^{\infty}(\Omega)^{\prime}=\mathcal{M}(\Omega)=$ Radon Measures.

Theorem 8.2. Weak Compactness of $L^{p} /$ Weak-* Compactness of L^{∞} page 18

Given a bounded sequence $\left(f_{n}\right) \subset L^{p}(X)$, there exists a

- weakly convergent subsequence if $1<p<\infty$.
- weak-* convergent subsequence if $p=\infty$.

I suspect that the reason why L^{1} is not weakly compact has to do with the fact that $L^{\infty}(\Omega)^{\prime} \subset L^{1}(\Omega)$, where the inclusion is strict.

Definition 8.3. Sobolev Norm

page 29

For $p \neq \infty$:

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p}
$$

For $p=\infty$:

$$
\|u\|_{W^{k, \infty}(\Omega)}=\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(\Omega)}
$$

Definition 8.4. Embed

page 30

For 2 Banach spaces, B_{1} and B_{2}, we say that B_{1} is embedded in B_{2}, denoted $B_{1} \hookrightarrow B_{2}$, if

$$
\|u\|_{B_{2}} \leq C\|u\|_{B_{1}} \quad \forall u \in B_{1} .
$$

The intuition is that for norms of a similar structure, every $u \in B_{1}$ will automatically be in B_{2}.

Definition 8.5. Standard Mollifier
page 32

$$
\begin{aligned}
& \eta(x)=\left\{\begin{aligned}
C e^{\frac{1}{|x|^{2}-1}} & |x|<1 \\
0 & |x| \geq 1
\end{aligned}\right. \\
& \eta_{\epsilon}(x)=\epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right)
\end{aligned}
$$

Definition 8.6. Hölder Norm
page 33

$$
\begin{aligned}
\|u\|_{C^{0}(\bar{\Omega})} & =\max _{x \in \Omega}|u(x)| \\
\|u\|_{C^{1}(\bar{\Omega})} & =\|u\|_{C^{0}(\bar{\Omega})}+\|D u\|_{C^{0}(\bar{\Omega})}
\end{aligned}
$$

Definition 8.7. Hölder Semi-Norm

page 33

For $0<\gamma \leq 1$, we define

$$
[u]_{C^{0, \gamma}(\bar{\Omega})}=\max _{\substack{x, y \in \Omega \\ x \neq y}}\left(\frac{|u(x)-u(y)|}{|x-y|^{\gamma}}\right) .
$$

We also define

$$
\|u\|_{C^{0, \gamma}(\bar{\Omega})}=\|u\|_{C^{0}(\bar{\Omega})}+[u]_{C^{0, \gamma}(\bar{\Omega})} .
$$

Definition 8.8. $W_{0}^{1, p}(\Omega)$

$$
W_{0}^{1, p}(\Omega) \triangleq \text { the closure of } C_{0}^{\infty}(\Omega) \text { in } W^{1, p}(\Omega)
$$

Definition 8.9. $H^{-1}(\Omega)$

$$
H^{-1}(\Omega) \triangleq \text { the dual space of } H_{0}^{1}(\Omega)
$$

Definition 8.10. Fourier Transform
page 55

$$
\mathcal{F} f(\xi)=\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x
$$

Definition 8.11. Inverse Fourier Transform
page 56

$$
\mathcal{F}^{*} f(x)=\check{\hat{f}}(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(\xi) e^{i x \cdot \xi} d \xi
$$

Theorem 8.12. Plancherel's Theorem
page 58

$$
(\mathcal{F} u, \mathcal{F} v)_{L^{2}\left(\mathbb{R}^{n}\right)}=\left(u, \mathcal{F}^{*} \mathcal{F} v\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=(u, v)_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Definition 8.13. Gaussian

page 58

$$
\begin{aligned}
& G(x)=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} \\
& \hat{G}(\xi)=(2 \pi)^{-n / 2} e^{-\xi^{2} / 2}
\end{aligned}
$$

Definition 8.14. Schwartz Functions of Rapid Decay
page 55

$$
\begin{aligned}
\mathcal{S}\left(\mathbb{R}^{n}\right) & =\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{\infty}\left(\mathbb{R}^{n}\right) \forall \alpha, \beta \in \mathbb{Z}_{+}^{n}\right\} \\
& =\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right)\left|\langle x\rangle^{k}\right| D^{\alpha} u \mid \leq C_{k, \alpha} \quad \forall k \in \mathbb{Z}_{+}\right\}
\end{aligned}
$$

where

$$
\langle x\rangle=\sqrt{1+|x|^{2}} .
$$

The prototypical element of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is $e^{-|x|^{2}}$.

Definition 8.15. $\mathcal{S}\left(\mathbb{R}^{n}\right)$ Semi-Norm and Metric
page 59

For $k \in \mathbb{Z}_{+}$we have the semi-norm:

$$
p_{k}(u)=\sup _{x \in \mathbb{R}^{n},|\alpha| \leq k}\langle x\rangle^{k}\left|D^{\alpha} u(x)\right| .
$$

We have the metric:

$$
d(u, v)=\sum_{k=0}^{\infty} 2^{-k} \frac{p_{k}(u-v)}{1+p_{k}(u-v)} .
$$

Definition 8.16. Distributional Derivative on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$
page 60

$$
\left\langle D^{\alpha} T, u\right\rangle=(-1)^{|\alpha|}\left\langle T, D^{\alpha} u\right\rangle \quad \forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Examples:

$$
\begin{aligned}
\left\langle\frac{d H}{d x}, u\right\rangle & =\langle\delta, u\rangle \\
\left\langle\frac{d \delta}{d x}, u\right\rangle & =-\frac{d u}{d x}(0)
\end{aligned}
$$

Definition 8.17. Fourier Transform on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$
page 60

$$
\langle\mathcal{F} T, u\rangle=\langle T, \mathcal{F} u\rangle \quad \forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Examples:

$$
\begin{aligned}
\mathcal{F} \delta & =(2 \pi)^{-n / 2} \\
\mathcal{F}^{*} \delta & =(2 \pi)^{-n / 2} \\
\mathcal{F}^{*}\left[(2 \pi)^{n / 2}\right] & =1
\end{aligned}
$$

Theorem 8.18. Fourier Transform of a Convolution
page 63

$$
\begin{aligned}
\mathcal{F}(u * v) & =(2 \pi)^{n / 2} \mathcal{F} u \mathcal{F} v \\
\widehat{u * v} & =(2 \pi)^{n / 2} \hat{u} \hat{v}
\end{aligned}
$$

Definition 8.19. General Hilbert Space: $H^{s}\left(\mathbb{R}^{n}\right)$

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid\langle\xi\rangle^{s} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

Thus, $H^{1 / 2}\left(\mathbb{R}^{n}\right)$ is the space of L^{2} functions with $1 / 2$ a derivative, and $H^{-1}\left(\mathbb{R}^{n}\right)$ is the space of functions whose anti-derivative is in L^{2}.

Definition 8.20. Poisson Integral Formula

page 89

The Poisson Integral Formula is

$$
\operatorname{PI}(f)(r, \theta)=\sum_{k \in \mathbb{Z}} \hat{f}_{k} r^{|k|} e^{i k \theta}
$$

and it satisfies

$$
\begin{aligned}
\Delta \mathrm{PI}(f) & =0 \text { in } D \\
\operatorname{PI}(f) & =f \text { on } \partial D=\mathbb{S}^{1}
\end{aligned}
$$

Remark A.1.

In general, Ω will be used to represent a smooth, open subset. That is, $\Omega \subset \mathbb{R}^{d}$, open.

Lemma A.2.

Let $\Omega \subset \mathbb{R}^{d}$ be open. Suppose $u \in L_{\mathrm{loc}}^{1}(\Omega)$ and

$$
\int_{\Omega} u(x) v(x) d x=0 \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

(Recall: $C_{0}^{\infty}(\Omega)$ is the set of functions that are infinitely differentiable and have compact support in Ω.) Then $u=0$ a.e. in Ω.

Proof. If $\int_{\Omega}|u| d x=0$ then $u=0$ a.e. in Ω. Consider the sign function, and note that $|u|=\operatorname{sgn}(u)$. We want to approximage sgn with C^{∞} functions. Choose $g \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $g=\operatorname{spt} g \subset \Omega$, and for the sake of simplicity suppose that the support of g is compact. (Note: in this case, we are going to set $g(x)=\operatorname{sgn}(x)$.) Approximate g via convolution with an approximate identity. Let ρ_{ϵ} be a smooth approximate identity with $\int \rho_{\epsilon} d x=1$ and with support in $B(0, \epsilon)$. Define

$$
g^{\epsilon}=\rho_{\epsilon} * g
$$

Then

$$
g^{\epsilon}(x)=\int_{\mathbb{R}^{d}} \rho_{\epsilon}(x-y) g(y) d y=\int_{B(x, \epsilon)} \rho_{\epsilon}(x-y) g(y) d y \quad(\text { by DCT })
$$

Convolution theory gives us that

1. $g^{\epsilon} \in C_{0}^{\infty}(\Omega) . C^{\infty}$ is given by the DCT, and we achieve compact support in Ω by taking ϵ sufficiently small.
2. $g^{\epsilon} \rightarrow g$ in $L^{2}(\Omega)$ as $\epsilon \searrow 0$ implies that $g^{\epsilon^{\prime}} \rightarrow g$ a.e. (See Lemma A.3.)

Lemma A.3.

If $g^{\epsilon} \rightarrow g$ in $L^{2}(\Omega)$, then there exists a subsequence $g^{\epsilon^{\prime}}(x) \rightarrow g(x)$ a.e. in Ω.

Definition A.4. L^{1} Convergence
 $$
u_{j} \rightarrow u \text { in } L^{1}(\Omega) \text { if }\left\|u_{j}-u\right\|_{L^{1}(\Omega)} \rightarrow 0 \Leftrightarrow \int_{\Omega}\left|u_{j}-u\right| d x \rightarrow 0 .
$$

From above, (1) implies that $\int_{\Omega} u(x) g^{\epsilon}(x) d x=0$. (2) implies that $\int_{\Omega} u(x) g(x) d x=0$ by the DCT. To complete the proof, let $K^{\mathrm{cpt}} \subset \Omega$ and choose $g=\operatorname{sgn}(u)$ with support on K. Then $\int_{K}|u| d x=0$, and so $u=0$ a.e. in $K . K$ is arbitrary, so $u=0$ a.e. in Ω.

3 (or 2?) Steps To Proving Lemma A. 3 (For proof see Example B.1)

1. Restrict to a subsequence g_{k} such that

$$
\left\|g_{k+1}-g_{k}\right\|_{L^{p}(\Omega)} \leq \frac{1}{2^{k}}
$$

Using this bound, the goal is to convert from Cauchy in L^{p} to Cauchy pointwise a.e.
2. Conversion to a monotone sequence:

$$
\begin{gathered}
q_{1}=0, \quad q_{2}=\left|g_{2}-g_{1}\right|+\left|g_{1}\right|, \quad q_{3}=\left|g_{3}-g_{2}\right|+\left|g_{2}-g_{1}\right|+\left|g_{1}\right| \\
q_{n}=\sum_{l=1}^{n-1}\left|g_{l+1}-g_{l}\right|+\left|g_{1}\right|
\end{gathered}
$$

Then $0 \leq q_{1} \leq q_{2} \leq q_{3} \leq \ldots$, so we have a monotonically increasing sequence, $q_{n} \in L^{p}$, and by the MCT we get that $q_{n} \nearrow q \in L^{p}$

B Section 3-29-11

Example B.1.

Given: $\left(g_{n}\right) \subset L^{1}(X), g_{n} \rightarrow g$ in $L^{1}(X) \Rightarrow \lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{L^{1}}=0$
Prove: There exists a subsequence $\left(g_{n_{j}}\right)$ such that $g_{n_{j}} \rightarrow g$ pointwise a.e.

Proof. Construct a pointwise Cauchy subsequence.

Aside: Consider a sequence $\left(a_{n}\right)$ that satisfies $a_{n} \leq a_{n+1} \leq \ldots$
If it is bounded then it is convergent, and hence Cauchy.
If it is unbounded then it is not convergent.

Since $\lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{L^{1}}=0$, the sequence is convergent, so it is bounded, so there exists M such that $\left\|g_{n}\right\|_{L^{1}} \leq M$. We can choose a subsequence $\left(g_{n_{j}}\right)$ such that

$$
\left\|g_{n_{j}}-g_{n_{j-1}}\right\| \leq \frac{1}{2^{j}}
$$

Now we construct a function $h_{j}(x)$ that is a sum of measurable functions:

$$
h_{j}(x)=\left|g_{n_{1}}(x)\right|+\sum_{k=2}^{j}\left|g_{n_{k}}(x)-g_{n_{k-1}}(x)\right|
$$

We can bound the L^{1} norm of each h_{j} :

$$
\left\|h_{j}\right\|_{L^{1}} \leq\left\|g_{n_{1}}\right\|_{L^{1}}+C
$$

By the Monotone Convergence Theorem, $\lim _{j \rightarrow \infty} h_{j}(x)=h(x)$ (pointwise limit a.e.) $\in L^{1}(X)$ and $\left\|h_{j}-h\right\| \rightarrow 0$.
The sequence $\left(h_{j}(x)\right)$ is Cauchy a.e. Therefore, $\left(g_{n_{j}}(x)\right)$ is Cauchy a.e. because

$$
\left|g_{n_{j}}(x)-g_{n_{k}}(x)\right| \leq h_{j}(x)-h_{k}(x), \quad j \geq k
$$

Therefore, $\lim _{j \rightarrow \infty} g_{n_{j}}(x)=g^{\prime}(x)$. We know that

$$
\begin{align*}
\left|g_{n_{j}}(x)\right| & \leq h_{j}(x) \quad \forall j \tag{B.1}\\
\left|g^{\prime}(x)\right| & \leq h(x)
\end{align*}
$$

However, we don't know that the pointwise limit g^{\prime} is the same as the strong limit g. We must show that g^{\prime} is the strong limit of $\left(g_{n_{j}}\right)$. Expanding on (B.1), we write

$$
\left|g_{n_{j}}(x)\right| \leq h_{j}(x) \leq h(x) \quad \forall j
$$

Use the Lebesgue Dominated Convergence Theorem to show that $g^{\prime}=g$ a.e.:

$$
\lim _{n \rightarrow \infty} \int\left|g_{n_{j}}-g^{\prime}\right| d x=0=\lim _{n \rightarrow \infty}\left\|g_{n_{j}}-g^{\prime}\right\|=0, \quad\left|g_{n_{j}}-g^{\prime}\right| \leq 2 h
$$

Remark B.2. 3 Important Theorems from Measure Theory

- Monotone Convergence Theorem
- Lebesge Dominated Convergence Theorem
- Fatou's Lemma

Example B.3. $M C T \Rightarrow$ Fatou's Lemma

Recall: Fatou's Lemma states that:

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d x
$$

Proof. Start with the definition of liminf. For a given sequence $\left(a_{n}\right)$, let

$$
x_{n}=\inf _{m \geq n} a_{m}
$$

$\left(x_{n}\right)$ is an increasing sequence, and

$$
\lim _{n \rightarrow \infty} x_{n}=\left\{\begin{array}{l}
\text { exists }=\liminf _{n \rightarrow \infty} a_{n} \\
\infty
\end{array}\right.
$$

Assume that $f_{n}(x) \geq 0 \forall n$. Define

$$
\begin{equation*}
g_{n}(x)=\inf _{m \geq n} f_{m}(x) \geq 0 \tag{B.2}
\end{equation*}
$$

g is measurable, and

$$
0 \leq g_{1}(x) \leq g_{2}(x) \leq g_{3}(x) \leq \ldots
$$

Somehow we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\Omega} g_{n}(x) d x & =\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) d x \\
\int_{\Omega} g_{n}(x) d x & \leq \inf _{m \geq n} \int_{\Omega} f_{m}(x) d x \\
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) d x & \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d x
\end{aligned}
$$

Example B.4. Fatou's Lemma \Rightarrow LDCT

Given: $f_{n}(x) \rightarrow f(x)$ a.e., $\left|f_{n}(x)\right| \leq g(x)$, where $g \in L^{1}(X)$
Prove: $f \in L^{1}(X)$ and $\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d x=\int_{X} f(x) d x$

Proof. First, show that $f \in L^{1}$. Integrating the inequality $\left|f_{n}(x)\right| \leq g(x)$ gives us

$$
\int_{X}\left|f_{n}(x)\right| d x \leq \int_{X} g(x) d x
$$

Taking the limit as $n \rightarrow \infty$, we get that

$$
\int_{X}|f(x)| d x \leq \underbrace{\liminf }_{\text {lim sup? }} \int_{X}\left|f_{n}(x)\right| d x \leq \int_{X} g(x) d x
$$

So $f \in L^{1}$.
Define

$$
h_{n}=g \pm f_{n} \geq 0
$$

Adding:

$$
\begin{aligned}
\int g+f d x & \leq \liminf _{n \rightarrow \infty}\left(\int g d x+\int f_{n} d x\right) \\
& \leq \int g d x+\liminf _{n \rightarrow \infty} \int f_{n} d x \\
\int f d x & \leq \liminf _{n \rightarrow \infty} \int f_{n} d x
\end{aligned}
$$

where the simplification from the first line to the second is allowed because g is constant, so $\int(g+f) d x=$ $\int f d x$.

Subtracting:

$$
\begin{aligned}
\int g-f d x & \leq \liminf _{n \rightarrow \infty}\left(\int g d x-\int f_{n} d x\right) \\
-\int f d x & \leq \liminf _{n \rightarrow \infty}\left(-\int f_{n} d x\right) \\
\int f d x & \geq \limsup _{n \rightarrow \infty} \int f_{n} d x
\end{aligned}
$$

where the change form the second line to the third is because $\liminf _{n \rightarrow \infty}\left(-a_{n}\right)=-\limsup _{n \rightarrow \infty} a_{n}$. Thus, we have

$$
\limsup _{n \rightarrow \infty} \int f_{n} d x \leq \int f d x \leq \liminf _{n \rightarrow \infty} \int f_{n} d x \leq \limsup _{n \rightarrow \infty} \int f_{n} d x
$$

and therefore

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d x=\int_{X} f(x) d x
$$

Definition C.1. L^{p} Spaces

Given $\Omega \subset \mathbb{R}^{d}$ open and smooth, we define

$$
\begin{aligned}
L^{p}(\Omega) & =\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable } \mid\|u\|_{L^{p}(\Omega)}<\infty\right\} \\
L^{\infty}(\Omega) & =\{u: \Omega \rightarrow \mathbb{R}| | u(x) \mid \leq C \text { a.e. }\} \\
\|u\|_{L^{p}(\Omega)}^{p} & =\int_{\Omega}|u(x)|^{p} d x \quad 1 \leq p<\infty
\end{aligned}
$$

Remark C.2.

Fact: for $1 \leq p \leq \infty, L^{p}(\Omega)$ is a vector space.

Definition C.3. Conjugate Exponent

For $1 \leq p \leq \infty$, we define the conjugate exponent q such that

$$
\frac{1}{p}+\frac{1}{q}=1, \quad q=\frac{p}{p-1}
$$

Theorem C.4. Hölder's Inequality

If $f \in L^{p}$ and $g \in L^{q}$, then $f g \in L^{1}$ and

$$
\|f g\|_{L^{1}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

Theorem C.5. Minkowski's Inequality

$$
\|f+g\|_{L^{p}} \leq\|f\|_{L^{p}}+\|g\|_{L^{p}}
$$

Corollary C.6.
$L^{p}(\Omega)$ is a normed vector space.

Fact: L^{p} is a Banach space.

Theorem C.7.

For $1 \leq p<\infty, C_{0}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}\left(\mathbb{R}^{d}\right)$.

Lemma C.8.

On a bounded domain, i.e. $|\Omega|<\infty$, for $1 \leq p \leq q \leq \infty$, we have $L^{q} \subset L^{p}$ with continuous injection, and

$$
\|u\|_{L^{p}(\Omega)} \leq|\Omega|^{\frac{1}{p}-\frac{1}{q}}\|u\|_{L^{q}(\Omega)}
$$

Proof. (Sample)

$$
\int_{\Omega} u(x) d x=\int_{\Omega} u(x) \cdot 1 d x \leq\left(\int_{\Omega} 1 d x\right)^{1 / 2}\left(\int_{\Omega}|u(x)|^{2} d x\right)^{1 / 2}
$$

(By Hölder's Inequality)

Problem C.9.

Prove $L^{1}(\Omega) \cap L^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p \leq \infty$.

Proof.

$$
\begin{gathered}
\Omega=\cup_{n=1}^{\infty} \Omega_{n} \text { with }\left|\Omega_{n}\right|<\infty \\
u \in L^{p}(\Omega) \Rightarrow u_{n}=\mathbf{1}_{\Omega_{n}} t_{n}(u)
\end{gathered}
$$

Definition C.10. Indicator Function

$$
\mathbf{1}_{E}= \begin{cases}1 & x \in E \\ 0 & \text { otherwise }\end{cases}
$$

Definition C.11. Truncation Operator

$$
t_{M}(u)=\left\{\begin{aligned}
u & \text { if }|u| \leq M \\
M \frac{u}{|u|} & \text { if }|u|>M
\end{aligned}\right.
$$

Problem C. 12.

Prove $\left.u \in L^{2}(\Omega) \cap L^{1}(\Omega) \mid\|u\|_{L^{1}(\Omega)} \leq 1\right\}$ is closed in $L^{2}(\Omega)$.

Proof.

$$
\begin{aligned}
& u_{n} \rightarrow u, u_{n} \in L^{1} \cap L^{2} \\
& u_{n_{k}} \rightarrow u(x) \text { a.e. in } \Omega \\
& \int_{\Omega}|u(x)| d x \leq \liminf \int_{\Omega}\left|u_{n_{k}}\right| d x \leq 1 \quad \text { (Fatou's Lemma) }
\end{aligned}
$$

Definition C.13. Compactly Contained ($\subset \subset$)
$\Omega_{1} \subset \subset \Omega \Leftrightarrow \Omega_{1} \subset K^{\mathrm{cpt}} \subset \Omega$
We say that Ω_{1} is compactly contained in Ω.

Definition C.14. $L_{l o c}^{p}(\Omega)$
$L_{\mathrm{loc}}^{p}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \mid u \in L^{p}(\tilde{\Omega}) \forall \tilde{\Omega} \subset \subset \Omega\right\}$

Definition C.15. Ω_{ϵ}

$$
\Omega_{\epsilon}=\{x \in \Omega \mid d(x, \partial \Omega)>\epsilon\}
$$

Definition C.16. Mollifier

http://en.wikipedia.org/wiki/Mollifier

Mollifiers are smooth functions with special properties, used in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. For example,

$$
\begin{gathered}
\rho(x)=\left\{\begin{array}{rl}
C \exp \left(\frac{1}{|x|^{2}-1}\right) & |x|<1 \\
0 & |x| \geq 1
\end{array} \quad \rho(x) \geq 0\right. \\
\int_{\mathbb{R}^{d}} \rho(x) d x=1, \quad \rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \quad \operatorname{spt}(\rho) \subset B(0,1)
\end{gathered}
$$

Definition C.17. Dilated Family

$$
\rho_{\epsilon}(x)=\frac{1}{\epsilon^{d}} \rho\left(\frac{x}{\epsilon}\right)
$$

It follows that

$$
\int_{\mathbb{R}^{d}} \rho_{\epsilon}(x) d x=1, \quad \operatorname{spt}\left(\rho_{\epsilon}\right) \subset B(0, \epsilon)
$$

Definition C.18. f^{ϵ}

For $f \in L_{\mathrm{loc}}^{1}(\Omega)$, set $f^{\epsilon}=\rho_{\epsilon} * f$.

Note: $f^{\epsilon}: \Omega^{\epsilon} \rightarrow \mathbb{R}, \epsilon>0$.

Theorem C.19.

For $f^{\epsilon} \in C^{\infty}\left(\Omega^{\epsilon}\right), f^{\epsilon}(x) \rightarrow f(x)$ a.e. $f \in C(\bar{\Omega}) \Rightarrow f^{\epsilon} \rightarrow f$ uniformly on compact (?). If $f \in$ $L^{p}(\Omega), p \in[0, \infty)$ then $f^{\epsilon} \rightarrow f$ in $L^{p}(\Omega)$.

Proof. Choose h small such that $x+h e_{i} \in \Omega$, where e_{i} is a basis vector of \mathbb{R}^{d}. Consider

$$
\frac{f^{\epsilon}\left(x+h e_{i}\right)-f^{\epsilon}(x)}{h}=\underbrace{\frac{\int_{\mathbb{R}^{d}} \rho_{\epsilon}\left(x+h e_{i}-y\right)-\rho_{\epsilon}(x-y) f(y) d y}{h}}
$$

The underbraced term is bounded by $\frac{1}{\epsilon} \frac{\partial \rho_{\epsilon}}{\partial x_{i}}$ by the Mean Value Theorem. So by the DCT, we can pass to the limit as $h \searrow 0$.

Theorem D.1.

$$
f^{\epsilon} \rightarrow f \text { in } L_{\mathrm{loc}}^{p}(\Omega)
$$

Proof.

$$
\begin{aligned}
\left|f^{\epsilon}(x)-f(x)\right| & =\int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)|f(x)-f(y)| d y \\
& =\frac{1}{\epsilon^{d}} \rho\left(\frac{x-y}{\epsilon}\right)|f(x)-f(y)| d y
\end{aligned}
$$

In general, it is true that

$$
\frac{c}{\epsilon^{d}} \int_{B(x, \epsilon)} \rho\left(\frac{x-y}{\epsilon}\right)|f(x)-f(y)| d y \leq \frac{c}{\left|B_{\epsilon}\right|} \int_{B(x, \epsilon)}|f(x)-f(y)| d y \rightarrow 0
$$

by the Lebesgue Differentiation Theorem (Theorem 1.11). Thus, $f^{\epsilon}(x) \rightarrow f(x)$ a.e.
If f is continuous on Ω then $f^{\epsilon} \rightarrow f$ uniformly on $\tilde{\Omega} \subset \subset \Omega$. The proof relies on showing that $f^{\epsilon} \in L^{p}$.
Given: $\Omega_{2} \subset \subset \Omega_{1} \subset \subset \Omega$
Want: $\left\|f^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)} \leq C\|f\|_{L^{p}\left(\Omega_{1}\right)}$

$$
\begin{align*}
\left|f^{\epsilon}(x)\right| & \leq \int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)|f(y)| d y \\
& \leq \int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)^{1 / q} \rho_{\epsilon}(x-y)^{1 / p}|f(y)| d y \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \\
& \leq\left(\int_{B} \rho_{\epsilon}(x-y) d y\right)^{1 / q}\left(\int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)|f(y)|^{p} d y\right)^{1 / p} \\
\left|f^{\epsilon}(x)\right|^{p} & \leq \int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)|f(y)|^{p} d y \\
\int_{\Omega_{2}}\left|f^{\epsilon}(x)\right|^{p} d x & \leq \int_{\Omega_{2}(x)} \int_{B(x, \epsilon)} \rho_{\epsilon}(x-y)|f(y)|^{p} d y d x \\
& \leq \int_{B(x, \epsilon)(y)}|f(y)|^{p} \int_{\Omega_{2}(x)} \rho_{\epsilon}(x-y) d x d y \\
& \leq \int_{\Omega_{2}(x)} \int_{B(0, \epsilon)(y)} \rho_{\epsilon}(y)|f(x-y)|^{p} d y d x \quad \text { (change of variables) } \\
& \leq \int_{B(0, \epsilon)(y)} \int_{\Omega_{2}(x)}|f(x-y)|^{p} d x d y \tag{D.1}
\end{align*}
$$

Note that

$$
\int_{\Omega_{1}(x)}|f(x)|^{p} d x=\int_{\Omega_{1}(y)}|f(y)|^{p} d y=\int_{\Omega_{1}(y)}|f(y)|^{p} \underbrace{\int_{B(y, \epsilon)} \rho_{\epsilon}(x-y) d x}_{=1} d y
$$

We can control (D.1) by integrating over Ω_{1}.
$C\left(\Omega_{2}\right)$ is dense in $L^{p}\left(\Omega_{1}\right)$.
Choose $g \in C\left(\Omega_{1}\right)$ such that $\|g-f\|_{L^{p}\left(\Omega_{1}\right)} \leq \epsilon$. Then

$$
\left\|f-f^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)} \leq\|f-g\|_{L^{p}\left(\Omega_{2}\right)}+\left\|g-g^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)}+\left\|g^{\epsilon}-f^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)}
$$

and

$$
\left\|g^{\epsilon}-f^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)}=\left\|\rho_{\epsilon} *(g-f)\right\|_{L^{p}\left(\Omega_{2}\right)}=\left\|(f-g)^{\epsilon}\right\|_{L^{p}\left(\Omega_{2}\right)}
$$

Problem D.2.

Let $\rho_{1 / n}$ be mollifiers with spt $\rho_{1 / n} \subset \overline{B(0,1 / n)}$. Let $u \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and $z_{n} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ such that $z_{n}(x) \rightarrow z(x)$ a.e. and $\left\|z_{n}\right\|_{L^{\infty}} \leq 1$.
Let $v_{n}=\rho_{1 / n} * z_{n} u$ and $v=z u$.
Show that $v_{n} \rightarrow v$ in $L^{1}(B)$ for any ball $B \subset \mathbb{R}^{d}$, i.e. $\int_{B}\left|v_{n}-v\right| d x \rightarrow 0$. Also show $v_{n} \rightharpoonup v$ in L^{∞} weak-*.

Proof. Let $B_{1}=B(0,1), B_{2}=B(0,2), w_{n}=\rho_{1 / n} * \mathbf{1}_{B_{2}} z_{n} u$.
Then $v_{n}=w_{n}$ on B_{1}.

$$
\int_{B_{1}}\left|v_{n}-v\right| d x=\int_{B_{1}}\left|w_{n}-\mathbf{1}_{B_{2}} v\right| d x \leq \int_{\mathbb{R}^{d}}\left|w_{n}-\mathbf{1}_{B_{2}} v\right| d x
$$

Finish this using the triangle inequality.

E 4-4-11

Theorem E.1. Riesz Representation Theorem

Case 1: $1<p<\infty$
If $\phi \in L^{p}(\Omega)^{\prime}$, there exists $u \in L^{q}(\Omega)$ (where $q=\frac{p}{p-1}$) such that

$$
\phi(f)=\int_{\Omega} u f d x \forall f \in L^{p}(\Omega), \quad\|\phi\|_{L^{p}(\Omega)^{\prime}}=\|u\|_{L^{q}(\Omega)}
$$

Case 2: $p=1$
$L^{1}(\Omega)^{\prime}=L^{\infty}(\Omega)$, and the Riesz Representation Theorem states that for every $\phi \in L^{1}(\Omega)^{\prime}$ there exists $u \in L^{\infty}(\Omega)$ such that

$$
\phi(f)=\int_{\Omega} u f d x \forall f, \quad\|\phi\|_{L^{1}(\Omega)^{\prime}}=\|u\|_{L^{\infty}(\Omega)}
$$

Case 3: $p=\infty$
$L^{\infty}(\Omega)^{\prime} \neq L^{1}(\Omega), L^{\infty}(\Omega)^{\prime}=\mathcal{M}(\Omega)=$ Radon Measures

Remark E.2.

Fact: $L^{\infty}(\Omega)^{\prime} \subset L^{1}(\Omega)$, and the inclusion is strict

Example E.3.

Let ϕ_{0} be a continuous linear functional on $C_{0}\left(\mathbb{R}^{d}\right)$ with

$$
\begin{equation*}
\phi_{0}(f)=f(0) \forall f \in C_{0}\left(\mathbb{R}^{d}\right) \tag{E.1}
\end{equation*}
$$

By the Hahn-Banach Theorem, we can extend ϕ_{0} to a linear functional ϕ on $L^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\phi(f)=f(0) \forall f \in C_{0}\left(\mathbb{R}^{d}\right)$. Suppose (for contradiction) that there exists $u \in L^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\phi(f)=\int_{\mathbb{R}^{d}} u f d x \forall f \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

Then $\int_{\mathbb{R}^{d}}$ uf dx $=f(0)=0 \forall f \in C_{0}\left(\mathbb{R}^{d}\right)$ such that $f(0)=0$. Then $u=0$ a.e. on $\mathbb{R}^{d} \backslash\{0\}$, which implies that $u=0$ on \mathbb{R}^{d}, and thus $\int_{\mathbb{R}^{d}} u f d x=0 \forall f \in L^{\infty}\left(\mathbb{R}^{d}\right)$, which contradicts (E.1).

Definition E.4. Weak Convergence

For $1 \leq p<\infty, f_{n}$ converges weakly to f in L^{p}, written $f_{n} \rightharpoonup f$, if

$$
\int_{\Omega} f_{n} g d x \rightarrow \int_{\Omega} f g d x \forall g \in L^{q}(\Omega)
$$

Definition E.5. Weak-* Convergence

(Recall: $L^{1}(\Omega)^{\prime}=L^{\infty}(\Omega)$, but $\left.L^{\infty}(\Omega)^{\prime} \neq L^{1}(\Omega)\right)$
f_{n} converges weak-* to f in $L^{\infty}(\Omega)$, written $f_{n} \stackrel{*}{\rightharpoonup} f$, if

$$
\int_{\Omega} f_{n} g d x \rightarrow \int_{\Omega} f g d x \forall g \in L^{1}(\Omega)
$$

Problem E.6.

Problem D. 2 revisited

Let $u \in L^{\infty}\left(\mathbb{R}^{d}\right),\left\|z_{n}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq 1$, and $z_{n}(x) \rightarrow z(x)$ a.e. Let $v_{n}=\rho_{1 / n} *\left(z_{n} u\right)$ and $v=z u$. We showed that $v_{n} \rightarrow v$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$. Now show that $v_{n} \stackrel{*}{\rightharpoonup} v$ in $L^{\infty}\left(\mathbb{R}^{d}\right)$.

Hint: Let $\underline{\rho}(x)=\rho(-x)$ in \mathbb{R}^{d}. Then $\int_{\mathbb{R}^{d}}(\rho * f) \phi d x=\int_{\mathbb{R}^{d}} f(\rho * \phi) d x$

Problem E.7.

Let $U \in L^{2}(\mathbb{R})$ and let $u_{n}(x)=U(x+n)$. Show $u_{n} \rightharpoonup 0$ in $L^{2}(\mathbb{R})$. In other words, we want:

$$
\int_{\mathbb{R}} u_{n}(x) \phi(x) d x \rightarrow 0 \text { as } n \rightarrow \infty \forall \phi \in L^{2}(\mathbb{R}) \text { simple functions with compact support }
$$

Lemma E.8.

If $f_{n} \rightarrow f$ in L^{p} then

1. $\|f\|_{L^{p}} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{p}}$
2. f_{n} is bounded in L^{p}

Theorem E.9.

If $1<p<\infty$ and $\left\|f_{n}\right\|_{L^{p}(\Omega)} \leq M$, then there exists a subsequence that converges weakly in L^{p}, $f_{n_{k}} \rightharpoonup f$ in $L^{p}(\Omega)$.

If $p=\infty$ and $\left\|f_{n}\right\|_{L^{\infty}(\Omega)} \leq M$, then there exists a subsequence that converges weak-* in $L^{\infty}(\Omega)$, $f_{n_{k}} \stackrel{*}{\rightharpoonup} f$ in $L^{\infty}(\Omega)$.

Theorem E.10. Young's Inequality

If $f \in L^{1}$ and $g \in L^{p}$, then $f * g \in L^{p}$ and

$$
\|f * g\|_{L^{p}} \leq\|f\|_{L^{1}}\|g\|_{L^{p}}
$$

More generally,

$$
\|f * g\|_{L^{r}} \leq\|f\|_{L^{q}}\|g\|_{L^{p}} \quad \text { where } \frac{1}{r}+1=\frac{1}{p}+\frac{1}{q}
$$

F 4-6-11 (Sobolev Spaces)

Remark F.1.

1-D:

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}=f \quad \text { in }(0,1) \\
& u(0)=u(1)=0 \\
& f \in C^{0}(0,1)
\end{aligned}
$$

We know by definition that if $u \in C^{2}(0,1)$ then $f=\frac{d^{2} u}{d x^{2}} \in C^{0}(0,1)$.
Question: Given $f \in C^{0}(0,1)$, is $u \in C^{2}(0,1)$? Yes, by the Fundamental Theorem of Calculus.

2-D:

$$
\begin{aligned}
& \nabla u=f \quad \text { in } \Omega \subset \mathbb{R}^{2} \\
& u=0 \text { on } \partial \Omega
\end{aligned}
$$

1. If $u \in C^{2}(\Omega)$ then $f \in C^{0}(\Omega)$
2. Let $u=\nabla^{-1} f$. If $f \in C^{0}(\Omega)$, is $u \in C^{2}(\Omega)$? No.
$C^{k}(\Omega)$ is not a good functional framework.

Definition F.2. Weak 1st Derivative in 1-D

For $u \in L_{\text {loc }}^{1}(\Omega), \Omega \subset \mathbb{R}$ open, if there exists $v \in L_{\text {loc }}^{1}(\Omega)$ such that

$$
\int_{\Omega} u(x) \frac{d \phi}{d x} d x=-\int_{\Omega} v(x) \phi(x) d x
$$

then v is the weak 1 st derivative of u.

Definition F.3. Sobolev Space $W^{1, p}(\Omega)$

$$
\left.W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega) \mid 1\right) \text { weak derivative } v \text { exists, 2) } v \in L^{p}(\Omega)\right\}
$$

Notation:

We denote $\frac{d u}{d x}=v$, and in 1-D $u^{\prime}=v$. Thus, $W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega) \mid u^{\prime} \in L^{p}(\Omega)\right\}$.

Definition F.4. Norm on $W^{1, p}(\Omega)$

$$
\|u\|_{W^{1, p}(\Omega)}=\left(\|u\|_{L^{p}(\Omega)}^{p}+\left\|u^{\prime}\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p}
$$

Definition F.5. Topology of $C^{\infty}(\Omega)$
$\phi_{n} \rightarrow \phi$ in $C^{\infty}(\Omega)=\mathcal{D}(\Omega)$ if

1. $\operatorname{spt}\left(\phi_{n}-\phi\right) \subset K \subset \subset \Omega \forall n$
2. $\mathcal{D}^{\alpha} \phi_{n} \rightarrow \mathcal{D}^{\alpha} \phi$ uniformly on k

Remark F.6.

Fact: $C^{\infty}(\Omega)$ is not normable. The dual space $\mathcal{D}^{\prime}(\Omega)$ is even worse.

Example F.7.

Is $u(x)=|x|$ for $\Omega=(-1,1)$ in $W^{1, p}(-1,1)$?
Step 1:

$$
\begin{aligned}
\int_{\Omega} v(x) \phi(x) d x & =-\int_{\Omega}|x| \frac{d \phi}{d x} d x \\
& =-\int_{-1}^{0}-x \frac{d \phi}{d x} d x-\int_{0}^{1} x \frac{d \phi}{d x} d x \\
& =-\int_{-1}^{0} \phi(x) d x+\int_{0}^{1} \phi(x) d x \\
v(x) & =\frac{x}{|x|}
\end{aligned}
$$

Step 2: Yes, $u \in W^{1, p}(\Omega)$.

Definition F.8. Weak Derivative

Given: $u \in L_{\text {loc }}^{1}(\Omega), \Omega \subset \mathbb{R}^{d}, \alpha$ is a multi-index.
If there exists $v^{(\alpha)} \in L_{\mathrm{loc}}^{1}(\Omega)$ such that

$$
\int_{\Omega} u(x) D^{\alpha} \phi(x) d x=(-1)^{|\alpha|} \int_{\Omega} v^{(\alpha)}(x) \phi(x) d x \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

then $v^{(\alpha)}$ is the α-th derivative of u.

Notation: Denote $D^{\alpha} u=v^{(\alpha)}$.

Definition F.9. $W^{k, p}(\Omega)$

$$
\left.W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega) \mid \text { 1) } v^{(\alpha)} \text { exists in } L_{\mathrm{loc}}^{1}, 2\right) v^{(\alpha)} \in L^{p}(\Omega) \forall|\alpha| \leq K\right\}
$$

Definition G.1. Norm

For every $u \in W^{k, p}(\Omega)$,

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}\right)^{1 / p}, 1 \leq p \leq \infty
$$

Theorem G.2.

$W^{k, p}$ is a Banach space.

Proof. Consider $W^{1, p}$. Let $\left(u_{n}\right)$ be any Cauchy sequence in $W^{1, p}$. So $u_{n} \rightarrow u$ in $L^{p}(\Omega)$ and the weak derivative $D u_{n} \rightarrow v$ in $L^{p}(\Omega)$. We want to show that v is the weak derivative of u, i.e. that

$$
\int_{\Omega} u D \phi d x=-\int_{\Omega} \phi d x
$$

We know that this is true by the Dominated Convergence Theorem.

Lemma G.3.

If $u_{n} \rightarrow u$ in L^{p} strongly, then $u_{n} \rightharpoonup u$ in $L^{p}(\Omega)$.
Proof. Hölder's inequality.

Definition G.4. Convergence in a Sobolev Space

We say that $u_{n} \rightarrow u$ in $W^{k, p}(\Omega)$ if $\left\|u_{n}-u\right\|_{W^{k, p}(\Omega)} \rightarrow 0$.

We'll see that

$$
\begin{aligned}
W^{1,1} & =\{\text { absolutely continuous functions }\} \\
W^{1, \infty} & =\{\text { Lipschitz functions (uniformly continuous) }\}
\end{aligned}
$$

For $p=2$, we say that $K^{k}(\Omega)=W^{k, 2}(\Omega)$, with $k=1$ or 2 .

Consider $H^{1}(\Omega)$. If $k=\frac{d}{2}$, where $d=\operatorname{dim}(\Omega)$, then $f \in H^{k}(\Omega) \Rightarrow f$ is continuous.

Example G.6.
(2-D) Let $u(x)=|x|^{1 / 2}$ and $\Omega=B(0,1)$. For which values of p is u in $W^{1, p}(\Omega)$?

Step 1: i. $\|u\|_{L^{p}(\Omega)}<\infty$, ii. u has weak derivative v, iii. $v \in L^{p}(\Omega),\|v\|_{L^{p}(0,1)}<\infty$

$$
\int_{\Omega}|u|^{p} d x=\int_{B(0,1)}|x|^{p / 2} d x<\infty \forall p \in[1, \infty)
$$

Step 2:

$$
\frac{\partial u}{\partial x_{i}}=\frac{1}{2}|x|^{-1 / 2} \frac{\partial}{\partial x_{i}}|x|=\frac{1}{2} \frac{x_{i}}{|x|^{3 / 2}} \quad \text { for } x \neq 0
$$

This is true because

$$
|x|=\left(\sum_{i=1}^{2} x_{i} x_{i}\right)^{1 / 2} \Rightarrow|x|=\frac{1}{2}\left(\sum_{i=1}^{2} x_{i} x_{i}\right)^{-1 / 2} \cdot 2 x_{i}=\frac{x_{i}}{|x|}
$$

Guess that $v(x)=\frac{1}{2} \cdot \frac{x_{i}}{|x|^{3 / 2}}$. Goal: prove that $\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}} d x=-\int_{\Omega} v(x) \phi(x) d x \forall \phi \in C_{0}^{\infty}(\Omega)$.
Note that the weak derivative in multiple dimensions is synonymous with the weak gradient.
Remove a ball $B(0, \delta)$) from Ω to get the region $\Omega_{\delta}=B(0,1)-B(0, \delta)$. Let n_{i} denote the i th component of the unit normal on the boundary. Then by Integration By Parts / The Divergence Theorem, we get

$$
\begin{aligned}
\int_{\Omega_{\delta}} u(x) \frac{\partial \phi}{\partial x_{i}} d x & =\int_{\partial \Omega_{\delta}=\partial B(0, \delta)} u(x) \phi(x) n_{i} d S-\int_{\Omega_{\delta}} \frac{\partial u}{\partial x_{i}} \phi(x) d x \\
& =\int_{0}^{2 \pi} \delta^{1 / 2} \phi(x) \underbrace{n_{i}}_{\left|n_{i}\right|=1} \delta d \theta-\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1} \frac{x_{i}}{|x|^{3 / 2}} \phi(x) d x \\
& \leq \underbrace{\delta^{3 / 2} \int_{0}^{2 \pi} \mid \phi(x) d \theta}_{\rightarrow 0 \text { as } \delta \rightarrow 0}+\underbrace{\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1} \mathbf{1}_{(\delta, 1)}|x|^{-1 / 2}|\phi(x)| d x}_{\text {see next line }} \\
\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1} \mathbf{1}_{(\delta, 1)}|x|^{-1 / 2}|\phi(x)| d x & =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1} \mathbf{1}_{(\delta, 1)} r^{-1 / 2} \underbrace{|\phi(r, \theta)|}_{\begin{array}{c}
L^{1} \\
\text { dominating } \\
\text { function }
\end{array}} r d r d \theta
\end{aligned}
$$

By the Dominated Convergence Theorem we can pass to the limit as $\delta \rightarrow 0$, and this second term goes to $-\int_{\Omega} v(x) \phi(x) d x$. Thus, $v(x)=\frac{1}{2} \cdot \frac{x_{i}}{|x|^{3 / 2}}$.
For what p is $v \in L^{p}$, i.e. when is $\int_{\Omega}|x|^{-p / 2} d x<\infty$?
Answer: switch to polar coordinates and get that $p<4$ (Shkoller thinks)

$$
\max |u(x)| \leq C\|u\|_{W^{k, p}(\Omega)}, \forall u \in C_{0}^{\infty}(\Omega) \text { and } x \in \operatorname{spt}(u), \Omega \subset \mathbb{R}^{2}, k p>2
$$

Dimension $d=2$, so suppose $p=2 \Rightarrow k>1$. But if $p=s, k>2 / 3 \Rightarrow k=1$ "works," and $W^{1,3}$ now consists of continuous functions. Choose a coordinate system such that $x=0$.

$$
u(r)=-\int_{r}^{1} \partial_{s} u(s, \theta) d s
$$

We need to address issues:

- Integration by parts
- Cut-off functions

Theorem H.1. Sobolev Embedding Theorem (2-D Version)

$$
\max _{x \in \operatorname{spt}(u)}|u(x)| \leq C\|u\|_{W^{k, p}(\Omega)} \forall u \in C_{0}^{k}(\Omega), k p>2
$$

where $C=$ generic constant $=C(k, p, \Omega, d)$.

Proof.

$$
\begin{aligned}
|u(x)| & \leq C\|u\|_{W^{k, p}(\Omega)} \forall x \in \operatorname{spt}(u) \\
\text { Shift } x \text { to } 0: & |u(0)| \leq C(r) \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}}
\end{aligned}
$$

By the Fundamental Theorem of Calculus,

$$
u(x)-u(0)=\int_{0}^{x} \frac{\partial u}{\partial r}(r, \theta) d r
$$

Choose $\psi \in C_{0}^{\infty}(B(0,1))$ such that $\psi \equiv 1$ on $B\left(0, \frac{1}{2}\right), \psi \equiv 0 \forall|x| \geq \frac{3}{4}$. Replace $u \mapsto \psi u$.

$$
\begin{align*}
-\psi u(0)=-u(0) & =\int_{0}^{1} \frac{\partial}{\partial r}(\psi u) d r \\
u(0) & =-\int_{0}^{1} \frac{\partial}{\partial r}(\psi u) d r \\
& =-\int_{0}^{1} \frac{\partial}{\partial r}(r) \frac{\partial}{\partial r}(\psi u) d r \\
& \stackrel{\operatorname{IBP}}{=} \int_{0}^{1} f \frac{\partial^{2}}{\partial r^{2}}(\psi u) d r-\left.r \psi u\right|_{0} ^{T} \\
& =C_{k} \int_{0}^{1} r^{k-1} \frac{\partial^{k}}{\partial r^{k}}(\psi u) d r \tag{H.1}
\end{align*}
$$

We are missing 3 things: 1) lower order derivatives, 2) integral over 2-D region, 3) powers of p.

$$
\begin{aligned}
x & =r \cos \theta, \quad y=r \sin \theta \\
\frac{\partial}{\partial r} & =\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}=A(\theta) \cdot\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=A(\theta) D, \quad A \in C^{\infty}(\theta), \quad D=\text { gradient } \\
\frac{\partial^{2}}{\partial r^{2}} & =A(\theta) D^{2} \Rightarrow \frac{\partial^{k}}{\partial r^{k}}=\sum_{|\alpha| \leq k} A^{\alpha}(\theta) D^{\alpha} \quad \text { (chain rule for smooth terms) }
\end{aligned}
$$

Then continuing from (H.1), we get that

$$
\begin{array}{rlr}
u(0) & =C_{k} \int_{0}^{1} r^{k-1} \sum_{|\alpha| \leq k} A^{\alpha}(\theta) D^{\alpha}(\psi u) d r & \\
& =C_{k} \int_{0}^{2 \pi} \int_{0}^{1} r^{k-2} \sum_{|\alpha| \leq k} A^{\alpha}(\theta) D^{\alpha}(\psi u) \underbrace{r d r d \theta}_{\substack{\text { Lebesgue } \\
\text { measure }}} & \text { (integrated over } \theta \text { from } 0 \text { to } 2 \pi \text {) } \\
& \leq C\left(\int_{B(0,1)} r^{\frac{p(k-2)}{p-1}} r d r d \theta\right)^{\frac{p-1}{p}}\left(\sum_{|\alpha| \leq k} \int_{B(0,1)}\left|D^{\alpha}(\psi u)\right|^{p} d x\right)^{\frac{1}{p}} & \text { (Hölder's Inequality) }
\end{array}
$$

The first integral is legitimate when $\frac{p(k-2)}{p-1}+1>-1 \Rightarrow k p>2$.

Remark H.2.

The Poisson kernel gives us the solution $u=P_{r} * g$ to

$$
\begin{aligned}
\Delta u=0 & \text { in } B(0,1) \\
u=g & \text { on } \partial B(0,1)
\end{aligned}
$$

But what if we have an irregular domain?

Motivation:

Let $v \in C_{0}^{\infty}(\Omega)$. Then we have

$$
\begin{aligned}
0 & =-\int_{\Omega} \Delta u v d x=-\int_{\Omega} \frac{\partial^{2} u}{\partial x_{i} \partial x_{i}} v d x \quad=\int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x-\int_{\partial \Omega} \frac{\partial u}{\partial x_{i}} v n_{i} d S \\
& =-\int_{\Omega} \frac{\partial^{2} u}{\partial x_{i} \partial x_{i}} v d x \\
& =-\int_{\Omega}\left[\frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{i}} v\right)-\frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}\right] d x \\
& =\int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x-\int_{\Omega} \frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{i}} v\right) d x \\
& =\int_{\Omega} D u \cdot D v d x-\underbrace{\int_{\Omega} \operatorname{div}(v D u) d x}_{\int_{\partial \Omega} v D u \cdot n d S}
\end{aligned}
$$

where n_{i} is the i th component of the outward unit normal and $\frac{\partial u}{\partial n}=D u \cdot n$. Thus, we have

Classical Form:

$$
\begin{aligned}
\Delta u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

New Form:

$$
\begin{aligned}
& \int_{\Omega} D u \cdot D v d x=\underbrace{\int_{\partial \Omega} \frac{\partial u}{\partial n} v d S}_{\text {since } v=0 \text { on } \partial \Omega}=0 \forall v \in C_{0}^{\infty}(\Omega) \\
& \int_{\Omega} D u \cdot D v d x=0 \quad \forall \underbrace{v \in C_{0}^{\infty}(\Omega)}_{v \in H^{1}(\Omega), v=0 \text { on } \partial \Omega}
\end{aligned}
$$

Remark H.3. Notation: Einstein Summation

$$
\Delta u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i} \partial x_{i}}=\frac{\partial^{2} u}{\partial x_{i} \partial x_{i}}
$$

Remark H.4.

Fact: $C_{0}^{\infty}(\Omega)$ is dense in a certain subspace of $H^{1}(\Omega)$.

I 4-13-11

Theorem I.1. Morrey's Inequality

Given: $y \in B(x, r) \subset \mathbb{R}^{d}, p>d$. Then

$$
|u(x)-u(y)| \leq C r^{1-d / p}\|D u\|_{L^{p}(B(x, 2 r))} \quad \forall u \in \underbrace{C^{\infty}(\overline{B(x, 2 r)})}_{\text {or } C^{1}}
$$

Corollary I.2. Sobolev Embedding ($k=1$)
$W^{1, p} \hookrightarrow C^{0,1-d / p}(\bar{\Omega})$
There exists $C>0$ such that $\|u\|_{C^{0,1-d / p}(\bar{\Omega})} \leq C\|u\|_{W^{1, p}(\Omega)} \quad \forall u \in W^{1, p}(\Omega)$.

Definition I.3. $C^{0, \gamma}(\bar{\Omega})$
$C^{0, \gamma}(\bar{\Omega})=$ Hölder space with the norm given by

$$
\begin{aligned}
\|u\|_{C^{0, \gamma}} & =\|u\|_{C^{0}(\bar{\Omega})}+[u]_{C^{0, \gamma}(\bar{\Omega})} \\
{[u]_{C^{0, \gamma}(\bar{\Omega})} } & =\max \frac{|u(x)-u(y)|}{|x-y|^{\gamma}}
\end{aligned}
$$

this interpolates between C^{0} and C^{1}.

Remark I.4. Notation: f

$f f(x) d x=\frac{1}{|\Omega|} \int_{\Omega} f(x) d x=$ average value of f over Ω

Lemma I.5.

$$
f_{B(x, r)}|u(x)-u(y)| d y \leq C \int_{B(x, r)} \frac{|D u(y)|}{|x-y|^{d-1}} d y \quad y \in B(x, r)
$$

Proof. (2-D)

$$
y=x+s e^{i \theta}, \quad s \in(0, r), \quad e^{i \theta} \in S^{1}=\partial B(0,1)
$$

$$
\begin{array}{rlrl}
u(y)-u(x) & =u\left(x+s e^{i \theta}\right)-u(x) & & \text { FTOC } \\
& =\int_{0}^{s} \partial_{\tau}\left(x+\tau e^{i \theta}\right) d \tau & \text { chain rule } \\
& =\int_{0}^{s} D u\left(x+\tau e^{i \theta}\right) e^{i \theta} d \tau & \\
|u(y)-u(x)| & \leq \int_{0}^{s}\left|D u\left(x+\tau e^{i \theta}\right)\right| d \tau & & \\
\int_{0}^{2 \pi}|u(y)-u(x)| d \theta & \leq \int_{0}^{2 \pi} \int_{0}^{s}\left|D u\left(x+\tau e^{i \theta}\right)\right| d \tau d \theta & \\
& \leq \int_{0}^{2 \pi} \int_{0}^{s} \frac{\left|D u\left(x+\tau e^{i \theta}\right)\right|}{\tau} \underbrace{\tau d \tau}_{\text {measure }} d \theta \\
& \leq \int_{0}^{2 \pi} \int_{0}^{s} \frac{|D u(y)|}{|x-y|} d y \\
& \leq \int_{B(x, r)}^{\frac{|D u(y)|}{|y-x|} d y} & \\
\int_{0}^{r} \int_{0}^{2 \pi}|u(y)-u(x)| d \theta d \tilde{r} & \leq \int_{0}^{r} \int_{B(x, r)} \frac{|D u(y)|}{|y-x|} d y d \tilde{r} & \\
f_{B(x, r)}|u(y)-u(x)| d y & \leq C\left(\int_{B(x, r)}\left(\frac{1}{s^{d-1}}\right)^{\frac{p}{p-1}} d y\right)^{\frac{p-1}{p}}\left(\int_{B(x, r)}|D u|^{p} d y\right)^{\frac{1}{p}} & \text { Hölder's }
\end{array}
$$

Let $Z=B(x, r) \cap B(y, r)$. Then

$$
|u(x)-u(y)| \leq|u(x)-u(z)|+|u(z)-u(y)|
$$

Integrating this over Z gives

$$
\begin{aligned}
|Z||u(x)-u(y)| & \leq \int_{Z}|u(x)-u(z)| d z+\int_{Z}|u(z)-u(y)| d z \\
|u(x)-u(y)| & \leq f_{Z}|u(x)-u(z)| d z+f_{Z}|u(z)-u(y)| d z \\
& \leq \int_{B(x, 2 r)}|u(x)-u(z)| d z+\int_{B(x, 2 r)}|u(z)-u(y)| d z
\end{aligned}
$$

Theorem I.6. Interior Approximation
$C^{\infty}\left(\Omega_{\epsilon}\right)$ is dense in $W^{k, p}(\Omega)$, meaning that for every $u \in W^{k, p}(\Omega)$ there exists $u^{\epsilon} \in C^{\infty}\left(\Omega_{\epsilon}\right)$ such that

$$
\begin{aligned}
& u^{\epsilon} \rightarrow u \text { in } W_{\operatorname{loc}}^{k, p}(\Omega) \\
& u^{\epsilon} \rightarrow u \text { in } W^{k, p}(\tilde{\Omega}) \forall \tilde{\Omega} \subset \subset \Omega
\end{aligned}
$$

Remark I. 7.

Suppose that $v^{(\alpha)}$ is the α th derivative of $u \forall|\alpha| \leq k$. We want to show:

$$
D^{\alpha} u^{\epsilon} \rightarrow v^{(\alpha)} \text { as } \epsilon \searrow 0 \text { in } L_{\mathrm{loc}}^{p}(\Omega)
$$

Why is u^{ϵ} smooth?
Let $u^{\epsilon}=\rho_{\epsilon} * u$. This is smooth by the LDCT.

$$
\begin{aligned}
D^{\alpha} \int_{\Omega_{\epsilon}} \rho_{\epsilon}(x-y) u(y) d y & =\int_{\Omega_{\epsilon}} D_{y}^{\alpha} \rho_{\epsilon}(x-y) u(y) d y \\
& =(-1)^{|\alpha|} \int_{\Omega_{\epsilon}} D_{y}^{\alpha} \rho_{\epsilon}(x-y) u(y) d y \\
& =(-1)^{|\alpha|} \int_{\Omega_{\epsilon}} \rho_{\epsilon}(x-y) v^{(\alpha)}(y) d y
\end{aligned}
$$

J 4-15-11

Lemma J.1. Review from Last Time

Let $y \in B(x, r)$. Then

$$
f_{B(x, r)}|u(y)-u(x)| d y \leq C \int_{B(x, r)} \frac{|D u(y)|}{|y-x|^{d-1}} d y
$$

Idea: $y=x+s w, w \in S^{d-1}$

$$
\int_{0}^{r} \int_{S^{d-1}}|u(x+s w)-u(x)| \underbrace{d w}_{x s^{d-1} d s} \leq \int_{0}^{r} \int_{B(x, r)} \frac{|D u(y)|}{|y-x|^{d-1}} d y s^{d-1} d s
$$

Theorem J.2. Review from Last Time

$$
|u(y)-u(x)| \leq C r^{1-d / p}\|D u\|_{L^{p}(B(x, 2 r))} \quad \forall u \in C^{1}
$$

Morrey's inequality comes from Hölder's Inequality:

$$
\left(\int_{B}\left(\frac{1}{s^{d-1}}\right)^{\frac{p}{p-1}} s^{d-1} d s d w\right)^{\frac{p-1}{p}}\left(\int_{B}|D u|^{p} d x\right)^{\frac{1}{p}}
$$

Integrability determines the embedding (integrability requires $p>d$).

Theorem J.3. Sobolev Embedding Theorem ($k=1$)
$p>d, W^{1, p} \hookrightarrow C^{0,1-d / p}$

$$
\|u\|_{C^{0,1-d / p}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{d}\right)} \quad \forall u \in W^{1, p}\left(\mathbb{R}^{d}\right)
$$

Example: $d=1$
$H^{1} \hookrightarrow C^{0,1 / 2}\left(\frac{1}{2}\right.$ derivative gain $)$

Remark J.4. Density

For Ω bounded, $C^{\infty}(\bar{\Omega})$ is dense in $W^{k, p}(\Omega)$ for $1 \leq p<\infty$.
$\mathbb{R}^{d}: C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{d}\right)$.

Proof. (Sobolev Embedding Theorem, $k=1$) Suppose we are working with $C_{0}^{1}\left(\mathbb{R}^{d}\right)$. Morrey's Inequality
gives us that

$$
\frac{|u(y)-u(x)|}{r^{1-d / p}} \leq C\|D u\|_{L^{p}(B(x, 2 r))}
$$

So it suffices to prove that $|u(x)| \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{d}\right)}$.
Recall: by definition, $\|u\|_{C^{0,1-d / p}\left(\mathbb{R}^{d}\right)}=\max |u(x)|+\max \frac{|u(y)-u(x)|}{|y-x|^{1-d / p}}$.

$$
\begin{aligned}
|u(x)| & \leq f_{B(x, 1)}|u(y)-u(x)| d y+f_{B(x, 1)}|u(y)| d y \\
& \leq C f_{B(x, 1)} \frac{|D u(y)|}{|y-x|^{d-1}} d y+C\|u\|_{L^{p}} \\
& \leq C\|u\|_{W^{1, p}\left(\mathbb{R}^{d}\right) \quad \forall u \in C_{0}^{1}\left(\mathbb{R}^{d}\right), x \in \operatorname{spt}(u)}
\end{aligned}
$$

Remark J.5.

Suppose there exists $u_{j} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $u_{j} \rightarrow U$ in $C^{0,1-d / p}$. Then $U=u$ a.e., and

$$
\begin{aligned}
\left\|u_{j}\right\|_{C^{0,1-d / p}} & \leq C\left\|u_{j}\right\|_{W^{k, p}} \\
\|U\|_{C^{0,1-d / p}} & \leq C\|U\|_{W^{k, p}}
\end{aligned}
$$

Corollary J.6.

If $d<p$ then the weak derivative of $u \in W^{1, p}$ is equal to the classical derivative a.e.

Theorem J.7. Gagliardo-Nirenberg

Suppose $d>p \geq 1$. Let $p^{*}=\frac{d p}{d-p}$. Then

$$
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{d}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{d}\right)} \quad \forall u \in W^{1, p}
$$

(For example, if we have $d=2$ and $p=1$ then $p^{*}=2$ and $\|u\|_{L^{2}} \leq C\|D u\|_{L^{1}}$)

Problem J.8. Hardy's Inequality

Suppose $\Omega=(0,1), u \in H^{1}, u(0)=0$. Then $\frac{u}{x} \in L^{2}(0,1)$, and

$$
\left\|\frac{u}{x}\right\|_{L^{2}(0,1)} \leq C\|u\|_{H^{1}}
$$

Problem J.9. Hardy's Inequality (Simple Version)

Suppose $\Omega=(0,1), u \in H^{1}, u(0)=u(1)=0$. Prove

$$
\left\|\frac{u}{x}\right\|_{L^{2}} \leq 2\left\|u^{\prime}\right\|_{L^{2}}
$$

(HINT: Let $v=\frac{u}{x}$ so that $u=x v$.)
WANT: $\|v\|_{L^{2}} \leq C\left\|(x v)^{\prime}\right\|_{L^{2}}$.

$$
\begin{aligned}
(x v)^{\prime}= & x v^{\prime}+v \in L^{2} \\
& x v^{\prime}+v=0 \quad \Rightarrow \quad v=\frac{1}{x} \notin L^{2}
\end{aligned}
$$

K 4-18-11

Theorem K.1. Hardy's Inequality (from last time)

Let $u \in H^{1}(0,1), u(0)=u(1)=0\left(u \in H_{0}^{1}(0,1)\right)$.
Then $\frac{u}{x} \in L^{2}(0,1)$ and

$$
\left\|\frac{u}{x}\right\|_{L^{2}(0,1)} \leq C\|u\|_{H^{1}(0,1)}
$$

Recall: $\|u\|_{H^{1}(0,1)}^{2}=\|u\|_{L^{2}(0,1)}^{2}+\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}$. Thus, we need to prove that

$$
\left\|\frac{u}{x}\right\|_{L^{2}(0,1)} \leq c\left\|u^{\prime}\right\|_{L^{2}(0,1)}
$$

Proof. Let $v=\frac{u}{x} \Rightarrow u=x v$. Want: $\|v\|_{L^{2}} \leq C\left\|(x v)^{\prime}\right\|_{L^{2}}=C\left\|x v^{\prime}+v\right\|_{L^{2}}$.
Formal computation:

$$
\begin{aligned}
&\left\|x v^{\prime}+v\right\|_{L^{2}}^{2}=\left\langle x v^{\prime}+v, x v^{\prime}+v\right\rangle_{L^{2}} \\
&=\int_{0}^{1}(x^{2} v^{\prime 2}+\underbrace{}_{\text {cross-term }_{\text {CT }}^{2 x v^{\prime} v}}+v^{2}) d x \\
& \mathrm{CT}=\int_{0}^{1} 2 x \frac{d v}{d x} v d x \\
&=\int_{0}^{1} \frac{d}{d x}|v|^{2} d x=-\int_{0}^{1}|v|^{2} d x \\
&\left\|x v^{\prime}+v\right\|_{L^{2}}^{2}=\left\|x v^{\prime}\right\|_{L^{2}}^{2}
\end{aligned}
$$

But how do we make this rigorous?
Start with smooth functions and show that

$$
\begin{aligned}
\|v\|_{L^{2}} & \leq C\left\|(x v)^{\prime}\right\|_{L^{2}} \quad \forall u \text { smooth } \\
\left\|\frac{u}{x}\right\|_{L^{2}} & \leq C\left\|u^{\prime}\right\|_{L^{2}} \quad \forall u \text { smooth, } C_{0}^{\infty}(0,1)
\end{aligned}
$$

Then $v \in C_{0}^{\infty}$ and $\lim _{x \searrow 0} x v^{2}=0$. Using this dense subset of smooth functions rules out singular behavior.

Remark K.2. Sobolev Embedding (Scaling)

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C\left(\|u\|_{\left.L^{p}\left(\mathbb{R}^{n}\right)+\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right) \quad \forall u \in W^{1, p}\left(\mathbb{R}^{n}\right), p>n}\right.
$$

Let $v(x)=u\left(\frac{x}{\lambda}\right)$. Then $v \in W^{1, p}$ and

$$
\begin{equation*}
\|v\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C\left(\|v\|_{L^{p}}+\|D v\|_{L^{p}}\right) \tag{K.1}
\end{equation*}
$$

Compute $\|v\|_{L^{p}}$ and $\|D v\|_{L^{p}}$:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|v(x)|^{p} d x=\int_{\mathbb{R}^{n}}\left|u\left(\frac{x}{\lambda}\right)\right|^{p} d x=\lambda^{n} \int_{\mathbb{R}^{n}}|v(y)|^{p} d y \\
& \int_{\mathbb{R}^{n}}|D v(x)|^{p} d x=\int_{\mathbb{R}^{n}}\left|D u\left(\frac{x}{\lambda}\right)\right|^{p} d x=\lambda^{n-p} \int_{\mathbb{R}^{n}}|D u(y)| d y
\end{aligned}
$$

where the λ^{n} term in the first equation is due to the Jacobian. Plugging these into (K.1) yields

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C\left(\lambda^{\frac{n}{p}}\|u\|_{L^{p}}+\lambda^{\frac{n-p}{p}}\|D u\|_{L^{p}}\right) \tag{K.2}
\end{equation*}
$$

Minimize the right hand side by taking a derivative with respect to λ :

$$
\begin{aligned}
0 & =\frac{n}{p} \lambda^{\frac{n}{p}-1}\|u\|_{L^{p}}+\frac{n-p}{p} \lambda^{\frac{n}{p}-1-1}\|D u\|_{L^{p}} \\
& =\lambda^{\frac{n}{p}-1}\left[\frac{n}{p}\|u\|_{L^{p}}+\lambda^{-1} \frac{n-p}{p}\|D u\|_{L^{p}}\right] \\
\lambda & =\frac{\|D u\|_{L^{p}}}{\|u\|_{L^{p}}} C(n, p)
\end{aligned}
$$

Plugging this into (K.2) yields

$$
\begin{aligned}
\|u\|_{L^{\infty}} & \leq C\left(\frac{\|D u\|_{L^{p}}^{n / p}}{\|u\|_{L^{p}}^{n / p}}\|u\|_{L^{p}}+\frac{\|D u\|_{L^{p}}^{\frac{n-p}{p}+1}}{\|u\|_{L^{p}}^{\frac{n-p}{p}}}\right) \\
& \leq C\|D u\|_{L^{p}}^{\frac{n}{p}}\|u\|_{L^{p}}^{\frac{p-n}{p}}, \quad n<p
\end{aligned}
$$

Note: $\frac{n}{p}+\frac{p-n}{p}=1$.
This result is called an interpolation identity.

Consider $-\Delta u=f$ in \mathbb{R}^{n}.
A Green's function $G(x-y)$ satisfies $-\Delta G=\delta$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
The solution is given by $u=G * f$, and G is called the fundamental solution.

$$
\begin{aligned}
& 2-\mathrm{D}: G=C \log |x| \\
& 3-\mathrm{D}: G=C \cdot \frac{1}{|x|}
\end{aligned}
$$

Note that these functions are smooth everywhere except the origin; they are very singular at the origin.
Suppose $\theta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\theta \equiv 1$ in a neighborhood of 0 .

$$
\begin{aligned}
F & =\theta G \\
-\Delta F & =\delta-\psi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \\
u & =-u * \Delta F+u^{*} \psi=D u * D F+u * \psi
\end{aligned}
$$

Young's Inequality:

$$
\|u\|_{L^{\infty}} \leq C\left(\|D u\|_{L^{p}}\|D F\|_{L^{q}}+\|u\|_{L^{p}}\|\psi\|_{L^{q}}\right)
$$

$D F \in L^{q}, p>n$ and $\psi \in L^{q}$.

L 4-20-11

Remark L.1.

$p>n \Rightarrow$ Classical differentiability
$p<n \Rightarrow$ Gagliardo-Nirenberg

$$
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \forall u \in C_{0}^{1}\left(\mathbb{R}^{n}\right)
$$

where $p^{*}=\frac{n p}{n-p}, 1 \leq p<n$.

Scaling Argument

If this holds for $u(x), x \in \mathbb{R}^{n}$, then it holds for $v(x)=\frac{u(x)}{\lambda}, \lambda \in \mathbb{R}$.

$$
\begin{aligned}
\|v\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} & =\lambda^{n / p^{*}}\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \\
\|D v\|_{L^{p}\left(\mathbb{R}^{n}\right)} & =\lambda^{\frac{n-p}{p}}\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} & \leq C \lambda\left(\frac{n-p}{p}-\frac{n}{p^{*}}\right)
\end{aligned}\|D\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

we must have that

$$
\frac{n-p}{p}=\frac{n}{p^{*}} \quad \Rightarrow \quad p^{*}=\frac{n p}{n-p}
$$

Example L.2.

$$
n=2,1 \leq p<2
$$

$$
\begin{array}{lll}
p=1 & p^{*}=2 & \|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\|D u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \\
p=\frac{3}{2} & p^{*}=6 & \|u\|_{L^{6}\left(\mathbb{R}^{2}\right)} \leq C\|D u\|_{L^{3 / 2}\left(\mathbb{R}^{2}\right)} \\
p=\frac{199}{100} & p^{*}=398 & \|u\|_{L^{398}\left(\mathbb{R}^{2}\right)} \leq C\|D u\|_{L^{199 / 100}\left(\mathbb{R}^{2}\right)} \\
p \nearrow 2 & p^{*} \rightarrow \infty & \|u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq C\|D u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \not \leq C\|u\|_{H^{1}}
\end{array}
$$

Theorem L.3.

$$
(n=2=p) \quad \forall q \in[1, \infty):
$$

$$
\|u\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C \sqrt{q}\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} \quad \forall u \in C_{0}^{1}\left(\mathbb{R}^{2}\right)
$$

Proof of Gagliardo-Nirenberg ($n=2$)
Step 1: $p=1, p^{*}=2$, prove $\|u\|_{L^{2}} \leq C\|D u\|_{L^{1}}$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} & \leq C\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|D u\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2}\right)^{2} \\
& \leq C\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|D u\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2}\right)\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|D u\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2}\right)
\end{aligned}
$$

We want to apply the Fundamental Theorem of Calculus.

$$
\begin{aligned}
u\left(x_{1}, x_{2}\right) & =\int_{-\infty}^{x_{1}} \partial_{1} u\left(y_{1}, x_{2}\right) d y_{1}=\int_{-\infty}^{x_{2}} \partial_{2} u\left(x_{1}, y_{2}\right) d y_{2} \\
\left|u\left(x_{1}, x_{2}\right)\right| & \leq \int_{-\infty}^{\infty}\left|\partial_{1} u\left(y_{1}, x_{2}\right)\right| d y_{1} \\
& \leq \int_{-\infty}^{\infty}\left|\partial_{1} u\left(x_{1}, y_{2}\right)\right| d y_{2} \\
\left|u\left(x_{1}, x_{2}\right)\right| & \leq \int_{-\infty}^{\infty}\left|\mathcal{D} u\left(y_{1}, x_{2}\right)\right| d y_{1} \int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2} \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|u\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} & \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\mathcal{D} u\left(y_{1}, x_{2}\right)\right| d y_{1} \int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2} d x_{1} d x_{2}
\end{aligned}
$$

$|u| \mapsto|u|^{\gamma}$, plus Hölder's inequality for the general case.
Reminder: we want to prove

$$
\|u\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C \sqrt{q}\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} \quad \forall u \in C_{0}^{1}\left(\mathbb{R}^{2}\right)
$$

Proof. Let $r=|y-x|$. Let ψ be the same cut-off as in proof 1 of Morrey's Inequality.

$$
\begin{aligned}
|u(x)| & \leq \int_{0}^{1} \int_{0}^{2 \pi} \frac{|D u(y)|}{|y-x|} d y \\
& \leq \int_{\mathbb{R}^{2}} \mathbf{1}_{B(x, 1)}|x-y|^{-1}|D u(y)| d y \\
& \leq K * D u
\end{aligned}
$$

where $K(x)=\mathbf{1}_{B(0,1)}|x|^{-1}$. We employ Young's Inequality:

$$
\begin{array}{rlr}
\|u\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq\|k\|_{L^{k}\left(\mathbb{R}^{2}\right)}\|D u\|_{\left.L^{2}\left(\mathbb{R}^{2}\right)\right)} & \\
\frac{1}{q}+1=\frac{1}{k}+\frac{1}{2} \Rightarrow k=\frac{2 q}{2+q} & \\
\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{r^{k-1}} d r d \theta & \left.\sim \frac{c}{2-k} r^{2-k}\right|_{0} ^{1} & 2-k=\frac{4}{2+q} \\
\|u\|_{L^{q}} & \leq c\left(\frac{q+2}{4}\right)^{1 / k}\|D u\|_{L^{2}} & \frac{1}{2-k}=\frac{2+q}{4} \\
& \leq c \sqrt{q}\|D u\|_{L^{2}} & \text { in the limit }
\end{array}
$$

Definition M.1. C^{1} Domain, Localization

Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded, and have a C^{1} boundary. This means that locally around each point, each region is dipeomorphic to \mathbb{R}^{n}. A domain is C^{1} if

1. there exists an open covering on $\partial \Omega$ by K open sets $\left\{U_{l}\right\}_{l=1}^{K}$
2. For $l=1, \ldots, k$ and $\theta_{l}: V_{l} \subset \mathbb{R}^{n} \rightarrow U_{l}$ with the following properties:
(a) θ_{l} is a C^{1} diffeomorphism (the map has an inverse which is also C^{1}).
(b) $\theta_{l}\left(V_{l}^{+}\right)=U_{l} \cap \Omega$ (the upper half of the unit ball is mapped into Ω)
(c) $\theta_{l}\left(B\left(0, r_{l}\right) \cap\left\{x_{n}=0\right\}\right)=\partial \Omega \cap U_{l}$ (known as straightening the boundary)
3. there exists a collection of functions $\left\{\psi_{l}\right\}_{l=1}^{k}$ such that $\psi_{l} \in C_{0}^{\infty}\left(U_{l}\right), 0 \leq \psi_{l} \leq 1$ with $\sum_{l=1}^{k} \psi_{l}(x)=$ $1 \forall x \in \cup U_{l}$

The idea behind these partitions of unity is that if we have $u: \Omega \rightarrow \mathbb{R}$, then

$$
u=u\left(\sum_{l=1}^{k} \psi_{l}(x)\right)=\sum_{l=1}^{k}\left(\psi_{l} u\right)(x) .
$$

This is called localization.

Remark M.2.

We may define $u_{l}=\psi_{l} u$ with $u=\sum u_{l}$. We can then remap by defining (for each l), $\mathcal{U}_{l}=u_{l} \circ \theta_{l}$, with $\mathcal{U}_{l}: V_{l} \rightarrow \mathbb{R}$. Then each \mathcal{U}_{l} is zero on the boundary of these open sets. The idea now is that if we can do what is needed on a half-space, then we can do it on an arbitrary domain.

Definition M.3. $H_{0}^{1}(\Omega)$

We define $H_{0}^{1}(\Omega)$ to be the closure of $C_{0}^{\infty}(\Omega)$ in the $H_{1}(\Omega)$ norm.

We'd like to say that $H_{0}^{1}(\Omega)=\left\{u \in H^{1}(\Omega) \mid u=0\right.$ on $\left.\partial \Omega\right\}$. The problem is that since the boundary has measure zero, $\left.U\right|_{\partial \Omega}$ is only defined up to equivalence classes.

Theorem M.4. Trace Theorem

There exists a continuous linear operator $T: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ such that

1. $\|T u\|_{L^{2}(\Omega)} \leq c\|u\|_{H^{1}(\Omega)}$
2. $T u=\left.u\right|_{\partial \Omega}$ for all $u \in C^{0}(\bar{\Omega}) \cap H^{1}(\Omega)$

Proof. Suppose first that $u \in C^{1}(\bar{\Omega})$. Then

$$
\begin{aligned}
\int_{\partial \Omega}|u|^{2} d s & \leq \int_{\partial \Omega} \sum_{l=1}^{K}\left|\left(\psi_{l} u\right)\right|^{2} d s \\
& \leq \sum_{l=1}^{K} \int_{\partial \Omega \cap U_{l}}\left|u_{l}\right|^{2} d s_{l}
\end{aligned}
$$

where $u_{l}=\psi_{l} u$. We check each summand:

$$
\begin{aligned}
\int_{\partial \Omega \cap U_{l}}\left|u_{l}\right|^{2} d s_{l} & =\int_{\theta_{l}\left(V \cap \cap\left\{x_{n}=0\right\}\right)}\left|u_{l}\right|^{2} d s_{l} \\
& =\int_{V_{l} \cap\left\{x_{n}=0\right\}}\left|u_{l} \circ \theta_{l}\right|^{2}\left|\operatorname{det} D \theta_{l}\right| d x_{1} \cdots d x_{n-1} \\
& =-\int_{V_{l}^{+}} \frac{\partial}{\partial x_{n}}\left|u_{l} \circ \theta_{l}\right|^{2} \operatorname{det} D \theta_{l} d x
\end{aligned}
$$

where the arguments follow by localization, a change of variables and the divergence theorem. We use the product and chain rule to arrive at

$$
C \int_{V_{l}^{+}}\left|u_{l} \circ \theta_{l}\right|\left|D_{l} \circ \theta_{l}\right| d x \leq \int_{U_{l} \cap \Omega}\left|u_{l}\right|\left|D u_{l}\right| d x .
$$

A change of variables yields the inequality in the line above. Then applying Cauchy-Schwarz gives us

$$
c \int_{U_{l} \cap \Omega}\left|u_{l}\left\|D u_{l} \mid d x \leq C\right\| u_{l}\left\|_{L^{2}}^{2}+\right\| D u_{l} \|_{L^{2}}^{2} .\right.
$$

We then sum over all l to yield the result. Let $\left\{u_{j}\right\} \in C^{\infty}(\bar{\Omega})$ converging in $H^{1}(\Omega)$ to u. Then

$$
\left\|T u_{l}-T u_{p}\right\|_{L^{2}(\partial \Omega)} \leq C\left\|u_{l}-u_{p}\right\|_{H^{1}(\Omega)}
$$

We know our sequence on the right converges, so the one on the left does as well. Hence, this defines the operator T.

Remark M.5.

The goal behind the Trace theorem is to use

$$
\int_{-\infty}^{\infty} u\left(x_{1}\right) d x_{1}=\int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{\partial u}{\partial x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

and use the partitions of unity.

Remark N.1.

$$
H_{0}^{1}(\Omega)=\left\{u \in H^{1}(\Omega) \mid u=0 \text { on } \partial \Omega\right\}={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}}
$$

Theorem N.2. Poincare Inequality

$$
\|u\|_{L^{1}(\Omega)} \leq c\|D u\|_{L^{2}(\Omega)} \quad \forall u \in H_{0}^{1}(\Omega)
$$

Corollary N.3.

There exist constants c_{1}, c_{2} such that

$$
\begin{gathered}
c_{1}\|u\|_{H^{1}(\Omega)} \leq\|D u\|_{L^{2}(\Omega)} \leq c_{2}\|u\|_{H^{1}(\Omega)} \quad \forall u \in H_{0}^{1}(\Omega) \\
\|u\|_{H_{0}^{1}(\Omega)}=\|D u\|_{L^{2}(\Omega)}^{2}
\end{gathered}
$$

Definition N.4. \rightarrow in $H_{0}^{1}(\Omega)$

$$
u_{n} \rightarrow u \text { in } H_{0}^{1}(\Omega) \text { iff }\left\|D u_{n}-D u\right\|_{L^{2}(\Omega)} \rightarrow 0
$$

Definition N.5. \rightharpoonup in $H^{1}(\Omega)$

$$
u_{n} \rightharpoonup u \text { in } H^{1}(\Omega) \text { iff }\left\langle u_{n}, \phi\right\rangle \rightharpoonup\langle u, \phi\rangle \forall \phi \in\left[H^{1}(\Omega)\right]^{\prime}
$$

Remark N.6.

FACT:

$$
\left[H^{1}\left(\mathbb{S}^{1}\right)\right]^{\prime}=H^{-1}\left(\mathbb{S}^{1}\right)
$$

Definition N.7. $H^{-1}(\Omega)$

$$
H^{-1}(\Omega)=\left[H_{0}^{1}(\Omega)\right]^{\prime}
$$

Example N.8.

$$
\begin{array}{rll}
-\Delta u=f & \text { in } \Omega \tag{N.1}\\
u=0 & \text { on } \partial \Omega
\end{array}
$$

Definition N.9. Weak Solution

u is a weak solution to (N.1) if

$$
\int_{\Omega} D u \cdot D v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Equivalently,

$$
\begin{equation*}
(D u, D v)_{L^{2}(\Omega)}=(f, v)_{L^{2}(\Omega)} \tag{N.2}
\end{equation*}
$$

Remark N.10.

For any $f \in L^{2}(\Omega)$ we have a unique solution to (N.1) because

$$
(u, v)_{H_{0}^{1}(\Omega)}=\langle f, v\rangle_{H_{0}^{1}, H^{-1}} \quad f \in H^{-1}(\Omega)
$$

There exists a unique $u \in H_{0}^{1}(\Omega)$ solving (N.2) by the Riesz Representation Theorem.

$$
\begin{align*}
-\operatorname{div}(A(x) D u) & =f & & \text { in } \Omega \tag{N.3}\\
u & =0 & & \text { on } \partial \Omega \\
\frac{\partial}{\partial x_{j}}\left(A^{i j}(x) \frac{\partial u}{\partial x_{j}}\right) & =0 & & \text { in } \Omega
\end{align*}
$$

NOTE: in previous example(s) we had $A^{i j}=[\mathrm{Id}]^{i j}$, and thus $\int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x$

Definition N.12. $H_{0}^{1}(\Omega)$ Weak Solution
u is an $H_{0}^{1}(\Omega)$ weak solution to (N.3) if

$$
\int_{\Omega} A^{i j}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f v d x\left(\text { or }\langle f, v\rangle_{H_{0}^{1}, H^{-1}}\right) \quad \forall v \in H_{0}^{1}(\Omega)
$$

Remark N. 13.

Suppose there exists $\lambda, \Lambda>0$ such that $\lambda \leq A^{i j}(x) \leq \Lambda$. We have an H^{1}-norm because

$$
\lambda(D u, D v)_{L^{2}(\Omega)} \leq \underbrace{\int_{\text {equivalent norm } \forall u \in H_{0}^{1}(\Omega)} A^{i j} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x}_{H^{1}(\Omega)} \leq \Lambda(D u, D v)_{L^{2}(\Omega)}
$$

Example N. 14.

Let $\Omega=(0,1), a(y)=1$-periodic function, $0<\lambda \leq a(y) \leq \Lambda, a^{\epsilon}(x)=a\left(\frac{x}{\epsilon}\right)$. Given $f \in L^{2}(0,1)$,

$$
\begin{aligned}
-\frac{d}{d x}\left(a^{\epsilon}(x) \frac{d u^{\epsilon}}{d x}\right) & =f & & \text { in }(0,1) \\
u^{\epsilon} & =0 & & \text { on } \partial(0,1) \Rightarrow u^{\epsilon}(0)=u^{\epsilon}(1)=0
\end{aligned}
$$

GOAL: $u^{\epsilon} \rightarrow u$ as $\epsilon \rightarrow 0$.
$a^{\epsilon} \stackrel{*}{\rightharpoonup} \bar{a}$ in $L^{\infty}(0,1), \bar{a}=\int_{0}^{1} a(y) d y$
GUESS: $-\frac{d}{d x}\left(\bar{a} \frac{d u}{d x}\right)=-\bar{a} \frac{d^{2} u}{d x^{2}}=f \Rightarrow$ COMPLETELY WRONG!
ANSWER: $-\frac{1}{a^{-1}} \frac{d^{2} u}{d x^{2}}=f$
In general: $\frac{1}{\int \frac{1}{a} d x} \leq \int a$

Remark N. 15.

Weak form: Given $f \in L^{2}(0,1)$, find $u \in H_{0}^{1}(0,1)$ such that

$$
\int_{0}^{1} a^{\epsilon}(x) \frac{d u}{d x} \frac{d v}{d x} d x=\int_{0}^{1} f v d x \quad \forall v \in H_{0}^{1}(0,1)
$$

1. $\forall \epsilon>0$, there exists a unique solution $u^{\epsilon} \in H_{0}^{1}(\Omega)$
2. Let $v=u^{\epsilon} \mathrm{e}$

$$
\begin{gathered}
\lambda\left\|\frac{d u^{\epsilon}}{d x}\right\|_{L^{2}}^{2} \leq \int_{0}^{1} a^{\epsilon}(x) \frac{d u^{\epsilon}}{d x} \frac{d u^{\epsilon}}{d x} d x \leq\|f\|_{L^{2}}\left\|u^{\epsilon}\right\|_{L^{2}} \\
\lambda\left\|u^{\epsilon}\right\|_{H_{0}^{1}(0,1)}^{2} \leq\|f\|_{L^{2}}\left\|u^{\epsilon}\right\|_{H_{0}^{1}(0,1)} \\
\left\|u^{\epsilon}\right\|_{H_{0}^{1}(0,1)} \leq \frac{1}{\lambda}\|f\|_{L^{2}}
\end{gathered}
$$

$\left\{u^{\epsilon}\right\}_{\epsilon>0}$ is uniformly bounded in H_{0}^{1}, so there exists a subsequence such that $u^{\epsilon^{\prime}} \rightharpoonup u$ in $H_{0}^{1}(0,1)$.

Definition N.16. Def 1

$$
\left\langle u^{\epsilon}, \varphi\right\rangle_{H_{0}^{1}, H_{-1}} \rightarrow\langle u, \varphi\rangle_{H_{0}^{1}, H^{-1}}
$$

Definition N.17. Def 2

$$
\left(u^{\epsilon}, v\right)_{H_{0}^{1}(0,1)} \rightarrow(u, v)_{H_{0}^{1}(0,1)} \quad \forall v \in H_{0}^{1}(0,1)
$$

(This is equivalent to Definition N. 16 by the Riesz Representation Theorem)

Definition N.18. Def 3

$$
u^{\epsilon} \rightharpoonup u \text { in } H_{0}^{1}(0,1) \text { iff }
$$

$$
\int_{0}^{1} \frac{d u^{\epsilon}}{d x} \frac{d v}{d x} d x \rightarrow \int_{0}^{1} \frac{d u}{d x} \frac{d v}{d x} d x
$$

Definition N.19. Def 4

$$
u_{n} \rightharpoonup u \text { in } H_{0}^{1}(\Omega) \text { iff } D u_{n} \rightarrow D u \text { in } L^{2}(\Omega) .
$$

The weak limit of a product is not the product of the weak limits.

Remark N. 21.

$$
\begin{aligned}
& \text { Let } \xi^{\epsilon}=a^{\epsilon} \frac{d u^{\epsilon}}{d x} \\
& -\frac{d}{d x} \xi^{\epsilon}=f \text { in } L^{2}(0,1) \\
& \xi^{\epsilon} \text { is uniformly bounded in } H_{1}(0,1) \\
& \xi^{\epsilon} \rightharpoonup \xi \text { in } H^{1}(0,1)
\end{aligned}
$$

Rellich's Theorem:

$$
\begin{aligned}
& H^{1}(0,1) \hookrightarrow L^{2}(0,1) \text { is compact } \\
& \xi^{\epsilon} \rightarrow \xi \text { in } L^{2}(0,1)
\end{aligned}
$$

$a^{\epsilon}(x)=a\left(\frac{x}{\epsilon}\right)$ and $a(y)$ is 1-periodic, $0<\lambda \leq a \leq \Lambda$.
a^{ϵ} is uniformly bounded in $L^{\infty}(0,1)$.
$a^{\epsilon} \stackrel{*}{\rightharpoonup} \bar{a}=\int_{0}^{1} a(y) d y$.
Sequence of solutions to

$$
\begin{align*}
-\frac{d}{d x}\left(a^{\epsilon}(x) \frac{d u^{\epsilon}}{d x}\right) & =f \text { in }(0,1) \tag{0.1}\\
u^{\epsilon}(0)=u^{\epsilon}(1) & =0
\end{align*}
$$

The obvious guess (see Example N.14) is wrong.

Step 0: (O.1) has a weak formulation or variational formulation

$$
\int_{0}^{1} a^{\epsilon}(x) \frac{d u^{\epsilon}}{d x} \frac{d v}{d x} d x=\int_{0}^{1} f v d x \quad \forall v \in H_{0}^{1}(0,1)
$$

Step 1: Let $v=u^{\epsilon}$. Then

$$
\left\|u^{\epsilon}\right\|_{H_{0}^{1}(0,1)} \leq \frac{1}{\lambda}\|f\|_{L^{2}(0,1)}
$$

Then $\left\{u^{\epsilon}\right\}_{\epsilon>0}$ is uniformly bounded in $H^{1}(0,1)$. By weak compactness, there exists a subsequence $u^{\epsilon} \rightharpoonup u$ in H_{0}^{1} :

$$
\int_{0}^{1} \frac{d u^{\epsilon}}{d x} \phi d x \rightarrow \int_{0}^{1} \frac{d u}{d x} \phi d x \quad \forall \phi \in L^{2}(0,1)
$$

Step 2: Let $\xi^{\epsilon}=a^{\epsilon} \frac{d u^{\epsilon}}{d x}$. This is uniformly bounded in $L^{2}(0,1)$ by the boundedness of $\left\{u^{\epsilon}\right\}_{\epsilon>0}$. Then

$$
\begin{equation*}
-\frac{d}{d x} \xi^{\epsilon}=f \text { is uniformly bounded in } L^{2}(0,1) \tag{O.2}
\end{equation*}
$$

Thus, ξ^{ϵ} is uniformly bounded in $H^{1}(0,1)$. Weak compactness implies that there exists a subsequence (same index used) $\xi^{\epsilon} \rightharpoonup \xi$ in $H^{1}(0,1)$.

Rellich's Strong Compactness: There exists a subsequence $\xi^{\epsilon} \rightarrow \xi$ in $L^{2}(0,1)$.
Notice that $\frac{d u^{\epsilon}}{d x}=\frac{1}{a^{\epsilon}} \cdot \xi^{\epsilon}$. We know that $\frac{d u^{\epsilon}}{d x} \rightharpoonup \frac{d u}{d x}$ in $L^{2}(0,1)$.

$$
\begin{equation*}
\frac{1}{a^{\epsilon}} \cdot \xi^{\epsilon} \rightharpoonup a^{-1} \xi \tag{O.3}
\end{equation*}
$$

We also know that $\frac{1}{a^{\epsilon}} \stackrel{*}{\rightharpoonup} \overline{a^{-1}}$ in $L^{\infty}(0,1)$ and $\xi^{\epsilon} \rightarrow \xi$ in $L^{2}(0,1)$.

$$
\begin{aligned}
\frac{d u}{d x} & =\overline{a^{-1}} \xi \quad \Rightarrow \quad \xi=\frac{1}{\overline{a^{-1}}} \cdot \frac{d u}{d x} \\
-\frac{d \xi}{d x} & =f \quad(\text { from O.2 }) \\
-\frac{d}{d x}\left(\frac{1}{\overline{a^{-1}}} \cdot \frac{d u}{d x}\right) & =f \\
-\frac{1}{\overline{a^{-1}}} \cdot \frac{d^{2} u}{d x^{2}} & =f
\end{aligned}
$$

Proof. (Proof of O.3)
Goal: $\forall \phi \in L^{2}(0,1), \int_{0}^{1} \frac{1}{a^{\varepsilon}} \xi^{\epsilon} \phi d x \rightarrow \int_{0}^{1} \overline{a^{-1}} \xi \phi d x$, i.e.

$$
\left|\int_{0}^{1} \frac{1}{a^{\epsilon}} \xi^{\epsilon} \phi-\overline{a^{-1}} \xi \phi d x\right| \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

We compute:

$$
\begin{align*}
\left|\int_{0}^{1} \frac{1}{a^{\epsilon}} \xi^{\epsilon} \phi-\overline{a^{-1}} \xi \phi d x\right| & =\left|\int_{0}^{1}\left(\xi^{\epsilon}-\xi\right) \frac{1}{a^{\epsilon}} \phi+\xi\left(\frac{1}{a^{\epsilon}}-\overline{a^{-1}}\right) \phi d x\right| \\
& \leq \underbrace{\int_{0}^{1}\left|\xi^{\epsilon}-\xi\right|\left|\frac{1}{a^{\epsilon}}\right||\phi| d x}_{\mathrm{I}}+\underbrace{\left|\int_{0}^{1}\left(\frac{1}{a^{\epsilon}}-\overline{a^{-1}}\right) \xi \phi d x\right|}_{\mathrm{II}} \\
\mathrm{I} & \leq\left\|\xi^{\epsilon}-\xi\right\|_{L^{2}}\left\|\frac{\phi}{a^{\epsilon}}\right\|_{L^{2}} \rightarrow 0 \tag{0.4}
\end{align*}
$$

where (O.4) is due to strong convergence of $\xi^{\epsilon} \rightarrow \xi$ in L^{2} and the uniform L^{∞} bound on $\frac{1}{a^{\epsilon}}$.
For II, we see that

$$
\begin{gathered}
\int_{0}^{1}|\xi \phi| d x \leq\|\xi\|_{L^{2}}\|\phi\|_{L^{2}} \quad \Rightarrow \quad \xi \phi \in L^{1} \\
\frac{1}{a^{\epsilon}} \stackrel{*}{\rightharpoonup} \overline{a^{-1}} \quad \text { in } L^{\infty}(0,1)
\end{gathered}
$$

Thus, II $\rightarrow 0$.

Theorem O.3. Rellich's Theorem (Strong Compactness, Arzela-Ascoli for $W^{1, p}$ Spaces)

Given: $\Omega \subset \mathbb{R}^{n}$ bounded, smooth; $p<n ; 1 \leq q<\frac{n p}{n-p}$.
For a uniformly bounded sequence $\left(u_{j}\right) \subset W^{1, p}(\Omega)$, there exists a subsequence $\left(u_{j_{k}}\right) \rightarrow u$ in $L^{q}(\Omega)$. That is,

$$
H^{s}(0,1) \hookrightarrow L^{2}(0,1) \quad r<s
$$

In the previous example, we used $H^{1}(0,1) \hookrightarrow L^{2}(0,1)$ compactly.

The proof of this theorem relies on Gagliardo-Nirenberg on bounded domains and Sobolev extension operators.

Theorem O.4. Sobolev Extension Theorem

Let Ω be bounded and smooth, and let $\tilde{\Omega}$ also be bounded such that $\Omega \subset \subset \tilde{\Omega}$. There exists a continuous linear operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ with the following properties:

1. $E u=u$ a.e. in Ω
2. $\operatorname{spt}(E u) \subset \tilde{\Omega}$
3. $\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C(p, \Omega, \tilde{\Omega})\|u\|_{W^{1, p}(\Omega)} \quad \forall u \in W^{1, p}$

Theorem P.1. Extension Theorem
$E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$ such that for some $\tilde{\Omega}, \Omega \subset \subset \tilde{\Omega}$,

1. $E u=u$ a.e. in Ω
2. $\operatorname{spt}(E u) \subset \tilde{\Omega}$
3. $\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C(p, \Omega, \tilde{\Omega})\|u\|_{W^{1, p}(\Omega)}$

Theorem P.2. Gagliardo-Nirenberg on Bounded Domains
$1 \leq p<n, p^{*}=\frac{n p}{n-p}$

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq C\|u\|_{W^{1, p}(\Omega)} \quad \forall u \in W^{1, p}(\Omega)
$$

Proof. By the extension theorem,

$$
\begin{aligned}
\|u\|_{L^{p^{*}}(\Omega)} & \leq\|E u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \\
\quad & \leq C\|D(E u)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \leq C\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \\
& \quad \text { continuity } \\
& C\|u\|_{W^{1, p}(\Omega)}
\end{aligned}
$$

Theorem P.3.

$W_{0}^{1, p}(\Omega), 1 \leq q \leq p^{*}$

$$
\|u\|_{L^{q}(\Omega)} \stackrel{\text { Hölder }}{\leq}\|u\|_{L^{p^{*}}(\Omega)} \leq C\|D u\|_{L^{p}(\Omega)}
$$

$C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega)$, so we use a sequence $\left(u_{j}\right) \subset C_{0}^{\infty}(\Omega)$, extend by zero to \mathbb{R}^{n}, and use continuity of norms.

Theorem P.4.

$1 \leq q<\infty$

$$
\|u\|_{L^{q}(\Omega)} \leq C(q)\|D u\|_{L^{n}(\Omega)} \quad \forall u \in W^{1, n}(\Omega)
$$

with $C(q) \rightarrow \infty$ as $q \rightarrow \infty$.

Theorem P.5.
$p>n$

$$
\|U\|_{C^{0, \gamma}(\bar{\Omega})} \leq C\|u\|_{W^{1, p}(\Omega)} \quad \gamma=1-\frac{n}{p}
$$

Theorem P.6. Rellich's Theorem (Strong Compactness)
$1 \leq p<n, \Omega$ bounded

$$
W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega) \quad \text { is compact, } \quad 1 \leq q<\frac{n p}{n-p}=p^{*}
$$

Proof. Step 0: $1 \leq r \leq s \leq t \leq \infty \Rightarrow$

$$
\|u\|_{L^{s}(\Omega)} \leq\|u\|_{L^{p}(\Omega)}^{\alpha}\|u\|_{L^{t}(\Omega)}^{1-\alpha} \quad \alpha \in[0,1] \text { (Hölder) }
$$

Goal:

$$
\|W\|_{L^{q}(\Omega)} \leq \underbrace{\|W\|_{L^{1}(\Omega)}^{\alpha}}_{\begin{array}{c}
\text { small by properties } \\
\text { of convolution }
\end{array}} \underbrace{\text {. }}_{\begin{array}{c}
\text { G.N. }
\end{array}\|W\|_{L^{p^{*}}(\Omega)}^{1-\alpha}}
$$

Given: $\sup \left\|u_{j}\right\|_{W^{1, p}(\Omega)} \leq M$
Want: $u_{j_{n}} \rightarrow u$ in $L^{q}(\Omega)$ Know: (Arzela-Ascoli) if $\left(u_{j}\right) \subset C^{0}(\bar{\Omega})$ is uniformly bounded and equicontinuous, then there exists $u_{j_{k}} \rightarrow u$

Pick an element $u_{j} \in W^{1, p}(\Omega)$. Extend it: $E u_{j} \in C_{0}(\tilde{\Omega}), \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), E u_{j}=u_{j}$ a.e. in $\Omega, \eta_{\epsilon} * E u_{j} \rightarrow E u_{j}$ in $W^{1, p}(\Omega)$ as $\epsilon \rightarrow 0 \Rightarrow E u_{j}=E u$ a.e.

Step 1: $u_{j} \xrightarrow{\text { extend }} E u_{j}=\bar{u}_{j}$
Step 2: Mollify

$$
\bar{u}_{j}^{\epsilon}=\eta_{\epsilon} * \bar{u}_{j} \in C_{0}^{\infty}(\tilde{\Omega})
$$

For fixed $\epsilon>0,\left(\bar{u}_{j}^{\epsilon}\right)$ is a) uniformly bounded and b)equicontinuous. (Hint: Young's Inequality) $\bar{u}_{j}^{\epsilon}-\bar{u}_{j}$ is small in certain norms. $\left\|\bar{u}_{j}^{\epsilon}-\bar{u}_{j}\right\|_{L^{q}(\Omega)}$ is ridiculously small:

$$
\begin{align*}
\left\|\bar{u}_{j}^{\epsilon}-\bar{u}_{j}\right\|_{L^{q}(\Omega)} & \left.\leq\left\|\bar{u}_{j}^{\epsilon}-\bar{u}_{j}\right\|_{L^{1}(\tilde{\Omega})}^{\alpha}\right) \mid \bar{u}_{j}^{\epsilon}-\bar{u}_{j} \|_{L^{p^{*}}(\tilde{\Omega})}^{1-\alpha} \\
& \stackrel{\text { G.N. }}{\leq}\left\|\bar{u}_{j}^{\epsilon}-\bar{u}_{j}\right\|_{L^{1}(\tilde{\Omega})}^{\alpha}\left\|D \bar{u}_{j}^{\epsilon}-D \bar{u}_{j}\right\|_{L^{p^{*}(\tilde{\Omega})}} \\
& \leq\left\|\bar{u}_{j}^{\epsilon}-\bar{u}_{j}\right\|_{L^{1}(\tilde{\Omega})} \cdot C M \\
\left|\bar{u}_{j}^{\epsilon}(x)-\bar{u}_{j}(x)\right| & \leq \int_{B(0, \epsilon)}\left|\eta_{\epsilon}(y) \| \bar{u}_{j}(x-y)-\bar{u}_{j}(x)\right| d y \tag{P.1}
\end{align*}
$$

Recall that

$$
\eta_{\epsilon}(y)=\frac{1}{\epsilon^{n}}\left(\frac{y}{\epsilon}\right) \quad \Rightarrow \quad z=\frac{y}{\epsilon} \quad \Rightarrow \quad d y=\eta^{n} d z
$$

Thus, continuing from (O.1), we have

$$
\begin{aligned}
\int_{B(0, \epsilon)}\left|\eta_{\epsilon}(y)\right|\left|\bar{u}_{j}(x-y)-\bar{u}_{j}(x)\right| d y & =\int_{\Omega} \int_{B(0,1)}|\eta(z)| \bar{u}_{j}(x-\epsilon z)-\bar{u}(x) \mid d z d x \\
& =\int_{B(0,1)} \eta(z)\left|\int_{0}^{1} \frac{d}{d t} \bar{u}_{j}(x-\epsilon t z) d t\right| d z d x \leq \epsilon C
\end{aligned}
$$

We get that $\left(\bar{u}_{j}^{\epsilon}\right)$ is uniformly bounded by Young's Inequality:

$$
\begin{aligned}
r=\infty \quad\left\|\eta_{\epsilon}\right\|_{L^{q}} & <\infty \\
\left\|\bar{u}_{j}^{\epsilon}\right\|_{L^{\infty}} & \leq\left\|\eta_{\epsilon}\right\|_{L^{\infty}} \underbrace{\left\|\bar{u}_{j}\right\|_{L^{1}}}_{\text {Hölder }} \sim \frac{C}{\epsilon^{n}} \quad \text { (uniform in } j \text {) } \\
\left\|D \bar{u}_{j}^{\epsilon}\right\|_{L^{\infty}} & \leq \frac{C}{\epsilon^{n+1}} \quad \text { (uniform in } j \text {) } \\
\left\|\bar{u}_{j_{k}}^{\epsilon}-\bar{u}_{j_{l}}^{\epsilon}\right\|_{L^{q}(\tilde{\Omega})} & \leq C \epsilon
\end{aligned}
$$

Let $\epsilon=\frac{1}{n}$ and use a diagonal argument.

Problem P.7. 10-15 min. (3 such problems on Midterm)
$u_{j} \rightharpoonup u$ in $W_{0}^{1,1}(0,1)$
Show $u_{j} \rightarrow u$ a.e.
$u_{j} \rightharpoonup u$ weakly in $W_{0}^{1,1}(0,1)$ if

$$
\frac{d u_{j}}{d x} \rightharpoonup \frac{d u}{d x} \text { in } L^{1}(0,1)
$$

Remark P.8. Midterm Comment

Shkoller is tempted to give a problem on computing a weak derivative, but he probably won't. BUT you should know how to compute

$$
\frac{\partial}{\partial x_{i}}|x|
$$

Remark Q.1. Test Question 1

Morrey's inequality:

$$
\begin{array}{rlrl}
|u(x)-u(y)| & \leq C r^{1-n / p}\|D u\|_{L^{p}} & & \forall y \in B(x, r) \\
\left\|u^{\epsilon}-u\right\|_{L^{\infty}} & \leq C \epsilon^{1-n / p}\|D u\|_{L^{p}} & n=3, p=6 \Rightarrow \sqrt{\epsilon} \\
& \leq C \sqrt{\epsilon}\|D u\|_{L^{6}\left(\mathbb{R}^{3}\right)} & \\
& \stackrel{\text { G.N. }}{\leq} C \sqrt{\epsilon}\left\|D^{2} u\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} & \\
& \text { def } & \leq C \sqrt{\epsilon}\|u\|_{H^{2}\left(\mathbb{R}^{3}\right)} & \\
& & \\
\hline
\end{array}
$$

Remark Q.2. Test Question 2

$$
\begin{gathered}
G(x)=-\frac{1}{2 \pi} \log |x| \quad(\Delta G=\delta) \\
\text { Show: } \left.\begin{array}{rl}
f(x)= & \lim _{\epsilon \rightarrow 0}(\underbrace{\int_{B(0, \epsilon)} G(y) \Delta_{y} f(x-y) d y}_{\mathrm{I}}+\underbrace{\int_{\mathbb{R}^{2}}}_{\mathrm{I}^{2}-B(0, \epsilon)} G(y) \Delta_{y} f(x-y) d y \\
=\lim _{\epsilon \rightarrow 0} \int_{R^{2}} G(y) \Delta_{y} f(x-y) d y \\
=G * f
\end{array}\right) \\
\begin{aligned}
& f(x)=\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y=\lim _{r \rightarrow 0} \frac{1}{\mid \partial B(x, r)} \int_{|\partial B(x, r)|} f(y) d S(y) \\
& \mathrm{I}=\lim _{\epsilon \rightarrow 0} \int_{0}^{2 \pi} \int_{0}^{\epsilon} \log r \Delta_{y} f(x-y) r d r \\
& \mathrm{II}= \frac{\partial G}{\partial x_{i}}=-\frac{1}{2 \pi} \frac{1}{|x|} \frac{x_{i}}{|x|}=-\frac{x_{i}}{2 \pi} \frac{1}{|x|^{2}} \\
& \int_{\mathbb{R}^{2}-B(0, \epsilon)} \frac{1}{2 \pi} \frac{y_{i}}{|y|^{2}} \frac{\partial}{\partial y_{i}} f(x-y) d y-\frac{1}{2 \pi} \int_{\partial B(0, \epsilon)}^{\frac{y_{i}}{|y|^{2}} N_{i}} \frac{\partial f}{\partial y_{i}}(x-y) \underbrace{\frac{1}{\epsilon}}_{\epsilon d \theta} \\
&= \frac{1}{2 \pi} \int_{\partial B(0, \epsilon)} \frac{y_{i}}{|y|^{2}} \frac{y_{i}}{|y|} f(x-y) d S(y) \\
&= \frac{1}{2 \pi \epsilon} \int_{\partial B(0, \epsilon)} f(x-y) d S(y)
\end{aligned}
\end{gathered}
$$

Q. 1 Fourier Transform

Definition Q.3. Fourier Transform, \mathcal{F}

For $u \in L^{2}\left(\mathbb{R}^{n}\right)$, we define

$$
\mathcal{F} u(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} u(x) e^{-i x \xi} d x
$$

Note: $\mathcal{F} u \in L^{\infty}\left(\mathbb{R}^{n}\right)$ by Hölder's inequality.

Remark Q.4. Fourier Transform, $L^{2}\left(\mathbb{R}^{n}\right)$ Case
$\mathcal{F}: L^{2} \rightarrow L^{2}$ is an isometric isomorphism

Question: why does \mathcal{F} make sense on $L^{2}\left(\mathbb{R}^{n}\right)$?

Given $u \in L^{2}\left(\mathbb{R}^{n}\right)$.

$$
\int_{\mathbb{R}^{n}}|u|^{2} d x<\infty \nRightarrow \int_{\mathbb{R}^{n}}|u| d x<\infty
$$

Answer: the Gaussian, $g(x)=c e^{-|x|^{2}}$.
To make sense of this, we introduce the Tempered Distribution:

$$
\begin{aligned}
S\left(\mathbb{R}^{n}\right) & =\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{\infty}\left(\mathbb{R}^{n}\right) \forall \alpha, \beta \in \mathbb{Z}_{+}^{n}\right\} \\
& =\text { the functions of rapid decay } \\
S^{\prime}\left(\mathbb{R}^{n}\right) & =\text { dual space }=\text { tempered distributions } \\
\mathcal{F} & : S^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow S^{\prime}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

On $S\left(\mathbb{R}^{n}\right), \mathcal{F} \circ \mathcal{F}^{*}=\operatorname{Id}=\mathcal{F}^{*} \circ \mathcal{F}$.

Definition Q.5. Inverse Fourier Transform

$$
\mathcal{F}^{*} u(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} u(x) e^{i x / x i} d x
$$

R 5-9-11

Definition R.1.

$f \in L^{1}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
\mathcal{F} f(\xi) & =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-i y \xi} d y \\
\mathcal{F}^{*} f(x) & =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(\xi) e^{i x \xi} d x
\end{aligned}
$$

Definition R.2.

$$
S\left(\mathbb{R}^{n}\right)=\text { rapidly decaying }=\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid x^{\beta} D^{\alpha} u \in L^{\infty}\left(\mathbb{R}^{n}\right), \alpha, \beta \in \mathbb{Z}_{+}^{n}\right\}
$$

Remark R.3.

FACT: $\mathcal{F}: S\left(\mathbb{R}^{n}\right) \rightarrow S\left(\mathbb{R}^{n}\right)$
$\left|\xi^{\beta} D_{\xi}^{\alpha} \mathcal{F} f(\xi)\right|=\left|\mathcal{F}\left(D^{\beta} x^{\alpha} f\right)\right|$

Remark R.4. Notation
$\hat{f}(\xi)=\mathcal{F} f(\xi)$

Example R.5.

$$
\begin{aligned}
\frac{\partial}{\partial \xi_{j}} & =(2 \pi)^{-n / 2} \frac{\partial}{\partial \xi_{j}} \int_{\mathbb{R}^{n}} e^{-i y \xi} f(y) d y \\
& =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}}-i y_{j} e^{-i y \xi} f(y) d y \\
& \left.\left.=\mathcal{F}\left(-i y_{j} f\right) y\right)\right)
\end{aligned}
$$

Example R.6.

$$
\begin{aligned}
\xi_{j} \hat{f}(\xi) & =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \xi_{j} e^{-i y \xi} f(y) d y \\
& =(2 \pi)^{-n / 2} i \int_{\mathbb{R}^{n}} \frac{\partial}{\partial y_{j}} e^{-i y \xi} f(y) d y \\
& =-i 2 \pi^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i y \xi} \frac{\partial f}{\partial y_{j}}(y) d y
\end{aligned}
$$

No boundary terms since $f \in S\left(\mathbb{R}^{n}\right)$.

Remark R.7.

FACT: $\mathcal{D}\left(\mathbb{R}^{n}\right)=C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset S\left(\mathbb{R}^{n}\right)$

Example:

$$
G(x)=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} \in S\left(\mathbb{R}^{n}\right)
$$

Since $\mathcal{D} \subset S, S^{\prime} \subset \mathcal{D}^{\prime}$.

Lemma R.8.

For $u, v \in S\left(\mathbb{R}^{n}\right)$, we have that

$$
(\mathcal{F} u, v)_{L^{2}\left(\mathbb{R}^{n}\right)}=\left(u, \mathcal{F}^{*} v\right)_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Remark R.9.

FACT: \mathcal{F}^{*} is the L^{2} adjoint of \mathcal{F}.

Theorem R. 10 .

$$
\mathcal{F}^{*} \mathcal{F}=\mathcal{F \mathcal { F } ^ { * }}=\operatorname{Id} \quad \text { on } S\left(\mathbb{R}^{n}\right)
$$

Remark R.11.

Since $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$ and $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset S\left(\mathbb{R}^{n}\right), S\left(\mathbb{R}^{n}\right)$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$.

Proof. Want to prove:

$$
\begin{gathered}
\mathcal{F}^{*} \mathcal{F} f(x)=f(x) \quad \forall f \in S\left(\mathbb{R}^{n}\right) \\
\mathcal{F}^{*} \mathcal{F} f(x)=2 \pi^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) e^{-i y \xi} d y e^{i x \xi} d \xi \\
=2 \pi^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i \xi(x-y)} f(y) d y d \xi \\
\stackrel{\text { DCT }}{=} \lim _{\epsilon \rightarrow 0} 2 \pi^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-\epsilon|\xi|^{2}} e^{i \xi(x-y)} f(y) d y d \xi \\
\stackrel{\text { Fubini }}{=} \lim _{\epsilon \rightarrow 0} 2 \pi^{-n} \int_{\mathbb{R}^{n}} f(y) \int_{\mathbb{R}^{n}} e^{-\epsilon|\xi|^{2}+i \xi(x-y)} d \xi d y
\end{gathered}
$$

Let

$$
K_{\epsilon}(x)=2 \pi^{-n} \int_{\mathbb{R}^{n}} e^{-\epsilon|x i|^{2}+i x \xi} d \xi
$$

Then

$$
\begin{aligned}
\mathcal{F}^{*} \mathcal{F} f(x) & =\lim _{\epsilon \rightarrow 0} K_{\epsilon} * f \\
& =\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} K_{\epsilon}(x-y) f(y) d y
\end{aligned}
$$

Recall: standard mollifier

$$
\begin{aligned}
\rho_{1}(x) & \operatorname{spt} \rho_{1} \subset \overline{B(0,1)} \\
\rho_{\delta}(x) & =\frac{1}{\delta^{n}} \rho\left(\frac{x}{\delta}\right) \\
\int_{\mathbb{R}^{n}} \rho_{\delta}(x) d x & =1 \\
\delta & =\sqrt{\epsilon}
\end{aligned}
$$

$$
K_{1}(x)=2 \pi^{-n} \int_{\mathbb{R}^{n}} e^{-|\xi|^{2}+i x \xi} d \xi
$$

$$
K_{1 / 2}(x)=2 \pi^{-n} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}|\xi|^{2}} e^{i x \xi} d \xi
$$

$$
=\mathcal{F}\left(2 \pi^{-n / 2} e^{-\frac{1}{2}|\xi|^{2}}\right)
$$

Claim:

$$
\begin{equation*}
K_{1 / 2}(x)=-\frac{1}{2} e^{-|x|^{2} / 2} \equiv G(x) \tag{R.1}
\end{equation*}
$$

In other words, the claim says that $G=\mathcal{F} G$.

Then in 1-D:

$$
\frac{d}{d x} G(x)+x G(x)=0
$$

Keep in mind that

$$
\begin{aligned}
e^{-|x|^{2} / 2} & =e^{-x_{1}^{2} / 2-x_{2}^{2} / 2-\cdots-x_{n}^{2} / 2} \\
& =e^{-x_{1}^{2} / 2} e^{-x_{2}^{2} / 2} \cdots e^{-x_{n}^{2} / 2}
\end{aligned}
$$

Compute the Fourier transform of (R.1):

$$
-i\left(\frac{d}{d \xi} \hat{G}(\xi)+\xi \hat{G}(\xi)\right)=0
$$

Thus,

$$
\hat{G}(\xi)=C e^{-|\xi|^{2} / 2}
$$

Recap: We wrote it out, used an integrating factor via DCT, used Fubini to write it as convolution with kernel K, where $K_{\epsilon}=\frac{1}{(C \epsilon)^{n / 2}} K\left(\frac{x}{\sqrt{\epsilon}}\right)$. And we get that $\mathcal{F}^{*} \mathcal{F} f=f$.

S 5-10-11 (Section)

Example S.1.

$$
\begin{aligned}
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =f
\end{aligned} \quad \text { on } \Omega \text { bounded, open, connected } \text {, } f \in C(\partial \Omega), \partial \Omega \text { is } C^{1}
$$

Prove that the solution is unique.

Let u_{1}, u_{2} be solutions. Take $u=u_{1}-u_{2}$. Then

$$
\begin{aligned}
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =0
\end{aligned}
$$

Remark:

$$
\begin{array}{rlrl}
\int_{\Omega} u \Delta v-D u \cdot D v d x & =\int_{\partial \Omega} u \frac{\partial v}{\partial n} d S \\
\int_{\Omega}(u \Delta u-D u \cdot D u) d x & =\int_{\partial \Omega} u \frac{\partial \psi}{\partial n} d S \\
\int_{\Omega}|D u|^{2} d x & =0 & \\
|D u| & =0 & & \text { on } \Omega \\
D u & =0 & \text { on } \Omega
\end{array}
$$

Thus, u is a locally constant function: $u=c$.
$x_{0} \in \Omega$.

$$
\Omega^{\prime}=\left\{x \mid u(x)=u\left(x_{0}\right)\right\} \subseteq \Omega \quad \Rightarrow \quad \Omega^{\prime}=\Omega
$$

Ω^{\prime} is closed. Ω^{\prime} is open (Prove!).

Example S.2. $f^{\prime}=0$

$$
\begin{aligned}
\Omega & =(0,1) \cup(3,4) \\
f & = \begin{cases}c_{1} & \text { on }(0,1) \\
c_{2} & \text { on }(3,4)\end{cases}
\end{aligned}
$$

Lemma S.3.

Let f be a nice (smooth, C^{∞}) function.

$$
\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

Then

$$
\widehat{f * g}=\hat{f} * \hat{g}
$$

Proof.

$$
\begin{aligned}
\widehat{f * g} & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f * g e^{-i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(y) e^{-i k y} g(x-y) d y\right) e^{-i k(x-y)} d x \\
& \stackrel{\text { Fubini }}{=} \hat{f} * \hat{g}
\end{aligned}
$$

Remark S.4. Solving the Heat Equation with the Fourier Transform

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0 \\
u(x, 0) & =f(x) \\
-|k|^{2} \hat{u}(k, y)+\frac{d^{2}}{d y^{2}} u(k, y) & =0 \\
\hat{u}(k, y) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-i k x} d x \\
\hat{u}(k, y) & =\underbrace{c_{1}(k) e^{\mid k+y}}_{\text {Riemann-Lebesgue }}+c_{2} e^{-|k| y} \\
& =\hat{f}(k) e^{-|k| y} \\
u(x, y) & =P_{y} * f \\
\hat{P}_{y} & =e^{-|k| y}
\end{aligned}
$$

Calculate the inverse Fourier transform of \hat{P}_{y}.

$$
\begin{aligned}
P_{y}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-|k| y} e^{i k x} d k \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-|k| y}(\cos k x+\underbrace{i \sin k x}_{\text {even/odd }}) d k \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-k y} \cos k x d k \\
& =\left.\frac{2}{\sqrt{2 \pi}} \frac{1}{x^{2}+y^{2}} e^{-k y}(k \sin x-y \cos k x)\right|_{k=0} ^{\infty} \\
& =\sqrt{\frac{2}{\pi}} \frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

Plugging back in to our equation for $u=P_{y} * f$, we get

$$
u(x, y)=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} f(y) d y
$$

Remark S.5. Proving the Fourier Inverse Transform

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\phi}(t) e^{i x t} e^{-\epsilon^{2} t^{2}} d t & =\phi_{\epsilon}(x) \\
& =\phi * \eta_{\epsilon}(x) \xrightarrow{\text { uniformly }} \phi \in S(\mathbb{R}) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\phi}(t) e^{i x t} d t
\end{aligned}
$$

We know:

- $\widehat{e^{-k x^{2}}}=$ Gaussian
- $\widehat{f * g}=\hat{f} \hat{g}$

Theorem T.1. (From Last Time)

$$
\mathcal{F}^{*} \mathcal{F}=\mathrm{Id}=\mathcal{F \mathcal { F }}^{*} \quad \text { on } S\left(\mathbb{R}^{n}\right)
$$

Consequence:

$$
\begin{align*}
(\mathcal{F} u, \mathcal{F} v)_{L^{2}\left(\mathbb{R}^{n}\right)} & =\left(u, \mathcal{F}^{*} \mathcal{F} v\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=(u, v)_{L^{2}\left(\mathbb{R}^{n}\right)} \quad \forall u, v \in S\left(\mathbb{R}^{n}\right) \\
\|\mathcal{F} u\|_{L^{2}\left(\mathbb{R}^{n}\right)} & =\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{T.1}
\end{align*}
$$

Definition T.2.

Let $\left(u_{j}\right) \subset S\left(\mathbb{R}^{n}\right)$ such that $u_{j} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{n}\right)$.

$$
\mathcal{F} u=\lim _{j \rightarrow \infty} \mathcal{F} u_{j} \quad \text { for } u \in L^{2}\left(\mathbb{R}^{n}\right)
$$

This is independent of the approximating sequence that you take. This is because of (T.1).

Corollary T.3.

$$
\|\mathcal{F} u\|_{L^{2}}=\|u\|_{L^{2}} \quad \forall u \in L^{2}\left(\mathbb{R}^{n}\right) \quad \xrightarrow{\text { polarization }} \quad(\mathcal{F} u, \mathcal{F} v)_{L^{2}}=(u, v)_{L^{2}}
$$

Example T. 4.

$$
x \mapsto e^{-t|x|}, \quad t>0, x \in \mathbb{R}^{n}
$$

Does this have rapid decay? Yes.

Remark T.5. Topology of $S\left(\mathbb{R}^{n}\right)$
$S\left(\mathbb{R}^{n}\right)$ is a Frechet space with semi-norm

$$
p_{k}(u)=\sup _{x \in \mathbb{R}^{n},|\alpha| \leq k}{\sqrt{1+|x|^{2}}}^{k}\left|D^{\alpha} u(x)\right|
$$

and distance function

$$
d(u, v)=\sum_{k=0}^{\infty} 2^{-k} \frac{p_{k}(u-v)}{1+p_{k}(u-v)}
$$

Definition T.6. Convergence in $S\left(\mathbb{R}^{n}\right)$
$u_{j} \rightarrow u$ in $S\left(\mathbb{R}^{n}\right)$ if $p_{k}\left(u_{j}-u\right) \rightarrow 0$ as $j \rightarrow \infty \forall k \geq 0$.

Definition T.7. Continuous Linear Functional on $S\left(\mathbb{R}^{n}\right)$, Tempered Distribution
$T: S\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$,

$$
|\langle T, u\rangle| \leq C p_{k}(u) \quad \text { for some } k \geq 0
$$

$S^{\prime}\left(\mathbb{R}^{n}\right)=$ dual space of $S\left(\mathbb{R}^{n}\right)=$ tempered distributions

Definition T.8.

$\mathcal{F}: S^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow S^{\prime}\left(\mathbb{R}^{n}\right)$

$$
\langle\mathcal{F} T, u\rangle=\langle T, \mathcal{F} u\rangle
$$

Example T.9.

$\delta \in S^{\prime}\left(\mathbb{R}^{n}\right)$, where $\langle\delta, u\rangle=u(0),\left\langle\delta_{x}, u\right\rangle=u(x)$

$$
\langle\mathcal{F} \delta, u\rangle=\langle\delta, \mathcal{F} u\rangle=\mathcal{F} u(0)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i \cdot 0 \cdot x} u(x) d x
$$

Remark T. 10.

$i: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow S^{\prime}\left(\mathbb{R}^{n}\right)$, and

$$
\begin{gathered}
\langle f, u\rangle=\int_{\mathbb{R}^{n}} f(x) u(x) d x \\
\mathcal{F} \delta=(2 \pi)^{-n / 2} \quad \text { in } S^{\prime}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

Compute the Fourier transform of $e^{-t|x|}, t>0, x \in \mathbb{R}^{n}$. $n=1$:

$$
\begin{aligned}
\mathcal{F}\left(e^{-t|x|}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t|x|} e^{-i x \xi} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{t x} e^{-i x \xi} d x+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-t x} e^{-i x \xi} d x \\
& =\left.\frac{1}{\sqrt{2 \pi}} \frac{1}{t-i \xi} e^{x(t-i \xi)}\right|_{-\infty} ^{0}+\left.\frac{1}{\sqrt{2 \pi}} \frac{-1}{t+i \xi} e^{-x(t+i \xi)}\right|_{0} ^{\infty} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{2 t}{t^{2}+\xi^{2}} \\
& =\sqrt{\frac{2}{\pi}} \frac{t}{t^{2}+\xi^{2}}
\end{aligned}
$$

$n>1$:
Guess:

$$
e^{-t|x|}=\int_{0}^{\infty} g(t, s) e^{-s|x|^{2}} d s
$$

Take the Fourier transform of this guess:

$$
\mathcal{F}\left(e^{-t|x|}\right)=\int_{0}^{\infty} \mathcal{F}\left(e^{-s|x|^{2}}\right) d s
$$

We know that

$$
\mathcal{F}\left((2 \pi)^{-n / 2} e^{-|x|^{2} / 2}\right)=2 \pi^{-n / 2} e^{-|x|^{2} / 2}
$$

Then

$$
\mathcal{F}\left(e^{-s|x|^{2}}\right)=\underbrace{a_{\pi} \sqrt{\frac{1}{s}}^{n} e^{-|\xi|^{2} / 4 s}}_{\hat{u}(\xi)}
$$

and we have

$$
\mathcal{F}\left(e^{-t|x|}\right)=\int_{0}^{\infty} g(t, s) a_{\pi} \sqrt{\frac{1}{s}}^{n} e^{-|\xi|^{2} / 4 s} d x
$$

$$
\mathcal{F}\left(e^{-t \lambda}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-t \lambda} e^{i \lambda \xi} d \xi \quad \text { where } \lambda=|x|>0
$$

Verify that

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s\left(t^{2}+\xi^{2}\right)} d s & =-\left.\frac{1}{t^{2}+\xi^{2}} e^{-s\left(t^{2}+\xi^{2}\right)}\right|_{0} ^{\infty}=\frac{1}{t^{2}+\xi^{2}} \\
& =\sqrt{\frac{2}{\pi} t} \int_{0}^{\infty} e^{-s t^{2}} e^{-s \xi^{2}} d s
\end{aligned}
$$

Then we have that

$$
e^{-t \lambda}=\mathcal{F}^{*}\left(\frac{t}{t^{2}+\xi^{2}} \sqrt{\frac{2}{\pi}}\right)
$$

Example U.1. $\mathcal{F}\left(e^{-t|x|}\right)$

1-D:

$$
\mathcal{F}\left(e^{-t|x|}\right)=\sqrt{\frac{2}{\sqrt{\pi}}} \frac{t}{t^{2}+\xi^{2}}, \quad t>0
$$

2-D:

$$
\int_{0}^{\infty} e^{-s t^{2}} e^{-s \xi^{2}} d s=\frac{1}{t^{2}+\xi^{2}}
$$

Combining 1-D and 2-D:

$$
\begin{align*}
\mathcal{F}\left(e^{-t|x|}\right) & =\sqrt{\frac{2}{\pi}} t \int_{0}^{\infty} e^{-s t^{2}} e^{-s \xi^{2}} d s \\
e^{-t|x|} & =\sqrt{\frac{2}{\pi}} t \int_{0}^{\infty} e^{-s t^{2}} \mathcal{F}^{*}\left(e^{-s \xi^{2}}\right) d s \\
\mathcal{F}^{*}\left(e^{-s \xi^{2}}\right) & = \tag{U.1}
\end{align*}
$$

Use that

$$
\begin{align*}
\mathcal{F}\left(\frac{1}{\sqrt{2 \pi}} e^{-|x|^{2} / 2}\right) & =\frac{1}{\sqrt{2 \pi}^{n}} e^{-|\xi|^{2} / 2} \\
\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} & =\mathcal{F}^{*}\left(\frac{1}{\sqrt{2 \pi}} e^{-\xi^{2} / 2}\right) \tag{U.2}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\xi^{2} / 2} e^{i x \cdot \xi} d \xi
\end{align*}
$$

Goal:

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-s \xi^{2}} e^{i x \xi} d \xi \Rightarrow \int_{-\infty}^{\infty} e^{-y^{2} / 2} e^{i x y / \sqrt{2 s}} \frac{1}{\sqrt{2 s}} d y \\
&-s \xi^{2}=-y^{2} / 2 \\
& y=\sqrt{2 s} \xi \\
& \xi=\frac{y}{\sqrt{2 s}} \\
& d y=\sqrt{2 s} d \xi \\
& d \xi=\frac{1}{\sqrt{2 s}} d y \\
&(U .3)=\frac{e^{-\left(\frac{x}{\sqrt{2 s}}\right)^{2} / 2}}{\sqrt{2 s}} \\
&=\frac{e^{-|x|^{2} / 4 s}}{\sqrt{2 s}} \\
& \hline
\end{aligned}
$$

Example U.2. ... Continued

3 :

$$
\begin{gathered}
\mathcal{F}\left(e^{-s|\xi|^{2}}\right)=\frac{1}{\sqrt{2 s} n} e^{-|x|^{2} / 4 s} \\
e^{-t|x|}=\int_{0}^{\infty} e^{-s t^{2}} \frac{1}{\sqrt{2 s}^{n}} e^{-|x|^{2} / 4 s} d s
\end{gathered}
$$

Guess: $n \geq 1$

$$
e^{-t|x|}=\int_{0}^{\infty} \frac{1}{\sqrt{2 s}^{n}} g(t, s) e^{-|x|^{2} / 4 s} d s
$$

Goal: find $g(t, s)$.

$$
\begin{aligned}
\lambda & =|x| \geq 0 \\
e^{-t \lambda} & =\mathcal{F}^{*}\left(\sqrt{\frac{2}{\pi}} \frac{t}{t^{2}+|\xi|^{2}}\right) \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t}{t^{2}+|\xi|^{2}} e^{i \lambda \xi} d s \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} t \int_{0}^{\infty} e^{-s t^{2}} e^{-s \xi^{2}} d s e^{i \lambda \xi} d \xi \\
& =\frac{1}{\pi} \int_{0}^{\infty} t e^{-s t^{2}} \int_{-\infty}^{\infty} e^{-s \xi^{2}} e^{i \lambda \xi} d \xi d s \\
& =a_{\pi, n} \int_{0}^{\infty} t \sqrt{s}^{-n} e^{-|x|^{2} / 4 s} d s \\
\mathbf{a}_{\pi} \frac{1}{\sqrt{s}^{n}} g(t, s) & =t e^{-s t^{2}} \sqrt{s}^{-1} \\
g(t, s) & =a_{\pi, n} t e^{-s t^{2}} \sqrt{s}^{n-1}
\end{aligned}
$$

Thus,

$$
\mathcal{F}\left(e^{-t|x|}\right)=\int_{0}^{\infty} a_{\pi} t \sqrt{s}^{n-1} e^{-s t^{2}} e^{-s \xi^{2}} d s
$$

Remark U.3.

$$
\begin{aligned}
\mathcal{F}\left(e^{-t|x|}\right) & =a_{\pi, n} \frac{t}{\left(t^{2}+|\xi|^{2}\right)^{\frac{n+1}{2}}} \int_{0}^{\infty} s^{\frac{n-1}{2}} e^{-s} d s \\
& =\frac{a_{\pi, n} t}{\left(t^{2}+|\xi|^{2}\right)^{\frac{n+1}{2}}} \gamma\left(\frac{n+1}{2}\right)
\end{aligned}
$$

Remark V.1. Fundamental Solution to $-\Delta u=f$ in \mathbb{R}^{3}

$$
\begin{aligned}
-\Delta u & =\sum_{i=1}^{3}-\frac{\partial^{2} u}{\partial x_{i}^{2}} \\
\mathcal{F}(-\Delta u) & =\mathcal{F}(f) \quad \Leftrightarrow \quad|\xi|^{2} \hat{u}(\xi)=\hat{f}(\xi) \\
\hat{u}(\xi) & =\frac{1}{|\xi|^{2}} \hat{f}(\xi)
\end{aligned}
$$

The solution is given by applying \mathcal{F}^{*} :

$$
\begin{gathered}
u(x)=\mathcal{F}^{*} \hat{u}=\mathcal{F}^{*}\left(\frac{1}{|\xi|^{2}} \hat{f}(\xi)\right) \\
u(x)=c \mathcal{F}^{*}\left(\frac{1}{|\xi|^{2}}\right) * f
\end{gathered}
$$

$\mathcal{F}, \mathcal{F}^{*} \xrightarrow{\text { multiplication }}$ convolution, and the converse is also true.

$$
\begin{aligned}
\mathcal{F}^{*}\left(\frac{1}{|\xi|^{2}}\right) & =-\frac{c}{4 \pi} \frac{1}{|x|} \\
(\text { in 3-D }) & =-\Delta u=f \\
u(x)=c \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} f(y) d y &
\end{aligned}
$$

Green's Function:

$$
G(x)=\frac{c}{|x|}
$$

Remark V.2. Last Time

$$
\begin{aligned}
& \gamma\left(\frac{n+1}{2}\right)=\int_{0}^{\infty} s^{\frac{n}{2}-\frac{1}{2}} e^{-s} d s \\
& \gamma(\beta)=\int_{0}^{\infty} s^{\beta-1} e^{-s} d s
\end{aligned}
$$

Let's look at the integral

$$
\begin{aligned}
& \int_{0}^{\infty} s^{-1 / 2} e^{-s|x|^{2}} d s=|x|^{-1} \gamma\left(\frac{1}{2}\right) \\
& t=s|x|^{2}, \quad s=t|x|^{-2} \\
& d s=|x|^{-2} d t \\
& |x|^{-1}=\frac{1}{\gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} s^{-1 / 2} e^{-s|x|^{2}} d s \\
& \mathcal{F}\left(|x|^{-1}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} s^{-1 / 2} \mathcal{F}\left(e^{-s|x|^{2}}\right) d s \\
& \mathcal{F}\left(|x|^{-1}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} s^{-1 / 2} \frac{1}{\sqrt{2 s}^{3}} e^{-|\xi|^{2} / 4 s} d s \\
& =\frac{1}{\sqrt{\pi} \sqrt{2}^{3}} \int_{0}^{\infty} s^{-2} e^{-|\xi|^{2} / 4 s} d s \\
& t=|\xi|^{2} / 4 s, s=t^{-1} \frac{|\xi|^{2}}{4} \\
& d s=-t^{-2} \frac{|\xi|^{2}}{4} d t \\
& =\frac{1}{\sqrt{\pi} \sqrt{2}^{3}} \int_{0}^{\infty} t|\xi|^{-4} e^{-t} t^{2}|\xi|^{2} d s \\
& =\gamma(1) \sqrt{\frac{2}{\pi}}|\xi|^{-2}
\end{aligned}
$$

Thus,

$$
\mathcal{F}\left(|x|^{-1}\right)=c|\xi|^{-2}, \quad u(x)=c \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} f(y) d y
$$

whenever $-\Delta u=f$ in \mathbb{R}^{3}.

$$
\begin{aligned}
-\Delta u & =f \text { in } S^{\prime}\left(\mathbb{R}^{3}\right) \\
-\Delta\left(\frac{1}{|x|}\right) & =c \delta \text { in } S^{\prime}\left(\mathbb{R}^{3}\right) \\
\hat{u}(\xi) & =c \frac{\hat{f}}{|\xi|^{2}}+\delta
\end{aligned}
$$

Not all solutions decay fast enough at $\pm \infty$. The Fourier transform in $L^{2}\left(\mathbb{R}^{n}\right)$ gives uniqueness.

Definition V.3. \rangle

$$
\langle\xi\rangle=\sqrt{1+|\xi|^{2}}
$$

Using this notation, we have

$$
H^{k}\left(\mathbb{R}^{n}\right)=\left\{\left.u \in L^{2}\left(\mathbb{R}^{n}\right)\left|\int_{\mathbb{R}^{n}}\langle\xi\rangle^{k}\right| \hat{u}(\xi)\right|^{2} d \xi<\infty\right\}
$$

Old:

$$
H^{2}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right) \mid \int_{\mathbb{R}^{n}}\left(|u(x)|^{2}+|D u(x)|^{2}\right) d x<\infty\right\}
$$

New:

$$
H^{1}\left(\mathbb{R}^{n}\right)=\left\{\left.u \in L^{2}\left(\mathbb{R}^{n}\right)\left|\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)\right| \hat{u}(\xi)\right|^{2} d \xi<\infty\right\}
$$

Example V.4. \mathbb{R}^{1}

$$
\begin{aligned}
H^{1}\left(\mathbb{R}^{1}\right)=\left\{u \in L^{2}(\mathbb{R}) \mid\right. & \left.\int_{\mathbb{R}}|\hat{u}(\xi)|^{2}+\xi^{2}|\hat{u}(\xi)|^{2} d \xi<\infty\right\} \\
& \left.\int_{\mathbb{R}}\left(|u(x)|^{2}+\left|\frac{d u}{d x}(x)\right|^{2}\right) d x<\infty\right\}
\end{aligned}
$$

Example V.5. \mathbb{R}^{2}

$$
\begin{aligned}
H^{1}\left(\mathbb{R}^{2}\right) & =\left\{u \in L^{2}\left(\mathbb{R}^{2}\right) \left\lvert\, \int_{\mathbb{R}^{2}}\left(|u(x)|^{2}+\left|\frac{\partial u}{\partial x_{1}}(x)\right|^{2}+\left|\frac{\partial u}{\partial x_{2}}(x)\right|^{2}\right) d x<\infty\right.\right\} \\
& =\left\{u \in L^{2}\left(\mathbb{R}^{2}\right) \mid \int_{\mathbb{R}^{2}}\left(|u(\xi)|^{2}+\left|\xi_{1}\right|^{2}|\hat{u}(\xi)|^{2}+\left|\xi_{2}\right|^{2}|\hat{u}(\xi)|^{2}\right) d \xi<\infty\right\}
\end{aligned}
$$

Definition V.6. Functions with $1 / 2$ derivative in $L^{2}\left(\mathbb{R}^{n}\right)$

$$
H^{1 / 2}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right)\left|\int_{\mathbb{R}^{n}} \sqrt{1+|\xi|^{2}} \hat{u}(\xi)\right|^{2} d \xi<\infty\right\}
$$

Theorem V.7. Trace Theorem

Given: $u(\mathbf{x})=u\left(x_{1}, x_{2}\right)$, define $f\left(x_{2}\right)=u\left(0, x_{2}\right)$.
Old: $T: H^{1}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$
New: $T: H^{1}\left(\mathbb{R}^{2}\right) \rightarrow H^{1 / 2}(\mathbb{R})$ continuous, linear

General Trace Theorem: $s>1 / 2, T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-1 / 2}\left(\mathbb{R}^{n-1}\right)$ continuous, linear Also, T is onto.

Theorem W.1. Trace Theorem

$$
T: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow H^{1 / 2}\left(\mathbb{R}^{n-1}\right) \quad \text { continuously }
$$

More generally:

$$
T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-1 / 2}\left(\mathbb{R}^{n-1}\right) \quad \text { continuously for } s>\frac{1}{2}
$$

Lemma W.2.
$u \in C\left(\mathbb{R}^{2}\right) \cap L^{1}\left(\mathbb{R}^{2}\right), \quad u=u\left(x_{1}, x_{2}\right), \quad f\left(x_{2}\right)=u\left(0, x_{2}\right)$.
Then for all $u \in C$ we have that

$$
\left.\hat{f}\left(\xi_{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{u}\left(\xi_{1}, \xi_{2}\right) d \xi_{2} \quad \text { (average over } \xi_{1}\right)
$$

Proof.

$$
\begin{aligned}
\hat{f}\left(\xi_{2}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f\left(x_{2}\right) e^{-i x_{2} \xi_{2}} d x_{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} u\left(0, x_{2}\right) e^{-i x_{2} \xi_{2}} d x_{2} \\
u\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \hat{u}\left(\xi_{1}, \xi_{2}\right) e^{i x_{1} \xi_{1}} e^{i x_{2} \xi_{2}} d \xi_{1} d \xi_{2} \\
u\left(0, x_{2}\right) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \hat{u}\left(\xi_{1}, \xi_{2}\right) e^{i x_{2} \xi_{2}} d \xi_{1} d \xi_{2}
\end{aligned}
$$

Proof of Trace Theorem (W.1)

Proof. Want:

$$
\|f\|_{H^{1 / 2}(\mathbb{R})} \leq C\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} \quad \forall u \in H^{1}\left(\mathbb{R}^{2}\right)
$$

Fourier:

$$
\begin{aligned}
& \int_{\mathbb{R}} \sqrt{1+\xi_{2}^{2}}\left|\hat{f}\left(\xi_{2}\right)\right|^{2} d \xi_{2} \leq C \int_{\mathbb{R}^{2}}\langle\xi\rangle^{2}\left|\hat{u}\left(\xi_{1}, \xi_{2}\right)\right|^{2} d \xi_{1} d \xi_{2} \\
& \hat{f}\left(\xi_{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}_{\xi_{1}}} \hat{u}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} \\
&\left|\hat{f}\left(\xi_{2}\right)\right|^{2} \leq\left(\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}_{\xi_{1}}} \int_{\mathbb{R}_{\xi_{1}}}\left|\hat{u}\left(\xi_{1}, \xi_{2}\right)\right|\langle\xi\rangle\langle\xi\rangle^{-1} d \xi_{1}\right)^{2} \\
& \text { C.s. } \frac{1}{2 \pi}\left(\int_{\mathbb{R}_{\xi_{1}}}\left|\hat{u}\left(\xi_{1}, \xi_{2}\right)\right|^{2}\langle\xi\rangle^{2} d \xi_{1}\right)\left(\int_{\mathbb{R}_{\xi_{1}}}\langle\xi\rangle^{-2} d \xi_{1}\right) \\
& \int_{\mathbb{R}_{\xi}} \frac{1}{1+\xi_{2}^{2}+\xi_{1}^{2}} d \xi_{1}=\left.\frac{\tan ^{-1}\left(\frac{\xi}{\sqrt{1+\xi_{2}^{2}}}\right)}{\sqrt{1+\xi_{2}^{2}}}\right|_{-\infty} ^{\infty}\left(\xi_{1}, \xi_{2}\right)\langle\xi\rangle\langle\xi\rangle^{-1} d \xi_{1} \\
&=\frac{\pi}{\sqrt{1+\xi_{2}^{2}}} \\
& \int_{\mathbb{R}_{\xi_{2}}} \sqrt{1+\xi_{2}^{2}}\left|\hat{f}\left(\xi_{2}\right)\right|^{2} d \xi_{2} \leq \sqrt{\frac{\pi}{2}} \int_{\mathbb{R}_{\xi_{2}}} \int_{\mathbb{R}_{\xi_{1}}}\left|\hat{u}\left(\xi_{1}, \xi_{2}\right)\right|^{2}\langle\xi\rangle^{2} d \xi_{1} d \xi_{2}
\end{aligned}
$$

(Recall that:

$$
\int_{-\infty}^{\infty} \frac{1}{a+x^{2}} d x=\frac{\tan ^{-1}\left(\frac{x}{\sqrt{a}}\right)}{\sqrt{a}}
$$

Theorem W.3.

$$
T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-1 / 2}\left(\mathbb{R}^{n-1}\right) \quad \text { is onto }
$$

Proof. ($\mathrm{n}=2$)
Given $\hat{f}\left(\xi_{2}\right)$, construct u.

$$
\hat{u}\left(\xi_{1}, \xi_{2}\right)=\frac{\sqrt{\frac{\pi}{2}} \hat{f}\left(\xi_{2}\right)\left\langle\xi_{1}\right\rangle}{\langle\xi\rangle^{2}}
$$

Given $f \in H^{1 / 2}(\mathbb{R})$, verify that this u is in $H^{1}\left(\mathbb{R}^{2}\right)$.

Remark W.4. Poisson Integral Formula

We are considering harmonic functions in the disk:

$$
\begin{aligned}
-\Delta u=0 & \text { in } D=\left\{x \in \mathbb{R}^{2}| | x \mid<1\right\} \\
u=g & \text { on } \partial D
\end{aligned} \text { (Dirichlet boundary condition) }
$$

Solution:

$$
u=P I * g
$$

Corresponding problem:

$$
\begin{aligned}
-\Delta u & =0 \quad \text { in } D \\
\frac{\partial u}{\partial n} & =G \quad \text { on } \partial D \quad \text { (Neumann B.C.) }
\end{aligned}
$$

X 5-20-11: Fourier Series Revisited

Definition X.1.

For $u \in L^{1}(\mathbb{T})$,

$$
\begin{aligned}
\mathcal{F}(u)(k) & =(2 \pi)^{-n} \int_{\mathbb{T}^{n}} u(x) e^{-i k \cdot x} d x \\
{\left[\mathcal{F}^{*}(\hat{u})\right](x) } & =\sum_{k \in \mathbb{Z}} \hat{u}_{k} e^{i k \cdot x}
\end{aligned}
$$

$\mathcal{F}: L^{1}\left(\mathbb{T}^{n}\right) \rightarrow \ell^{\infty}$

Definition X.2. \mathfrak{s}

$$
\mathfrak{s}=\mathcal{S}\left(\mathbb{Z}^{n}\right)
$$

Rapidly decreasing functions on \mathbb{Z}^{n}, i.e. for every $N \in \mathbb{N}$,

$$
\langle k\rangle^{n}\left|\hat{u}_{k}\right| \in \ell^{\infty}
$$

$$
\mathcal{F}: C^{\infty}\left(\mathbb{T}^{n}\right) \rightarrow \mathfrak{s}
$$

Definition X.3. $\mathcal{D}, \mathcal{D}^{\prime}$

$$
\begin{aligned}
\mathcal{D}\left(\mathbb{T}^{n}\right) & =C^{\infty}\left(\mathbb{T}^{n}\right) \\
\mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right) & =\left[C^{\infty}\left(\mathbb{T}^{n}\right)\right]^{\prime} \\
\mathfrak{s}^{\prime} & =[\mathfrak{s}]^{\prime}
\end{aligned}
$$

Remark X.4.

$\mathcal{F}: L^{2}\left(\mathbb{T}^{n}\right) \rightarrow \ell^{2}$
$\mathcal{F}^{*}: \ell^{2} \rightarrow L^{2}\left(\mathbb{T}^{n}\right)$

We define the inner products as

$$
\begin{aligned}
(u, v)_{L^{2}\left(\mathbb{T}^{n}\right)} & =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} u(x) \overline{v(x)} d x \\
(\hat{u}, \hat{v}) & =\sum_{k \in \mathbb{Z}^{n}} \hat{u}_{k} \overline{\hat{v}_{k}} \frac{1}{(2 \pi)^{n}}\|u\|_{L^{2}\left(\mathbb{T}^{n}\right)}=\|\hat{u}\|_{\ell^{2}}
\end{aligned}
$$

Remark X.5. Extension to $\mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right)$

$$
\begin{gathered}
\mathcal{F}: \mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right) \rightarrow \mathfrak{s}^{\prime} \\
\mathcal{F}^{*}: \mathfrak{s}^{\prime} \rightarrow \mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right)
\end{gathered}
$$

Definition X.6. Sobolev Spaces on \mathbb{T}^{n}

$$
H^{s}\left(\mathbb{T}^{n}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right) \mid\langle k\rangle^{s} \hat{u} \in \ell^{2}\right\}, \quad s \in \mathbb{R}
$$

Definition X.7. Λ^{s}

$$
\Lambda^{s} u=\mathcal{F}^{*}\left(\sum_{k \in \mathbb{Z}^{n}}\langle k\rangle^{s} \hat{u}_{k} e^{i k x}\right)
$$

(Where $\langle k\rangle=\sqrt{1+|k|^{2}}$.)

$$
H^{s}\left(\mathbb{T}^{n}\right)=\Lambda^{-s} L^{2}\left(\mathbb{T}^{n}\right)
$$

This is an isomorphism.

Example X.8.

$$
\begin{aligned}
\Lambda^{2} & =(1-\Delta) \\
\Lambda^{-2} & =(1-\Delta)^{-1} \\
\Lambda^{0} & =\operatorname{Id} \\
\Lambda^{1} & =\sqrt{1-\Delta}
\end{aligned}
$$

This is like exponentiating a matrix in linear algebra: $e^{\mathbf{A}}$.

Definition X.9. $H^{s}\left(\mathbb{T}^{n}\right)$ Inner Product

$$
(u, v)_{H^{s}\left(\mathbb{T}^{n}\right)}=\left(\Lambda_{s} u, \Lambda_{s} v\right)_{L^{2}\left(\mathbb{T}^{n}\right)} \quad s \in \mathbb{R}
$$

Remark X.10. Poisson Integral Formula

$$
\operatorname{PI}(f)(r, \theta)=\sum_{k \in \mathbb{Z}} \hat{f}_{k} r^{|k|} e^{i k \theta}, \quad r<1
$$

Let

$$
u(r, \theta)=\operatorname{PI}(f)(r, \theta)
$$

For example,

$$
\begin{aligned}
D & =\{|x|<1\}, \quad \partial D=S^{1}=\mathbb{T}^{1} \\
-\Delta u & =0 \text { in } D \\
u & =f \text { on } \partial D=\mathbb{T}^{1}
\end{aligned}
$$

Recall from week 2:

$$
u(r, \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{f(\phi)}{r^{2}-2 r \cos (\theta-\phi)+1} d \phi \quad r<1
$$

Given $f \in H^{s}\left(\mathbb{T}^{1}\right)$, how smooth is u in D ?

Remark X.11. Recall from Weeks 1 G3 2

$$
f \in C(\partial D) \xrightarrow{\mathrm{DCT}} u \in C(\bar{D}) \cap C^{\infty}(\tilde{D}) \quad \forall \tilde{D} \subset \subset D
$$

Remark X.12. Δ in 2-D

$$
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}
$$

Then our problem becomes

$$
\begin{aligned}
-\Delta u & =F \text { in } D \\
u & =0 \text { on } \partial D
\end{aligned}
$$

Significance: we are ignoring the cross derivatives, $\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}$.

$$
\begin{aligned}
-\Delta u & =F \text { in } \mathbb{R}^{2} \\
u(x) & =\underbrace{\frac{1}{\sqrt{2 \pi}}}_{?} \int_{\mathbb{R}^{2}} \log |x-y| F(y) d y \\
u & =G * F, \quad G=\frac{1}{2 \pi} \log |x|
\end{aligned}
$$

Remark X.13. Basic Laplacian Info

$$
\begin{aligned}
-\Delta & =\operatorname{div} D \\
L & =\operatorname{div}[A(x) D]
\end{aligned}
$$

Theorem X. 14.

$$
\text { PI : } H^{k-1 / 2}\left(\mathbb{T}^{1}\right) \rightarrow H^{k}(D) \quad \text { continuously }
$$

In particular,

$$
\|u\|_{H^{k}(D)} \leq C\|f\|_{H^{k-1 / 2}\left(\mathbb{T}^{1}\right)}, \quad k=0,1,2, \ldots
$$

Proof. Our clutch formula is

$$
u(r, \theta)=\sum_{k \in \mathbb{Z}} \hat{f}_{k} r^{|k|} e^{i k \theta}, \quad r<1
$$

Case 1: $k=0$
Given $f \in H^{-1 / 2}\left(\mathbb{T}^{1}\right)$. This means that

$$
\sum\langle k\rangle^{-1}\left|\hat{f}_{k}\right|^{2}<\infty
$$

Compute $L^{2}(D)$ norm of $u(r, \theta)$.

$$
\begin{aligned}
\|u\|_{L^{2}(D)}^{2} & =\int_{0}^{2 \pi} \int_{0}^{1}\left|\sum \hat{f}_{k} r^{|k|} e^{i k \theta}\right|^{2} \underbrace{r d r d \theta}_{\substack{\text { 2-D Lebesgue } \\
\text { measure }}} \\
& \quad \leq 2 \pi \sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2} \int_{0}^{1} r^{2|k|+1} d r \\
& \leq \pi \sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2} \frac{1}{1+|k|} \\
& \leq \pi \sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2}\langle k\rangle^{-1}
\end{aligned}
$$

$$
\left(\frac{1}{\sqrt{1+|k|^{2}}} \geq \frac{1}{1+|k|}\right)
$$

Theorem Y.1. Poisson Integral Formula

$$
\begin{align*}
u(r, \theta) & =\sum_{k \in \mathbb{Z}} \hat{f}_{k} r^{|k|} e^{i k \theta}, r<1 \tag{Y.1}\\
-\Delta u & =0 \text { in } D \\
u & =f \text { on } \partial D
\end{align*}
$$

Theorem Y.2.

$$
\|u\|_{H^{k}(D)} \leq C\|f\|_{H^{k-1 / 2}(\partial D)}, k=0,1,2, \ldots
$$

Remark Y.3. (Last Time)

$$
\|u\|_{L^{2}(D)} \leq C\|f\|_{H^{-1 / 2}\left(\mathbb{T}^{1}\right)} \forall f \in H^{-1 / 2}\left(\mathbb{T}^{1}\right), k=0
$$

Today we look at $k>0$.

Remark Y.4. $k=1$ Case

Goal: Show

$$
\|u\|_{H^{1}(D)} \leq C\|f\|_{H^{1 / 2}\left(\mathbb{T}^{1}\right)}, u \in L^{2}
$$

Prove that:

$$
\frac{\partial u}{\partial \theta}=u_{\theta} \in L^{2} \quad \text { and } \quad \frac{\partial u}{\partial r}=u_{r} \in L^{2}
$$

Taking ∂_{θ} of (Y.1) gives us that

$$
\begin{equation*}
u_{\theta}=\sum_{k \in \mathbb{Z}} \hat{f}_{k} i k r^{|k|} e^{i k \theta} \tag{Y.2}
\end{equation*}
$$

What's the relationship between $f \in H^{1 / 2}\left(\mathbb{T}^{2}\right), \partial_{\theta} f \in H^{-1 / 2}\left(\mathbb{T}^{1}\right)$?

$$
\begin{aligned}
& \partial_{\theta}: H^{s} \rightarrow H^{s-1} \text { continuously (by definition) } \\
& \left\|f_{\theta}\right\|_{H^{-1 / 2}\left(\mathbb{T}^{1}\right)} \leq C\|f\|_{H^{1 / 2}\left(\mathbb{T}^{1}\right)}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
u_{\theta}(r, \theta) & =\sum_{k \in \mathbb{Z}}\left(\hat{f}_{\theta}\right)_{k}|r|^{k} e^{i k \theta} \\
v(r, \theta) & =\sum_{k \in \mathbb{Z}} \hat{g}_{k} r^{|k|} e^{i k \theta}
\end{aligned}
$$

From $k=0$:

$$
\left\|u_{\theta}\right\|_{L^{2}(D)} \leq c\left\|f_{\theta}\right\|_{H^{-1 / 2}\left(\mathbb{T}^{1}\right)} \leq c\|f\|_{H^{1 / 2}\left(\mathbb{T}^{1}\right)}
$$

We want to know

$$
\left.\frac{\partial f}{\partial x_{1}}\right|_{x_{2}=0} \stackrel{?}{=} \frac{\partial f}{\partial x_{2}}\left(x_{1}, 0\right)
$$

Two ways to proceed:

1. Keep estimating $\partial_{\theta}^{2}, \partial_{\theta}^{3}, \ldots$

$$
\begin{aligned}
-u_{r r}-\frac{1}{r} u_{r} & =\frac{1}{r^{2}} u_{\theta \theta} \\
-r \partial_{r}\left(r u_{r}\right) & =u_{\theta \theta} \\
r^{2} u_{r r}+r u_{r} & \in L^{2}
\end{aligned}
$$

2. $\left\|r u_{r}\right\|_{L^{2}(D)}=\left\|u_{\theta}\right\|_{L^{2}(D)}$

$$
\begin{aligned}
u_{r}(r, \theta) & =\sum \hat{f}_{k}|k| r^{|k|-1} e^{i k \theta} \\
r u_{r}(r, \theta) & =\sum \hat{f}_{k}|k| r^{|k|} e^{i k \theta}
\end{aligned}
$$

This has the same L^{2} inner product as (Y.2). Thus,

$$
\begin{gathered}
\left\|r u_{r}\right\|_{L^{2}(D)} \leq c\|f\|_{H^{1 / 2}(D)} \\
\left\|u_{r}\right\|_{L^{2}(D)} \stackrel{?}{\leq}\| \| f \|_{H^{1 / 2}(D)} \\
u(r, \theta)=\frac{1-r^{2}}{2 \pi} \int \frac{f(\phi)}{r^{2}-2 r \cos (\theta-\phi)+1} d \phi
\end{gathered}
$$

We can differentiate this as my times as we like in the region $r<\frac{1}{2}$. Thus, $u \in C^{\infty}\left(B\left(0, \frac{1}{2}\right)\right)$. Suppose we wanted to solve this problem instead:

$$
\begin{aligned}
-\Delta w=h & \text { in } D \\
w=0 & \text { on } \partial D=\mathbb{T}^{1}
\end{aligned} \stackrel{f \in H^{1 / 2}\left(\mathbb{T}^{1}\right)}{\Longleftrightarrow} \quad \begin{aligned}
-\Delta u=0 & \text { in } D \\
u=f & \text { on } \partial D=\mathbb{T}^{1}
\end{aligned} \quad \begin{aligned}
& w=u-f \text { on } \partial D=\mathbb{T}^{1} \\
& w=u-\tilde{f} \text { on } D
\end{aligned}
$$

From the trace theorem we know that $T: H^{1}(D) \rightarrow H^{1 / 2}(D)$ is a continuous surjection. For every $f \in$ $H^{1 / 2}(\partial D)$ there exists $\tilde{f} \in H^{1}(D)$ such that $\|\tilde{f}\|_{H^{1}(D)} \leq C\|f\|_{H^{1 / 2}(\partial D)}$.

$$
\begin{aligned}
& f \in H^{1 / 2}(\partial D) \\
& \tilde{f} \in H^{1}(D) \\
& u=w+\tilde{f}
\end{aligned}
$$

Then

$$
\begin{aligned}
-\Delta w & =\Delta \tilde{f}=h \text { in } D \\
w & =0 \text { on } \partial D
\end{aligned}
$$

Let $v \in C_{0}^{\infty}(D)$.

$$
\begin{align*}
0 & =-\int_{D}(\Delta w+\Delta \tilde{f}) v d x \\
& =\int_{D} D w \cdot D v d x+\int_{D} D \tilde{f} \cdot D v d x \\
& =\int_{D} D w \cdot D v d x \\
& =-\int_{D} D \tilde{f} \cdot D v d x \forall v \in H_{0}^{1}(D) \\
& =(w, v)_{H^{1}(D)}=-\int_{D} D \tilde{f} \cdot D v d x \tag{Y.3}
\end{align*}
$$

Why is it true that $\|D w\|_{L^{2}(D)}$ is an $H^{1}(D)$ equivalent norm for every $w \in H_{0}^{1}(D)$? Answer: the Poincare Inequality.

$$
\|w\|_{L^{2}(D)} \leq C\|D w\|_{L^{2}(D)}
$$

From (Y.3), the Riesz Representation Theorem gives us that there exists a unique $w \in H_{0}^{1}(D)$.

$$
\begin{aligned}
-\Delta w & =h \in H^{-1}(\Omega) \text { in } \Omega \subset \mathbb{R}^{n} \text { open, smooth, bounded } \\
w & =g \in H^{1 / 2}(\partial \Omega) \text { on } \partial \Omega
\end{aligned}
$$

Better yet, have $h \in C^{\infty}(\Omega)$ and $g \in C^{\infty}(\partial \Omega)$.

Z 5-24-11 (Section)

Example Z.1.
Ω open, $\partial \Omega$ is C^{1}

$$
\begin{aligned}
\Delta u & =0 \\
\frac{\partial u}{\partial n} & =g
\end{aligned}
$$

If u_{1}, u_{2} are solutions to the above, then

$$
u_{1}=u_{2}+c
$$

Set

$$
u=u_{1}-u_{2}
$$

Then

$$
\begin{aligned}
\Delta u & =0 \\
\frac{\partial u}{\partial n} & =0 \\
\int_{\Omega} u \Delta v+\langle D u, D v\rangle d V & =\int_{\partial \Omega} u \frac{\partial v}{\partial n} d S \\
\int_{\Omega}|D u|^{2} d V & =\int_{\partial \Omega} u \frac{\partial u}{\partial n} d S \\
& =0
\end{aligned}
$$

Thus, $D u=0$. If Ω is connected, then $u=c$ constant.
Note:

$$
\frac{\partial u}{\partial n}=\frac{\partial u_{1}}{\partial n}-\frac{\partial u_{2}}{\partial n}=g-g=0
$$

Example Z.2.

$$
\begin{aligned}
& \Delta u=0 \text { in } \Omega=B(0,1) \\
& \frac{\partial u}{\partial n}=g \text { on } \partial \Omega=\mathbb{S}^{1}
\end{aligned}
$$

Example Z.3.

$$
\begin{aligned}
\Delta u & =0 \\
u & =f=\sum_{k} \hat{f}_{k} e^{i k \theta}
\end{aligned}
$$

Then the solution looks like

$$
u(r, \theta)=\sum_{k \in \mathbb{Z}} f_{k}(r) e^{i k \theta}, \quad|r|<1
$$

Use polar coordinates for Δ, solve the ODE for f_{k} (using the sum):

$$
f_{k}=r^{|k|} \hat{f}_{k}
$$

$$
\begin{aligned}
\Delta u & =0 \text { in } \Omega \\
\frac{\partial u}{\partial r} & =g \text { on } \Omega
\end{aligned}
$$

then

$$
\sum_{k \in \mathbb{Z}} \hat{f}_{k}|k| e^{i k \theta}=\sum_{k \in \mathbb{Z}} \hat{f}_{k} e^{i k \theta}
$$

We have

$$
\hat{g}_{k}=\hat{f}_{k}|k|, \quad f \in H^{s}\left(\mathbb{S}^{1}\right)
$$

Define

$$
N f=\sum_{k \in \mathbb{Z}}|k| \hat{f}_{k} e^{i k \theta}
$$

Questions:

1. Is N linear?
2. What is the image of the map?
3. Is the map bounded?
4. More. . .

$$
N: H^{s}\left(\mathbb{S}^{1}\right) \rightarrow H_{0}^{s-1}\left(\mathbb{S}^{1}\right), \quad H_{0}^{s}\left(\mathbb{S}^{1}\right)=\left\{g \mid \int_{\mathbb{S}^{1}} g=0\right\} \subset H^{s}\left(\mathbb{S}^{1}\right)
$$

This is a closed space because if $g_{n} \rightarrow g$ in $H^{s}\left(\mathbb{S}^{1}\right), \int_{\mathbb{S}^{1}} g_{n}=0$, then $\int_{\mathbb{S}^{1}} g=0$ by DCT (since $\left.g \in L^{2}\left(\mathbb{S}^{1}\right) \subset L^{1}\left(\mathbb{S}^{1}\right)\right)$. Also, because

$$
\left|\int_{\mathbb{S}} g\right| \leq c\|g\|_{L^{2}} \leq C\|g\|_{H^{s-1}\left(\mathbb{S}^{1}\right)}
$$

Also because N is a linear surjective mape:

$$
\underbrace{\sum_{k \neq 0} \frac{\hat{g}_{k}}{|k|} e^{i k \theta}}_{\in H^{s}\left(\mathbb{S}^{1}\right)} \rightarrow \sum \hat{g}_{k} e^{i k \theta}
$$

Is N bounded?

$$
\begin{aligned}
\|N f\|_{H^{s-1}\left(\mathbb{S}^{1}\right)}^{2} & =\sum_{k}|k|^{2}|\hat{f}(k)|^{2}\left(1+|k|^{2}\right)^{s-1} \\
& \leq \sum_{k}\left(1+|k|^{2}\right)^{2}|\hat{(k)}|^{2} \\
& \leq\|f\|_{H^{s}\left(\mathbb{S}^{1}\right)}^{2} \\
\operatorname{ker} N & =\{c \mid c \in \mathbb{C}\} \cong \mathbb{C}
\end{aligned}
$$

N is surjective with coker $N=\{0\}=H^{s-1}\left(\mathbb{S}^{1}\right) / \operatorname{Im} N$. Therefore, N is a Fredholm operator, ind $N=1-0=1$. Why do we need Fredholm operators? They have a pseudo-inverse:

$$
\begin{aligned}
& T: x \rightarrow y, \quad y \in \operatorname{Im} T \\
& T x=y \underset{102}{\Rightarrow} \quad x=" T^{-1 "} y
\end{aligned}
$$

Example Z.5.

Find the "inverse" of $N: H^{s}\left(\mathbb{S}^{1}\right) \rightarrow H_{0}^{s-1}\left(\mathbb{S}^{1}\right)$

$$
\begin{align*}
N^{-1} g & =\sum_{k \neq 0} \frac{\hat{g}_{k}}{|k|} e^{i k \theta} \\
N f & =g \tag{Z.1}\\
f & =c+N^{-1} g \quad \text { general solution to (Z.1) } \tag{Z.2}
\end{align*}
$$

$$
\begin{aligned}
\hat{g}_{k} & =\frac{1}{2 \pi} \int_{\mathbb{S}^{1}} g(t) e^{-i k t} d t \\
N^{-1} g & =\sum_{k \neq 0} \frac{1}{2 \pi} \int_{\mathbb{S}^{1}} g(t) \frac{3^{-i k(t-\theta)}}{|k|} d t \\
& =\int_{\mathbb{S}^{1}} g(t)\left[\frac{1}{2 \pi} \sum_{k \neq 0} \frac{e^{-i k(t-\theta)}}{|k|}\right] d t \\
K(t) & \equiv \sum_{k \neq 0} \frac{e^{i k t}}{|k|} \\
& =\frac{1}{2 \pi} \int_{\mathbb{S}^{1}} g(t) K(\theta-t) d t
\end{aligned}
$$

Given a function $g \in H^{1 / 2}\left(\mathbb{S}^{1}\right) \rightarrow($ pick $) f \in H^{3 / 2}\left(\mathbb{S}^{1}\right)$.
Neumann problem \Rightarrow Dirichlet problem. $\Rightarrow u \in H^{?}(\Omega)$

Example Z.6.

$$
\begin{aligned}
u & =\sum_{r^{|k|} \hat{f}_{k} e^{i k \theta}}^{u_{\theta \theta}}
\end{aligned}=-\sum_{k} r^{|k|} k^{2} \hat{f}_{k} e^{i k \theta} \quad \begin{aligned}
&\left\|u_{\theta \theta}\right\|_{L^{2}(D)}^{2}=\int_{0}^{2 \pi} \int_{0}^{1}\left|u_{\theta \theta}\right|^{2} r d r d \theta \\
&=c \sum_{k} k^{4}\left|\hat{f}_{k}\right|^{2} \int_{0}^{1} r^{2|k|+1} d r \\
&=c^{\prime} \sum_{k} \frac{k^{4}\left|\hat{f}_{k}\right|^{2}}{|k|+1} \\
& \leq c^{\prime} \sum_{k} \frac{\left|\hat{f}_{k}\right|^{2} \cdot\left(1+|k|^{2}\right)^{2}}{|k|+1} \\
& \leq c^{\prime} \sum_{k}\left|\hat{f}_{k}\right|\left(1+|k|^{2}\right)^{3 / 2} \frac{\left(1+|k|^{2}\right)^{1 / 2}}{|k|+1} \\
&\|u\|_{H^{2}(D)} \leq \tilde{c}\|f\|_{H^{3 / 2}(\mathbb{S})} \\
&\left\|u_{\theta \theta}\right\|_{L^{2}(D)} \approx \\
&\left|r u_{r}\right|=\left|u_{\theta}\right|
\end{aligned}
$$

A $\mathbf{5 - 2 5 - 1 1}$

Remark A.1.

$$
\begin{aligned}
-\Delta u & =0 \text { in } \Omega \subset D \\
\frac{\partial u}{\partial n} & =g \text { on } \partial D
\end{aligned}
$$

where

$$
\frac{\partial u}{\partial n}=D u \cdot \mathbf{n}, \quad \mathbf{n}=\text { outward unit normal. }
$$

1. Ω open, bounded, smooth
$-\Delta: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is an isomorphism.
2. Ω $-\Delta: H^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is an isomorphism? No.

- $-\Delta: H^{1}(\Omega) \backslash \mathbb{R} \rightarrow L^{2}(\Omega)$ is an isomorphism.

3. $\Omega=\mathbb{T}^{n}$
$-\Delta: H^{1}\left(\mathbb{T}^{n}\right) \rightarrow H^{-1}\left(\mathbb{T}^{n}\right)$ is an isomorphism?
Note:

$$
\langle-\Delta u, v\rangle=\int_{\Omega} D u \cdot D v d x
$$

Example A.2.

$$
\begin{aligned}
-\Delta u & =0 \text { in } \Omega \\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega \\
D u \cdot \mathbf{n} & =0
\end{aligned}
$$

$u=1$ is a solution, $\operatorname{dim}(N(-\Delta))=1$

Example A.3.

$$
\begin{aligned}
u & : \Omega \rightarrow \mathbb{R}^{3} \\
-\Delta u^{i} & =f^{i} \text { in } \Omega \\
\sum_{j=1}^{3} \frac{\partial u^{i}}{\partial x_{j}} n_{j} & =g^{i} \text { on } \partial \Omega
\end{aligned}
$$

What is the null space of this operator?

Remark A.4.

$$
L^{2}(\Omega)=\mathrm{N}(L) \oplus_{L^{2}} \mathrm{R}(L)
$$

(Compactness allows us to not require the closure of R .) What we are trying to do is get rid of the null (N) part and restrict entirely to the R part so that we can invert things.

Whenever you remove the null space, $\mathrm{N}(-\Delta)$, you recover the Poincare inequality:

$$
\|u\|_{L^{2}(\Omega)} \leq C\|D u\|_{L^{2}(\Omega)}
$$

Remark A.5.

$$
\begin{aligned}
-\Delta u & =0 \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

We can always solve this problem. And this problem:

$$
\begin{aligned}
-\Delta u & =h \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Example A.6.

$$
\begin{aligned}
-\Delta u & =0 \text { in } \Omega \subset D \\
\frac{\partial u}{\partial n} & =g \text { on } \partial D
\end{aligned}
$$

When can we solve this problem?

Example A.7.

$$
\begin{aligned}
-\Delta u & =-\operatorname{div} D u \text { in open set } \Omega \\
\frac{\partial u}{\partial n} & =D u \cdot \mathbf{n} \text { on } \partial \Omega
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\int_{\Omega} \operatorname{div} Q d x & =\int_{\partial \Omega} Q \cdot \mathbf{n} d S \\
\int_{\Omega}-\Delta u d x & =\int_{\Omega}-\operatorname{div} D u d x \\
& =-\int_{\partial \Omega} D u \cdot \mathbf{n} d S \\
& =-\int_{\partial \Omega} \frac{\partial u}{\partial n} d S
\end{aligned}
$$

Example A.8.

$$
\begin{aligned}
-\Delta u & =F \text { in } \Omega=D \\
\frac{\partial u}{\partial n} & =g \text { on } \partial D
\end{aligned}
$$

We require that

$$
\begin{aligned}
& \int_{\Omega} F(x) d x+\int_{\partial \Omega} g(x) d S=0 \\
& -\Delta u=-\operatorname{div} D u \text { in open set } \Omega \\
& -\Delta u=F \text { in } \Omega \\
& \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
\end{aligned}
$$

Solvability condition:

$$
\int_{\Omega} F(x) \cdot \mathbf{1} d x=0
$$

In words, we need a function that has 0 average.

Remark A.9.

$$
\begin{aligned}
& \int_{\Omega} \operatorname{div} Q d x=\int_{\partial \Omega} Q \cdot \mathbf{n} d S, \quad \mathbf{n}=\text { outward normal } \\
& \int_{\Omega} \operatorname{curl} Q d x=\int_{\partial \Omega} Q \cdot T_{\alpha} d S, \quad T_{\alpha}=\text { tangent vectors, } \alpha=1, \ldots, n-1
\end{aligned}
$$

Remark A. 10 .

Laplace operators and the like always have finite-dimensional null spaces.

Remark A.11.

$$
\begin{aligned}
-\Delta u & =f \\
u & =0
\end{aligned}
$$

This operator is an isomorphism. We showed this by studying this problem:

$$
\int_{\Omega} D u \cdot D v d x=\int_{\Omega} f \cdot v d x \forall v \in H_{0}^{1}(\Omega), f \in L^{2}(\Omega), u \in H_{0}^{1}(\Omega)
$$

The reason we can take the Laplacian of an H^{1} function is the following theorem:

Theorem A.12.

For $u \in H^{2}(\Omega)$,

$$
\begin{aligned}
-\Delta u & =f \text { a.e. in } \Omega \\
\|u\|_{H^{2}(\Omega)} & \leq C\|f\|_{L^{2}(\Omega)} \\
\|u\|_{H^{s}(\Omega)} & \leq C\|f\|_{H^{s-2}(\Omega)}, \quad s \geq 0, \text { real }
\end{aligned}
$$

Problem B.1. Homework Problem 1 (6.1)

$$
\begin{aligned}
-\Delta u_{f} & =0 \text { in } D \\
u_{f} & =f \text { on } \partial D
\end{aligned}
$$

1. $f \xrightarrow{N} g$

$$
u(r, \theta)=\sum_{k \in \mathbb{Z}} \hat{f}_{k} r^{|k|} e^{i k \theta}, \quad r<1
$$

2. Compute $\frac{\partial u}{\partial r}(r, \theta)$ in D
3. Take the limit as $r \nearrow 1$, compute the trace of $\frac{\partial u}{\partial r}(1, \theta)=g(\theta)$. (This is not a pointwise limit.)

$$
\begin{aligned}
-\Delta u & =0 \text { in } D \\
\frac{\partial u}{\partial r} & =g \text { on } \partial D
\end{aligned}
$$

Dirichlet-to-Neumann:

$$
\begin{aligned}
g & =N f \quad \Rightarrow \quad " g=\left|\frac{\partial}{\partial \theta}\right| f " \\
\hat{g}_{k} & =|k| \hat{f}_{k}
\end{aligned}
$$

We are given $f \in H^{3 / 2}\left(\mathbb{S}^{1}\right)$. According to $N=\left|\frac{\partial}{\partial \theta}\right|$, we should require that $g \in H^{1 / 2}(\mathbb{S})$. We have proven that

$$
\|u\|_{H^{2}(D)} \leq C\|f\|_{H^{3 / 2}(\partial D)} \quad \Rightarrow \quad \frac{\partial u}{\partial r} \in H^{1}(D)
$$

Fixing r close to 1 , we can think of

$$
\frac{\partial u}{\partial r}(\underbrace{r}_{\text {parameter }}, \theta) \Rightarrow \text { function on }(0,2 \pi)
$$

Both

$$
\hat{f}_{k} r^{|k|} e^{i k \theta}, \quad \hat{f}_{k}|k| r^{|k|-1} e^{i k \theta}
$$

are absolutely summable, since $|k| \leq\langle k\rangle^{3 / 2}\langle k\rangle^{-1 / 2}$.

$$
\sum_{k \in \mathbb{Z}} \hat{f}_{k}|k| r^{|k|-1} e^{i k \theta}=\sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} \hat{f}_{k}|k| r^{|k|-1} e^{i k \theta}
$$

We bring the derivative through the sum, and the goal is to get uniform bounds on $H^{1 / 2}(0,2 \pi)$. We pass the limit as $r \nearrow 1$ weakly and argue 1) that we can obtain a limit and 2) that this limit is the g that we started with.

$$
\langle\underbrace{\frac{\partial u}{\partial r}(\theta)}_{\in H^{1 / 2}}, \underbrace{\phi}_{\in H^{-1 / 2}}\rangle \rightarrow\langle G, \phi\rangle
$$

B. 1 Compensated Compactness

Example B.2.

Suppose we have sequence $\left(u_{j}\right),\left(v_{j}\right)$ that are uniformly bounded in $L^{2}(\Omega)$.
Question: $u_{j} \cdot v_{j} \rightarrow$?

$$
\begin{aligned}
u_{j_{k}} & \rightharpoonup u \text { in } L^{2}(\Omega) \\
v_{j_{k}} & \rightharpoonup v \text { in } L^{2}(\Omega) \\
u_{j_{k}} \cdot v_{j_{k}} & \rightharpoonup u \cdot v \text { in any topology? No. }
\end{aligned}
$$

Example B.3.

$$
\begin{aligned}
u_{t}+D\left(u^{2}\right) & =f \\
u_{t}^{i}+\frac{\partial}{\partial x_{j}}\left(u^{i} u^{j}\right) & =f
\end{aligned}
$$

Smooth out and make nice, e.g. by convolution:

$$
\partial_{t} u_{\epsilon}+D\left(u_{\epsilon} u_{\epsilon}\right)=f_{\epsilon}
$$

Now we want to pass the limit as $\epsilon \rightarrow 0$. We have that

$$
\left\|u_{\epsilon}\right\|_{L^{2}} \leq M
$$

However, we can't pass the weak limit because it doesn't like nonlinearities.

Lemma B.4. Div-Curl Lemma

Suppose $u_{j} \rightharpoonup u$ in L^{2} and $v_{j} \rightharpoonup v$ in L^{2}. Suppose curl u_{j}, div v_{j} are weakly compact in H^{-1}. Then

$$
u_{j} \cdot v_{j} \rightharpoonup u \cdot v \text { in } \mathcal{D}^{\prime}(\Omega)
$$

We are compensating for a lack of compactness by introducing a new structure.
Curl is a measure of rotation
Div is a measure of stretching

Remark B.5. Identities from Vector Calculus

$$
\begin{array}{rlrl}
\operatorname{curl} D \phi & =0 & \phi \text { scalar } \\
\operatorname{div} \operatorname{curl} w & =0 & w \text { vector }
\end{array}
$$

Remark B.6.

For all $\phi \in C_{0}^{\infty}(\Omega)$,

$$
\int_{\Omega} u_{j} \cdot v_{j} \phi d x \rightarrow \int_{\Omega} u \cdot v \phi d x
$$

We have

$$
\begin{gathered}
\left\|v_{j}\right\|_{L^{2}(\Omega)} \leq M \quad \text { uniformly in } j \\
-\Delta w_{j}=v_{j} \text { in } \Omega \\
w_{j}=0 \text { on } \partial \Omega
\end{gathered}
$$

v_{j} is bounded in L^{2}, so

$$
\left\|w_{j}\right\|_{H^{2}(\Omega)} \leq C\left\|v_{j}\right\|_{L^{2}(\Omega)} \leq C M
$$

So $w_{j^{\prime}} \rightharpoonup w$ in $H^{2}(\Omega)$. Rellich's theorem tells us that $w_{j^{\prime}} \rightarrow w$ in $H^{1}(\Omega)$.

$$
-\Delta w=\operatorname{curl} \operatorname{curl} w-D \operatorname{div} w
$$

$\int_{\Omega} u_{j} \cdot v_{j} \phi d x=\int_{\Omega} u_{j} \cdot\left(-\Delta w_{j}\right) \phi d x$
$=\int_{\Omega} u_{j} \cdot \operatorname{curl} \operatorname{curl} w_{j} \phi d x-\int_{\Omega} u_{j} \cdot D \operatorname{div} w_{j} \phi d x$
$=\int_{\Omega} \underbrace{u_{j} \cdot \operatorname{curl}}_{\text {curl } u_{j} .} \phi \operatorname{curl} w_{j}-u_{j} \cdot D \phi \times \operatorname{curl} w_{j} d x+\int_{\Omega} \operatorname{div} u_{j} \operatorname{div} w_{j} \phi d x+\int_{\Omega} u_{j} \cdot \operatorname{div} w_{j} D \phi d x$
$\rightarrow \int_{\Omega} u \cdot v \phi d x$

C 5-31-11 (Section)

Remark C.1.

There is an error in the practice problem

$$
\begin{aligned}
K(x) & =|x|^{1 / 2} \\
u & =k * f \quad \Rightarrow \quad u \in W^{1, p}
\end{aligned}
$$

because

$$
f=\mathbf{1}_{(a, b)}, \quad-\infty<a<b<\infty
$$

If $x>b$ then

$$
\begin{aligned}
u(x) & =\int_{a}^{b} \sqrt{x-y} d y=-\left.\frac{2}{3}(x-y)^{3 / 2}\right|_{a} ^{b} \\
& =-\frac{2}{3}(x-b)^{3 / 2}+\frac{2}{3}(x-a)^{3 / 2}
\end{aligned}
$$

and this is not bounded. So if we are working with $W^{1, p}(\mathbb{R})$ then it is not correct, but if we have $W^{1, p}(\Omega)$ with Ω compact then it might make sense. Or if we have $W_{\text {loc }}^{1, p}(\mathbb{R})$. Or replace $|x|^{1 / 2}$ with $|x|^{-1 / 2}$.

Problem C.2.

$$
\begin{array}{r}
u_{j} \rightharpoonup u \text { in } W_{0}^{1,1}(0,1) \\
u_{j} \rightarrow u \text { a.e. TRUE }
\end{array}
$$

We have $u \in W_{0}^{1,1}(0,1), u^{\prime} \in L^{1}(0,1)$.

$$
\begin{aligned}
u_{j}(x) & =\int_{0}^{x} u_{j}^{\prime}(t) d t \\
& =\int_{0}^{\infty} u_{j}^{\prime}(t) \mathbf{1}_{[0, x)}(t) d t \\
& =\int_{0}^{1} u^{\prime}(t) \mathbf{1}_{[0, x)}(t) d t
\end{aligned}
$$

Problem C.3.

$$
\left\|\eta_{\epsilon} *\left(f g^{\prime}\right)-f \eta_{\epsilon} * g^{\prime}\right\|_{L^{2}} \leq C\|f\|_{C_{b}^{1}(\mathbb{R})}\|g\|_{L^{2}(\mathbb{R})}
$$

$f \in C_{b}^{1}(\mathbb{R}),\|f\|_{C_{b}^{1}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$.
Hint:

$$
\begin{array}{rl}
\eta_{\epsilon} *(f g)^{\prime} & =\eta_{\epsilon} *\left(f^{\prime} g\right)+\eta_{\epsilon} *\left(f g^{\prime}\right) \\
\left(\eta_{\epsilon} * h^{\prime}\right)(x) & =\int_{\mathbb{R}} \eta_{\epsilon}(x-y) h^{\prime}(y) d y \\
& =\int_{\mathbb{R}} \frac{\partial}{\partial y} \eta_{\epsilon}(x-y) h(y) d y \\
& =\frac{\partial}{\partial x} \eta_{\epsilon} * h \\
\eta_{\epsilon} * g^{\prime}(x) & =\int \eta_{\epsilon}(y) g^{\prime}(x-y) d y \\
& =\frac{\partial}{\partial x} \int \eta_{\epsilon}(y) g(x-y) d y \\
& =\frac{\partial}{\partial x} \int \eta_{\epsilon}(x-y) g(y) d y \\
& =\left(\eta_{\epsilon}^{\prime} * g\right)(x) \\
& \leq \| \eta_{\epsilon}(x-y)=-\frac{\partial}{\partial x} \eta_{\epsilon}(x-y) \\
& \leq\left\|f^{\prime}\right\|_{\infty} C\|g\|_{L^{2}(\mathbb{R})}\left|\int \eta_{\epsilon}(x-y) g(y) d y\right| \\
& \leq\left\|f^{\prime}\right\|_{\infty} \sqrt{\int \eta_{\epsilon} *\left(f^{\prime} g\right)(x) \mid} \\
=\mid x-y) d y \|_{\epsilon}^{2}\left(x \|_{L^{2}}\right. \\
& \leq\left\|f^{\prime}\right\|_{\infty} \\
\left|\eta_{\epsilon} *\left(f^{\prime} g\right)(x)\right| d x & h=f g
\end{array}
$$

We can estimate the term η_{ϵ}^{\prime} by:

$$
\begin{aligned}
\left\|\eta_{\epsilon} * g^{\prime}\right\|_{L^{2}} & =\left\|\eta_{\epsilon}^{\prime} * g\right\|_{L^{2}} \\
& \leq C\|g\|_{L^{2}}
\end{aligned}
$$

And now a double integral term:

$$
\begin{aligned}
\iint \eta_{\epsilon}^{2}(x-y) d y d x & =\iint\left[\frac{1}{\epsilon} \eta\left(\frac{x-y}{\epsilon}\right)\right]^{2} d x d y \\
& =\iint\left|\eta\left(t_{1}-t_{2}\right)\right|^{2} d t_{1} d t_{2}
\end{aligned}
$$

where

$$
x=\frac{t_{1}}{\epsilon}, \quad y=\frac{t_{2}}{\epsilon}, \quad d x d y=\frac{d t_{1} d t_{2}}{\epsilon^{2}}
$$

Problem C. 4 .

$$
\begin{aligned}
u_{j} & =\eta_{j-1} * u, \quad u \in H^{1}(\mathbb{R}) \\
\left\|u_{j}^{\prime}\right\|_{L^{2}(\mathbb{R})} & \leq M
\end{aligned}
$$

Banach-Alaoglu. We have a sequence $u_{j_{k}}^{\prime} \rightarrow g$ in $L^{2}(\mathbb{R})$.

$$
\begin{aligned}
\left\langle u_{j_{k}}^{\prime}, \varphi\right\rangle & =-\left\langle u_{j_{k}}^{\prime}, \varphi^{\prime}\right\rangle \\
\langle g, \varphi\rangle & =-\left\langle u, \varphi^{\prime}\right\rangle
\end{aligned}
$$

Then $g=u^{\prime}$, and $u \in H^{1}(\mathbb{R})$.

$$
\left\|u^{\prime}\right\|=\|g\|_{L^{2}} \leq \liminf _{j}\left\|u_{j}^{\prime}\right\| \leq M
$$

Index

C^{1} Domain, 57
compactly contained, 30
compensated compactness, 111
conjugate exponent, 28
dilated family, 31
Fatou's Lemma, 5
$f^{\epsilon}, 31$
Fourier transform, 71
Fredholm operator, 102
Gagliardo-Nirenberg Theorem, 50
$H_{0}^{1}(\Omega), 57$
$H_{0}^{1}(\Omega)$ Weak Solution, 61
Hölder's Inequality, 28
Hardy's Inequality, 50
$H^{k}(\Omega), 41$
indicator function, 29
interior approximation, 47
interpolation identity, 53
Lebesgue Differentiation Theorem, 6
Lebesgue Dominated Convergence Theorem, 5
localization, 57
L^{p} space, 28
$L_{\mathrm{loc}}^{p}, 30$
Minkowski's Inequality, 28
mollifier, 30
Monotone Convergence Theorem, 5
Morrey's Inequality, 46
norm, 40
Rellich's Theorem, 66
Riesz Representation Theorem, 34
tempered distribution, 81
Trace Theorem, 57
truncation operator, 29
$u^{\epsilon}, 31$
variational formulation, 64
$W^{1, p}, 37$
weak 1st derivative, 37
weak convergence, 35
weak derivative, 39
weak formulation, 64
weak solution, 60
weak-* convergence, 35
$W^{k, p}(\Omega), 39$

