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1 Measure Theory

Theorem 1.1. Fubini’s Theorem
http://en.wikipedia.org/wiki/Fubini%27s_theorem

Suppose A and B are complete measure spaces. Suppose f(x,y) is A x B measurable. If

/ F(@,y)] d(z,y) < oo
AxB

where the integral is taken with respect to a product measure on the space over A x B, then

/A</Bf(x’y)dy> dm:/B(/Af(x,y)dx) dyZ/AXBf(J:,y)d(m,y)

the first two integrals being iterated integrals with respect to two measures, respectively, and the
third being an integral with respect to a product of these two measures.

Corollary:
If f(z,y) = g(x)h(y) for some functions g and h, then

[ s@ae [ nay=[ s

the third integral being with respect to a product measure.

Theorem 1.2. Tonelli’s Theorem
http://en.wikipedia.org/wiki/Fubini}27s_theorem#Tonelli.27s_theorem

Suppose that A and B are o-finite measure spaces, not necessarily complete. If either

[ ([ iratan) ae<ooor [ ([ isalar) ay<oo

/ (@) d(z,y) < oo
AxB

A(/jgf(x,y)dy) dx:/B</Af(x,y)dx> dy = AxBf(x’y)d@:’y)

then

and



http://en.wikipedia.org/wiki/Fubini%27s_theorem
http://en.wikipedia.org/wiki/Fubini%27s_theorem#Tonelli.27s_theorem

Fubini vs. Tonellz

http://en.wikipedia.org/wiki/Fubini%27s_theorem

Tonelli’s theorem is a successor of Fubini’s theorem. The conclusion of Tonelli’s theorem is identical
to that of Fubini’s theorem, but the assumptions are different. Tonelli’s theorem states that on
the product of two -finite measure spaces, a product measure integral can be evaluated by way of
an iterated integral for nonnegative measurable functions, regardless of whether they have finite
integral. A formal statement of Tonelli’s theorem is identical to that of Fubini’s theorem, except
that the requirements are now that (X, A, u) and (Y, B, v) are o-finite measure spaces, while f maps

X xY to [0, 00].

Theorem 1.4. Cauchy-Schwarz Inequality
http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

Formal Statement: For all vectors x,y of an inner product space,

[z, ) |* < (z,2) (y,y)
(@, )| < ||lz||[|v]|

Square of a Sum:

2 n n
< Z \331\22\%\2
i=1 i=1

n
§ LilYi
i=1

< 1@ do [ o ao

In L?%:
' [ rwgta)da

Theorem 1.5. Hoéolder’s Inequality
Theorem 12.54 on page 356

Let 1 <p,q < oo and % + é =1.If f € LP(X, ) and g € LI(X, u), then fg € L'(X, u) and

‘ / fgdu‘ < 1l
—_———

Ifgllx

Note: The Cauchy-Schwartz Inequality is a special case of Holder’s Inequality for p = g = 2.

Theorem 1.6. Minkowski’s Inequality
201A Notes 11/3/10



http://en.wikipedia.org/wiki/Fubini%27s_theorem
http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

Theorem 1.7. Young’s Inequality
Theorem 12.58 on page 359

Let 1 <p,q,7 < oo and % + % =141 If f € LP(R") and g € LY(R"), then f* g € L"(R") and

1+ gllr < 1 1lpllgllg

Theorem 1.8. Lebesgue Dominated Convergence Theorem
Theorem 12.35 on page 348

Suppose that (f,,) is a sequence of integrable functions, f, : X — R, on a measure space (X, A, i)
that converges pointwise to a limiting function f : X — R. If there is an integrable function
g : X — [0, 00] such that

|fu(x)] <g(x) VzeX, neN

then f is integrable and
lim [ fndp = /fdu

n—oo

Theorem 1.9. Monotone Convergence Theorem
Theorem 12.33 on page 347

Suppose that (f,,) is a monotone increasing sequence of nonnegative, measurable functions f,, : X —
[0, 0] on a measurable space (X, A, u). Let f: X — [0, 00] be the pointwise limit, i.e.

lim fn(z) = f(2)

n—oo

Then
lim fndu=/fdu
n—oo

Lemma 1.10. Fatou’s Lemma
Theorem 12.34 on page 347

If (fy) is any sequence of nonnegative measurable functions f, : X — [0,00] on a measure space

(X’ A’ M)? then
/(liminf fn) dp < liminf/fn dp
n—oo n—o0

Equivalently,
limsup/fn du < / <limsup fn> du
n—oo n—oo




Theorem 1.11. Lebesgue Differentiation Theorem
http://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem

For a Lebesgue integrable function f on R”, the indefinite integral is a set function which maps a
measurable set A to the Lebesgue integral of f - 14, written as:

/Afd)\

The derivative of this integral at x is defined to be

where | B| denotes the volume of a ball centered at x, and B — = means that the radius of the ball
is going to zero. The Lebesgue differentiation theorem states that this derivative exists and is equal
to f(z) at almost every point x € R™.



http://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem

2 Other Important Stuff

Theorem 2.1. Divergence Theorem
http://en.wikipedia.org/wiki/Divergence_theorem

/Q(V-F) dV—/ (F-n) dS

o0

Theorem 2.2. Mean Value Theorem
http://en.wikipedia.org/wiki/Mean_value_theorem

If f is continuous on [a, b] and differentiable on (a,b), then there exists ¢ € (a,b) such that

Definition 2.3. Laplacian Operator for a Radial Function
http://mathworld.wolfram.com/Laplacian.html

For a radial function g(z), the Laplacian is

_2dg g
Cordr dr?

Theorem 2.4. Green’s Theorem
http://en.wikipedia.org/wiki/Green27s_theorem

Let @ : R™ — R™ (thus, @ is vector-valued). Then

/QdindV:/aQQ-ndS

where n is the outward unit normal. Also,

ov ou
/Q(UAU —vAu) = /89 (uan - v(?n)
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Definition 2.5. Divergence
http://en.wikipedia.org/wiki/Divergence

Let @ : R" - R", Q(x) = (Q1(x), Q2(x),...,Qn(x)). Then the divergence operator div : R” — R
is defined by
0Q1 | 0Qs 0Qn

Note that the Laplacian operator can be rewritten as

A =div -grad



http://en.wikipedia.org/wiki/Divergence

3 Summaries

3.1 Chapter 1: LP Spaces

This Chapter begins by defining an LP space and then introduces key theorems from measure theory (see
the “Measure Theory” section). First we look at the LP spaces, 1 < p < oco. Using these measure theory
results, we prove that the LP spaces are Banach spaces (i.e. complete normed linear spaces). For a sequence
of functions (f,), we remark that: convergence in LP(X) ¢ pointwise convergence a.e. However, it is true
that if f, — f pointwise a.e. and || f,||, = ||f|lp, then f, — f in LP(X). Next, we prove that L>*(X) is a
Banach space.

Now we consider LP vs. L9. In general, there is no inclusion relation. For example, if f(x) = —=, then

vz’
f € LY0,1) but f ¢ L2(0,1). Conversely, if f(z) = 1, then f € L?(1,00) but f ¢ L(1,00). We then discuss

density in LP(X). We define mollifiers (see the Mollifiers section), the open subset

Qe = {z € Q| dist(z,09) > €},

and the set ) .
P ()={u: Q>R |uelP(Q) VQcc}
P Functions Are dense in...
1 <p < oo | Simple functions, f =", a;jlg, Lr(X)
I1<p<o CV() = C(N) LP(Q), Q C R™ bounded
1<p<oo C>®(Qe) (ie. f9) Ly ()

Next, we define the dual space and present the Riesz representation theorem. Note that L!(X) c L>®(X)’,
and the inclusion is strict. We define what it means for a sequence of linear functionals (¢;) to converge in
the weak-* topology.

Definition 3.1. Weak Convergence, Weak-+ Convergence
Hunter’s 218 Notes (page 7)

A sequence (z,) in X converges weakly to z € X, written z, — =z, if (w,z,) = (w,z) for every
w € X*. A sequence (wy) in X* converges weak-* to w € X*, written w, — w, if (wp, ) = (w, )
for every x € X.

If X is reflexive, meaning that X** = X, then weak and weak-* convergence are equivalent.

Alaoglu’s Lemma tells us that for a Banach space B, the closed unit ball in B’ is weak-* compact. For
1 < p < o0, we define what it means for a sequence of functions (f,,) to converge weakly. Next, we claim
that for 1 < p < oo, LP(X) is weak compact: for a bounded subsequence (f,), there exists a weakly
convergent subsequence f,, . For p = oo, we have that L>°(X) is weak-* compact. A simple result using
Holder’s inequality is that LP convergence implies weak convergence. We also prove that if f,, — f in
LP, then {||fn|/p} is bounded (uniform boundedness theorem) and | f||, < liminf ||f,|,. We conclude this
chapter with Young’s inequality:

1 1 1
Fxallr <|fllpllgllq, where 14+ = = = 4+ =,
1f * gllr <[ fllpllgllq T=ot o



3.2 Chapter 2: The Sobolev Spaces H*(2) for Integers k > 0

We begin by defining the space of test functions, D(2) = C§°(€2), and from this we get the integration
by parts formula. We define the Sobolev spaces, W*P(Q), and the special case H*(Q) = W*2(Q). We prove
that these are Banach spaces.

Next we want to approximate W*P(Q) functions by smooth functions. We prove that u¢ € C>(£,) for
all € > 0, and that u¢ — u in WIIZf(Q) as € — 0.

We introduce the Holder spaces, which interpolate between CY%Q) and C1(Q). For 0 < v < 1, the
C"7(Q) Holder space consists of the functions

lullcon @y : = llullcog) + [ulgoq@) < oo
u(z) — u(y)|
wore s = s (MRS
z#y

We have that C%7(Q) is a Banach space.

We prove that if a function has a weak derivative, then it is differentiable a.e. and its weak derivative
equals its classical derivative a.e. We define the space T/VO1 P(Q) as the closure of C§°(Q) in WHP(Q). We
define H=1(2) as the dual space of H}(€).

Theorems covered include:

e Sobolev Embedding Theorem (2-D)

Morrey’s Inequality

Sobolev Embedding Theorem (k = 1)

Gagliardo-Nirenberg Inequality

Poincaré Inequalities
— Gagliardo-Nirenberg Inequality for W1P(Q)
— Gagliardo-Nirenberg Inequality for VVO1 P(Q)

Rellich’s Theorem

3.3 Chapter 3: The Fourier Transform

We begin by defining the Fourier transform, F : L'(R") — L>®(R"),
Ff(&) = f(&) = (2m)™? . (2)e™""¢ da

and its adjoint (equivalently, its inverse for f € S(R™)),

Ff@) =@ [ e ds.

10



Plancherel’s Theorem tells us that for u,v € S(R"™),

<]:u’]:U>L2(]R") = <’LL, U>L2(]R”) .

Here we have used the definition of the space of Schwartz functions (of rapid decay):
S(R") ={ue C®R") | 2°D*u e L®(R") ¥V o, B € Z}
={ue C®R") | (z)" | D% < Cra VkeZi}, where (z) = /1+ |z]2.

We note that D(R") := C§°(R") C S(R™). The second equality motivates the definition of the semi-norm

pe(w) = sup (2)"|D%u(z)|
z€R", |a|<k
and the metric -
d(u,v) = 27k—pk(u i)
(w,v) ];) 1+ p(u—v)

on S(R™). We say that a sequence u; — v in S(R™) if py(u; —w) — 0 for all k € Z. We define the space
of tempered distributions as §’(R"), i.e., the set of continuous linear functionals on S(R™). We define the
distributional derivative D : §'(R") — S(R™) by
(DT,u) =—(T,Du) VueSR")
(DT, u) = (=D)l*I(T, D) V¥ ue SERM).

We define the Fourier transform on &'(R™), F : S'(R™) — S'(R™), by
(FT,u)y = (T, Fu) VY ueSR"),

and similarly for F*. Using the density of C$°(R") C S(R™) in L?(R"™), we extend the Fourier transform
to L?(R"). We prove the Hausdorff-Young Inequality and the Riemann-Lebesgue Lemma. We prove two
theorems regarding the Fourier transforms of convolutions. First, if u,v € L*(R") then u v € L'(R") and

Fuxv) = (2m)" 2 FuFv.

The second result generalizes the first: suppose 1 < p,q,r < 2 satisfy % +1=++ . Then for u € LP(R")

and v € LY(R"), F(uxv) € L1 (R"), and

1.1
p g

Fluxv) = 2m)" > FuFv.

3.4 Chapter 4: The Sobolev Spaces H*(R"), s € R

We begin by defining the Sobolev spaces H*(R™), where s is not restricted to the integers, as

where (¢) = /1 + |€]2 and ASu = F*({¢)°4). We define an inner product on H?(R") as
<U, U>HS(R”) = <Asu> ASU>L2(R”) v u,v € HQ(RTL)?

and the norm is defined accordingly. We have that for all s € R, [H*(R")] = H*(R").

11



3.5 Chapter 5: Fractional-Order Sobolev spaces on Domains with Boundary

3.6 Chapter 6: The Sobolev Spaces H*(T"), s € R

For v € LY(T") and k € Z", we define

Fu(k) =1 = (27r)_"/ e FTy(x) da

We let s = S(Z"™) denote the space of rapidly decreasing functions @ on Z", where

pn(u) = sup (k)Y |ag| < oo VN e N.
kezn

12



4 Things That Are Inescapable

e Dominated Convergence Theorem (DCT)
e Monotone Convergence Theorem (MCT)
e Convolutions

e Green’s Theorem

13



5 Tricks & Techniques

when Q = B(0,1), define Bs = B(0,1) — B(0,0)
FTC to get a difference

FTC to get u(x) from 0ju(x)

polar coordinates

(Assume that) the weak derivative is equal to the classical derivative almost everywhere

Use that if
/ u(z)p(x)de =0 VY ¢ € C5°(N)
Q

then v =0 a.e. in Q.

Choose your coordinate system centered around z, which allows us to assume x = 0
Use an indicator function to allow us to extend the integral to a bigger region
Identify potential singularities and rule them out (e.g. by L’Hospital’s rule)

Cut-off functions, such as

Oz;ne(x —y) = =0y;me(z — y)

Integrate from —oo to x or from 0 to z

14



6 Mollifiers

Standard Mollifier

Indicator Mollifier

Poisson Kernel

From HW3

1
_ ) Cel=P1t |z| <1
T) =
n(z) { 0 |z >1

7 Lo

> 1—r?
() = In| in0 _
pr(6) Z e 1—2rcosf + r2
n=—oo
1 1
n(x)_;'l—f—xz
1 €
ﬁe(x)—;'m

15



7 Inequalities

Theorem 7.1. Sobolev (n =2)
page 30

For kp > 2,
max lu(z)| < Cllullywrrre)

Theorem 7.2. Sobolev (k=1)
page 36

Implied by Morrey’s Inequality.

HUHCO,lfn/p(Rn) S C”u”wl,p(Rn)

Theorem 7.3. Morrey’s Inequality
page 33

“A refinement and extension of Inequality 7.1 (Sobolev for n = 2).”
For n < p < oc:

[u(@) — u(y)| < Cr' 2| Dullo(peary) ¥ ue CHR)
Contrast with: Gagliardo-Nirenberg Inequality 7.4.

Theorem 7.4. Gagliardo-Nirenberg
page 38

For 1 <p<n:

[ull Lo (mny < CpnllDul| o wny

where
. np
p* = .
n—p

This holds for every u € W1P(R") <« since we need at least 1 derivative.

Contrast with: Morrey’s Inequality 7.3.

16



Theorem 7.5.
page 41

For 1 < ¢ < o0
lull g2y < CVallullmre)

where u € H'(R?).

Compare to: Theorem 7.8.

Theorem 7.6. Gagliardo-Nirenberg for W1P(Q)
page 46

For 1 <p<n:
[ull Lo () < Cpmellullwreq)

where 0 C R” is open and bounded with a C' boundary.

Theorem 7.7. Poincaré 1 = Gagliardo-Nirenberg for W’Ol‘p(Q)
page 46

For1<p<mnandl<q<p*
ullLa() < CpnallDullLr )

where Q C R” is open and bounded with a C' boundary.

Theorem 7.8. Poincaré 2
page 46

For all 1 < g < oc:
lullae) < CavallDull 2

where  C R? is open and bounded with a C! boundary.

Compare to: Theorem 7.5.

Inequality Overview

Sobolev Inequalities: 7.1 and 7.2

Morrey’s Inequality: 7.3

Gagliardo-Nirenberg Inequality (Main): 7.4
— Gagliardo-Nirenberg Inequalities (Secondary): 7.6 and 7.7

Poincaré Inequalities: 7.7 and 7.8

17




8 Definitions

Definition 8.1. Weak € Weak-* Convergence
page 18

If
/ Fod(z) dz — / f@)p(x)de YoeLli(X), q=-L-
X X
then
o (p#00) fr = fin LP(X) weakly.
o (p=00) fr = f in L®(X) weak-*.

The reason for this distinction is because L>®(Q2)’ # L'(Q2). Rather, L®(Q2) = M(2) = Radon
Measures.

Theorem 8.2. Weak Compactness of LV / Weak-* Compactness of L™
page 18

Given a bounded sequence (f,) C LP(X), there exists a

e weakly convergent subsequence if 1 < p < oc.

e weak-* convergent subsequence if p = co.

I suspect that the reason why L' is not weakly compact has to do with the fact that L>=°(Q) C L'(f),
where the inclusion is strict.

Definition 8.3. Sobolev Norm

page 29
For p # oo:
1/p
lallwroiey = | S 1D,
ol <k
For p = o0:

||u||Wk»°°(Q) = Z [D%ul[ Lo ()
laf<k

Definition 8.4. Embed
page 30
For 2 Banach spaces, By and Bs, we say that Bj is embedded in Bs, denoted By < Bo, if
lullg, < Cllulls, Y ue B,

The intuition is that for norms of a similar structure, every u € B; will automatically be in Bs.

18




Definition 8.5. Standard Mollifier
page 32

1
Cel=?-1 |z] < 1
xr) =
n(z) { 0 Jo|>1

Definition 8.6. Holder Norm
page 33

el o e, = mas ()

[ullery = llullgoy + 1Pull o)

Definition 8.7. Holder Semi-Norm
page 33

For 0 < v <1, we define

[u(z) — u(y)|
MW@‘%%(@—W
7Y

We also define

HUHcO,w(ﬁ) = HUHCO@) + [u]cow(ﬁ)-

Definition 8.8. TW,”(Q)

W, P(€2) £ the closure of C§°(2) in WP(Q)

Definition 8.9. H1(Q)

H™1(Q) £ the dual space of HJ(Q)

19



Definition 8.10. Fourier Transform
page 55

FfE&) =f&) =@m)™? [ flz)e " da

Rn

Definition 8.11. Inverse Fourier Transform
page 56

Ff@) = f(a) = @m) 2 | f(e)e=tde

R"

Theorem 8.12. Plancherel’s Theorem
page 58

(.FU,FU)LQ(Rn) = (U,F*fU>L2(]Rn) = (U, U)LQ(R”)

Definition 8.13. Gaussian
page 58

G(z) = (2m) /2121
G(6) = (2m) "2 €02

Definition 8.14. Schwartz Functions of Rapid Decay
page 55

S(R™) = {u € C®(R™) | 2D e L®(R") ¥ , B € Zi}

{u € C®R") | (2)F|D%| < Cha Ve Z+}

where

(z) = /1+ 22

The prototypical element of S(R™) is e~ 1*I”.

20




Definition 8.15. S(R") Semi-Norm and Metric
page 59

For k € Z4 we have the semi-norm:

pe(u) = sup  (2)"|D(z)].
z€R™, |a|<k

We have the metric:

)= Sl
1+ pr(u—v)

Definition 8.16. Distributional Derivative on S'(R™)
page 60

(DT, u) = (=1)I*I(T, D)  Vue SR

<‘fg,u> — (5)

Examples:

Definition 8.17. Fourier Transform on S'(R")

page 60
(FT,u) = (T, Fu) Vue SR
Examples:
Fo = (2m) 2
F*6 = (2m) 2
F* { 21 ”/2} 1

Theorem 8.18. Fourier Transform of a Convolution
page 63

21




Definition 8.19. General Hilbert Space: H*(R™)
page 74

HYR") = {ueSR") | (£)>ae L*(R")}

Thus, H'/?(R") is the space of L? functions with 1/2 a derivative, and H~'(R") is the space of
functions whose anti-derivative is in L.

Definition 8.20. Poisson Integral Formula
page 89

The Poisson Integral Formula is

PI(f)(r,0) = farl*lei?

kEZ

and it satisfies

API(f)=0in D
PI(f) = f on 9D = S*

22




A 3-28-11

In general, © will be used to represent a smooth, open subset. That is, Q C R?, open.

Lemma A.2.

Let Q C R? be open. Suppose v € L1 () and

loc
/Qu(x)v(x) dr=0 VYove(;Q)

(Recall: C3°(€2) is the set of functions that are infinitely differentiable and have compact support
in ©2.) Then v =0 a.e. in .

Proof. If [, |u|dz = 0 then u = 0 a.e. in . Consider the sign function, and note that |u| = sgn(u). We want
to approximage sgn with C* functions. Choose g € L>®(RY) with supp g = spt g C Q, and for the sake of
simplicity suppose that the support of g is compact. (Note: in this case, we are going to set g(x) = sgn(z).)
Approximate g via convolution with an approximate identity. Let p. be a smooth approximate identity with
[ pedx =1 and with support in B(0,€). Define

- =pe*g

Then

g @ = [ ode—vowdy= [ ple—pgt)dy by DOD

Convolution theory gives us that

1. g¢ € C§°(R2). C* is given by the DCT, and we achieve compact support in €2 by taking e sufficiently
small.

2. ¢¢ — g in L2(Q) as € \, 0 implies that g¢ — g a.e. (See Lemma A.3.)

Lemma A.3.

If g — ¢ in L2(9), then there exists a subsequence ¢¢ (z) — g(z) a.e. in Q.

Definition A.4. L' Convergence

uj — win LYQ) if [|uj —ullprg) = 0 & [, lu; —uldz — 0.

From above, (1) implies that [, u(z)g®(z)dx = 0. (2) implies that [, u(z)g(z)dxz = 0 by the DCT. To
complete the proof, let K°** C Q and choose g = sgn(u) with support on K. Then [, |u|dz = 0, and so
u =0 a.e. in K. K is arbitrary, so u = 0 a.e. in 2. O

23



3 (or 27) Steps To Proving Lemma A.3 (For proof see Example B.1)

1. Restrict to a subsequence g; such that

lgw+1 = grllzri) < o

Using this bound, the goal is to convert from Cauchy in LP to Cauchy pointwise a.e.

2. Conversion to a monotone sequence:

a=0, @=|g—gl+lnl, a=I93—9+92— 91|+ |91

n—1

=Y _ g1 — il + g1l
=1

Then 0 < ¢ < ¢ < q3 < ..., so we have a monotonically increasing sequence, g, € L?, and by the
MCT we get that ¢, ~q € L?

24



B Section 3-29-11

Given: (g,) C LI(X), gn — ¢ in Ll(X) = ILm llgn — gl =0
n oo

Prove: There exists a subsequence (gy,;) such that g,, — g pointwise a.e.

Proof. Construct a pointwise Cauchy subsequence.

Aside: Consider a sequence (a,) that satisfies a, < ap41 < ...
If it is bounded then it is convergent, and hence Cauchy.
If it is unbounded then it is not convergent.

Since lim |lgn, — g|[z1 = 0, the sequence is convergent, so it is bounded, so there exists M such that
n—oo

|gnllzr < M. We can choose a subsequence (gy,) such that

1
Hgnj - gnj—l” < 27

Now we construct a function h;(x) that is a sum of measurable functions:

J
hy(@) = |gn, (@) + Y g () = gy, ()]
k=2

We can bound the L! norm of each hj:
175l < llgnillpr +C
By the Monotone Convergence Theorem, jlggo hj(x) = h(z) (pointwise limit a.e.) € L'(X) and ||h;—h| — 0.
The sequence (h;(x)) is Cauchy a.e. Therefore, (gn,(2)) is Cauchy a.e. because
|90, (2) = gny ()| < hyj(x) = hi(z), G >k

Therefore, lim g, (z) = ¢'(z). We know that
j—00

(z) Vj (B.1)

However, we don’t know that the pointwise limit ¢’ is the same as the strong limit g. We must show that ¢’

is the strong limit of (gy,). Expanding on (B.1), we write
|9n; ()| < hj(x) < h(x) V)

Use the Lebesgue Dominated Convergence Theorem to show that ¢’ = g a.e.:

n—oo

lim /‘gnj —g'} dr=0= lim Hgnj —g’H =0, ‘gnj —g" <2h
n—oo
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3 Important Theorems from Measure Theory

e Monotone Convergence Theorem
e Lebesge Dominated Convergence Theorem

e Fatou’s Lemma

MCT = Fatou’s Lemma

Recall: Fatou’s Lemma states that:

/ liminf f,, dz < hm 1nf/ fn(x)dx
Q

n—o0

Proof. Start with the definition of liminf. For a given sequence (a,), let

Ty = mf am
m n

(z5,) is an increasing sequence, and

lim z, =

n—o0

exists = liminf,,_.o an
00

Assume that f,(z) > 0V n. Define
gn(x) = nf fr(z) >0 (B.2)

g is measurable, and

Somehow we get

lim [ gn(z)de = / liminf f,(z) dz
Q Q

n—oo n—o0

/ z)dw < mf/fm

/liminf fn(x)dx <lim 1nf/ fnlx
Q

n—o0 n—oo

Fatou’s Lemma = LDCT

Given: f,(z) — f(z) a.e., |fu(x)| < g(x), where g 6 LY(X)
Prove: f € L'(X) and limy,o0 [ fn(z)do = [y f(x)dx
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Proof. First, show that f € L!. Integrating the inequality |f,,(z)| < g(z) gives us

[ )i < [ gte)do

Taking the limit as n — oo, we get that

[ 1@l de < timint [ 1f.@)lde < [ g@)do

lim sup?
So f e L.
Define
hn=gt f. >0
Adding;:

/g—i—fdxglinr_l)inf </gdx+/fndm>
g/gdx—klirr_l}inf/fndm
/ fdx <liminf [ f,dx
n—oo

where the simplification from the first line to the second is allowed because g is constant, so [ (g + f) dz =

[ fdx.

Subtracting:
/g—fd:c < lirginf (/gdx—/fndm>
—/fd:c < lim inf <—/fndﬂs>
n—oo
/fda: > limsup/fndx

n—oo

where the change form the second line to the third is because liIr_l> inf(—a,) = —limsup a,,. Thus, we have
n—00 n—00

limsup/fndxg/fdxghrr_l)inf/fnd:rglimsup/fndx

n—od n—oo
and therefore

lim fn(m)dx:/xf(:c)dx

n—oo b'e
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C 3-30-11

Definition C.1. LP Spaces

Given ©Q C R? open and smooth, we define

LP(Q) = {u : Q — R measurable ‘ lull p (@) < o0}
L¥Q) ={u: Q=R | |u(z)] < C ae. }

ey = [ @) de 1<p< o0

Fact: for 1 <p < oo, LP(2) is a vector space.

Definition C.3. Conjugate Exponent

For 1 < p < 0o, we define the conjugate exponent ¢ such that

Theorem C.4. Hoélder’s Inequality

If f € LP and g € LY, then fg € L' and

gl < WIfllzellgllze

Theorem C.5. Minkowski’s Inequality

If +glle < [ £llLe + llgll e

Corollary C.6.

LP(Q) is a normed vector space.

Fact: L? is a Banach space.
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Theorem C.7.

For 1 < p < 00, Cg(R?) is dense in LP(R?).

Lemma C.8.

On a bounded domain, i.e. || < oo, for 1 < p < g < oo, we have L? C LP with continuous injection,

and )

1
ullr) < 217 9 ||ullLa(a)

Proof. (Sample)

u(z)dr = [ u(z)-lde < 1dx v lu(x)|? dz "
Q Q Q Q

(By Holder’s Inequality)

Prove L'(2) N L>(£) is dense in LP(Q) for 1 < p < oo.

Proof.

Q=U;2,Q, with [Q,] < oo
u € LP(Q) = u, = 1, tn(u)

Definition C.10. Indicator Function

1 1 ze€eFE
E=3 0 otherwise

Definition C.11. Truncation Operator

w if |ul <M

tar(u) = { Mt if u > M
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Prove u € L*(Q) N LY(Q) | ullz1) < 1} is closed in L2(1).

Proof.

Uy — U, uneLlﬁL2

Up, — u(x) a.e. in

/ |u(z)| dz < lim inf/ |tn,|dr <1 (Fatou’s Lemma)
Q Q

Definition C.13. Compactly Contained (CC)

M CccQe O CKPCO
We say that € is compactly contained in €.

Definition C.14. L (Q)

LP

loc

Q) ={u: Q=R |uelP(Q)VQccQ}

Definition C.15. (),

Qe ={z€Q|d(z09) > e}

Definition C.16. Mollifier
http://en.wikipedia.org/wiki/Mollifier

Mollifiers are smooth functions with special properties, used in distribution theory to create se-
quences of smooth functions approximating nonsmooth (generalized) functions, via convolution.
For example,

1
oy ={ Com () B<L o,
0 |z|>1

Lp@de=1. peCE®). ot () © BO.Y
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http://en.wikipedia.org/wiki/Mollifier

Definition C.17. Dilated Family

It follows that
/ pe(z)dz =1,  spt (p) C B(0,€)
Rd

Definition C.18. f¢

For f € L (Q), set f€ = pc* f.

loc

Note: f€: Q> R, ¢ > 0.

Theorem C.19.

For f¢ € C®°(Q°), fé(z) — f(z) ae. f € C(Q) = f¢ — f uniformly on compact (?). If f €
LP(Q), p € [0,00) then f¢ — f in LP(€).

Proof. Choose h small such that z + he; € ), where e; is a basis vector of R%. Consider

fé(x +he;)) — f(z)  [pape(®+he; —y) — pe(x —y) f(y) dy

h h

The underbraced term is bounded by %gg: by the Mean Value Theorem. So by the DCT, we can pass to

the limit as h N\ 0. O
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D 4-1-11

Theorem D.1.

fe— fin L} ()

Proof.

(@) — f(@)] = /B el — )y

_1 x

y) (@) — F(y)] dy

In general, it is true that

L
ed B(z,e€)

by the Lebesgue Differentiation Theorem (Theorem 1.11). Thus, fe(x) — f(x) a.e

s - sy < o5 [ (9)]dy — 0

If f is continuous on € then f¢ — f uniformly on Q CC Q. The proof relies on showing that f€ e LP.

Given: )y CC Q; CcC Q
Want: er”Lp(Qz) < CHfHLP(Ql

o) < /B( eIy
z— N (z — )1/P 1 1:
</ e e =) )] dy (p+q 1)
1/q 1/p
< </Bpe(w—y)dy> (/B(QE’E)pe(:E—y)If(y)l”dy)
fﬁ<x>|ps/3( eIy

€ Pd (T — Pdyd
[ i) “/w)/m,e)”‘”” ()P dy dz

P dx d
<[ [ ey dedy
/ / pe( ) f(z —y)|Pdydz (change of variables)
(2)

/ / flx —y)|P dxdy
B(0,¢)( Qa(x)

Py — P » -
[ pera= [ = [ er [ -

=1

Note that

We can control (D.1) by integrating over €.
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C(£2) is dense in LP(€).
Choose g € C(£4) such that ||g — f| 1»(q,) < €. Then

1f = fEHLP(Qg) <|f- 9||LP(QQ) +llg — 9€||LP(QQ) +[lg° — f€||LP(QQ)

and

19° = fNlir(s) = e * (9 — vy = II(f = 9) Ml zr ()

Let p1/, be mollifiers with spt p,, C B(0,1/n). Let u € L>®(RY) and z, € L*®(R%) such that
zn(z) = z(x) a.e. and ||zp||pe < 1.

Let vp, = pyn * 2pu and v = zu.

Show that v, — v in L(B) for any ball B C R%, ie. [,|v, —v|dz — 0. Also show v, — v in L™
weak-x*.

Proof. Let By = B(0,1), B2 = B(0,2), wy, = p1/n * 1B, 2nu.
Then v, = w, on Bj.

/ |vp, — v|dx = / |wy, — 1p,v|dx < / |wp, — 1p,v| dx
B1 B R4

Finish this using the triangle inequality.
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E 4-4-11

Theorem E.1. Riesz Representation Theorem

Case 1: 1 <p< 0
If ¢ € LP(Q)', there exists u € LY(Q) (where ¢ = ;25) such that

o(f) = /Q wfde Y FeIP(Q), [l = lull

Case 2: p=1
LY(Q) = L*(Q), and the Riesz Representation Theorem states that for every ¢ € L'(2)' there
exists u € L*>(Q2) such that

o(f) = /Q afde¥ f, [loqy = lulli=)

Case 3: p=
L®(Q) # LY(Q), L>®(Q) = M(Q2) = Radon Measures

Fact: L>(Q) C L'(2), and the inclusion is strict

Let ¢o be a continuous linear functional on Cp(RY) with

¢o(f) = f(0) ¥ f € Co(RY) (E.1)

By the Hahn-Banach Theorem, we can extend ¢y to a linear functional ¢ on L*°(R?) such that
(f) = f(0) ¥ f € Co(R?). Suppose (for contradiction) that there exists u € L'(R?) such that

o) = [ urdey e Lx®)

Then [pqufdr = f(0) =0V f € Co(R?) such that f(0) = 0. Then u = 0 a.e. on R?\ {0}, which
implies that u = 0 on R%, and thus f]Rd ufdr =0V f € L®(R?), which contradicts (E.1).
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Definition E.4. Weak Convergence

For 1 < p < oo, fn converges weakly to f in LP, written f,, — f, if

/fngdxﬁ/fgdeQELq(Q)
Q Q

Definition E.5. Weak-x Convergence

(Recall: L'(Q2) = L*(Q2), but L>®(Q) # L'(Q))
frn converges weak-x to f in L>(Q), written f,, = f, if

/fngdx%/fgdegELl(Q)
Q Q

Problem D.2 revisited

Let u € L>®(RY), [2nll oo (ray < 1, and 2,(x) — 2(z) a.e. Let v, = p1yp, * (2nu) and v = zu. We
showed that v, — v in LL_(R?%). Now show that v, - v in L=(R?).

Hint: Let p(z) = p(—z) in R Then [pa(p* f)oda = [pu f(p * ¢) da

Let U € L?(R) and let u,(z) = U(z +n). Show u, — 0 in L?(R). In other words, we want:

/ Un (2) () dz — 0 as n — oo ¥ ¢ e F(R) simple functions with compact support
R

Lemma E.8.

If f, = f in LP then

L. HfHLp <liminf, anHLP
2. fpn is bounded in L?
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Theorem E.9.

If 1 <p<ocand |fallLr) < M, then there exists a subsequence that converges weakly in LP,
fre — fin LP(Q).

If p=oc and [|fullp=(@) < M, then there exists a subsequence that converges weak- in L>°(€2),
fa = fin L(Q).

Theorem E.10. Young’s Inequality

If fe L' and g € LP, then f g € LP and

1f*glle <[l fllzrllgllze

More generally,
1 1 1
If *gllr < I fllzallgllr  where =4+ 1=~ 4 -~
r P q
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F 4-6-11 (Sobolev Spaces)

1-D:
2
% =f in(0,1)
u(0) =u(1)=0
fec’0,1)

We know by definition that if u € C2(0,1) then f = 32775‘ € 0%0,1).
Question: Given f € C°(0,1), is u € C%(0,1)? Yes, by the Fundamental Theorem of Calculus.

2-D:

Vu=f inQCR?
u =0 on 0f)

1. If u € C?(Q) then f € C°(Q)

2. Let u=V~1f If f € C%Q), is ue C?()? No.

C* () is not a good functional framework.

Definition F.2. Weak 1st Derivative in 1-D

For u € L{. (Q), © C R open, if there exists v € L{, .(2) such that

loc
/Qu(x);li dx = —/Qv(m)gb(x) dx

then v is the weak 1st derivative of w.

Definition F.3. Sobolev Space W'P(()

WhP(Q) = {u € LP(Q) | 1) weak derivative v exists, 2) v € LP(Q)}

Notation:
We denote 2 = v, and in 1-D o' = v. Thus, WP(Q) = {u € LP(Q) | v/ € LP(Q)}.
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Definition F.4. Norm on WP(Q)

/p
lallwroey = (1l 0 + 1100 )

Definition F.5. Topology of C* ()

bn — ¢ in C®(Q) = D(Q) if

1. spt (¢, — @) CK CCQVn
2. D*¢p,, — D¢ uniformly on k

Fact: C°°(Q) is not normable. The dual space D'(2) is even worse.

Is u(x) = |z| for Q = (=1,1) in WHP(=1,1)?
Step 1:

Step 2: Yes, u € WHP(Q).
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Definition F.8. Weak Derivative

Given: u € L{ (Q), Q C RY « is a multi-index.

loc

If there exists v(®) € LL (Q) such that

loc
[ wla) () dz = (1) [ VO @poa)de Vo€ CRO
0 0
then v(®) is the a-th derivative of wu.

Notation: Denote D% = (),

Definition F.9. W7 (Q)

WhP(Q) = {u € LP(Q) | 1) v exists in L., 2) v(® € LP() ¥ |a] < K}
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G 4-8-11

Definition G.1. Norm

For every u € WFP(Q),

1/p

[ullwes @) = Z [ Dul| Lo () , 1<p<oo
|| <k

Theorem G.2.

WFkP is a Banach space.

Proof. Consider WP, Let (u,) be any Cauchy sequence in WP. So u, — u in LP(2) and the weak
derivative Du,, — v in LP(Q2). We want to show that v is the weak derivative of u, i.e. that

/Qungd:U:—/ngd:U

We know that this is true by the Dominated Convergence Theorem. O

Lemma G.3.

If up, — w in LP strongly, then w,, — u in LP(Q2).

Proof. Holder’s inequality. O

Definition G.4. Convergence in a Sobolev Space

We say that u, — u in WHP(Q) if ||u, — ullwrp(y — 0.

We'll see that

Wl = {absolutely continuous functions}

W% = {Lipschitz functions (uniformly continuous)}
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Notation: H*(Q)

For p = 2, we say that K*(Q) = W*2(Q), with k =1 or 2.

Consider HY(Q). If k = %, where d = dim(Q), then f € H*(Q) = f is continuous.

(2-D) Let u(x) = |=|'/? and Q = B(0,1). For which values of p is u in WhP(Q)?
Step 1: i. [Jul|r(@) < 00, il. u has weak derivative v, iii. v € LP(Q), [[v|1r(0,1) < 00

/|u]pdac—/ |z|P/? dz < 0o V p € [1, 00)
Q B(0,1)

Step 2:
Ou :}m—lﬂim 1 =

dz; BPITEE

9 1/2 e ~1/2
.
|| = (E szxz) =>|90|:§ (E SUz%) '2$i:ﬁ
i=1 i=1

Guess that v(z) = 3 - " |3/2 Goal: prove that [, uar dr = — [qu(x)p(z)de ¥V ¢ € CF°(Q).

Note that the weak derivative in multiple dimensions is synonymous Wlth the weak gradient.
Remove a ball B(0,9)) from 2 to get the region Q5 = B(0,1) — B(0,d). Let n; denote the ith
component of the unit normal on the boundary. Then by Integration By Parts / The Divergence
Theorem, we get

for x # 0

This is true because

¢ o ou
/ u(x )8:1:@ dox = /BQ(; om0 u(z)p(x)n; dS o, 8xi¢(x) dx

2
1/2 , _Z

|n1\ 1
2w 1 2w 1 3
<52 /O o@yan+3 [ /0 Lo o] 162 da
—0 as 6—0 see n;):t line

1 2 1 B 1 2m 1 B
5[ [ ol Pe@lde =5 [ [ 162 jo,0)] varas
0 0 0 0 Hzl—’

dominating
function

By the Dominated Convergence Theorem we can pass to the limit as 6 — 0, and this second term
goes to — [, v(2)¢(z) dz. Thus, v(z) = 3 - lIT;/Q.

For what p is v € LP, i.e. when is [, |z|7?/2dz < 00?

Answer: switch to polar coordinates and get that p < 4 (Shkoller thinks)
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Sobolev Embedding and the Fundamental Theorem of Calculus

max |u(z)| < Cllullyrrqy, ¥ u € C57(52) and x € spt (u), 2 C R?, kp > 2
Dimension d = 2, so suppose p =2 =k > 1. Butif p =35, k > 2/3 = k = 1 “works,” and W3

now consists of continuous functions. Choose a coordinate system such that = = 0.

u(r) = — /Tl Osu(s,0)ds

We need to address issues:

e Integration by parts

e Cut-off functions

42




H 4-11-11

Theorem H.1. Sobolev Embedding Theorem (2-D Version)

mzzo% : [u(z)] < Cllullwrr) ¥V u e CH (), kp>2
zespt (u

where C' = generic constant = C'(k, p, 2, d).

Proof.

| (@)] < Cllullyrr) ¥ @ € spt (u)
Shift z to 0: [u(0)| < C(r) Y [[D%llL»

|a|<k
By the Fundamental Theorem of Calculus,
¥ ou
—u(0) = 0)dr
u(w) —u(0) = [ S(r.6)

Choose 1 € C§°(B(0,1)) such that y =1 on B (0,3), ¥ =0V |z| > 2. Replace u — tu.

Yl / ar v
= [ 2 wwar
S
IEP/Olng(wu)dr—Wrg

1
[ " () dr

We are missing 3 things: 1) lower order derivatives, 2) integral over 2-D region, 3) powers of p.

x=rcosf, y=rsinf
% = cos 9% + sin 0(;1 = A(0) - (8(1 ; ) AO)D, AeC™(0), D = gradient
9? 5  OF .
52 = A(0)D* = ok = |Z<kA (0)D* (chain rule for smooth terms)
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Then continuing from (H.1), we get that

ck/ rE=1 N " A%(0) D (¢hu) d

|a| <k
2m
= Ck/ / k=2 Z A%(0) D% (yu) rdr do (integrated over 6 from 0 to 2m)
la|<k Lebesgue
= :
p(k=2) v
<C / r »=1 rdrdf Z / | D (Yu) [P dx (Holder’s Inequality)
B(0,1) o<k’ BOD)

p(k 2)

The first integral is legitimate when +1>—-1=kp>2.

The Poisson kernel gives us the solution © = P, * g to

Au=0 1in B(0,1)
u=g¢g on dB(0,1)

But what if we have an irregular domain?

Motivation:
Let v € C§°(2). Then we have
2
—/Auvdq:: 07u vdx = u Ov dr — Ou —un; dS
Q q 0z;0x; q Ox; Ox; o0q 0T;
0%u
=— d
Q a%z‘al'iv v

B _/ 0 ou B ou Ov d
o q | Ox; G:BZ'U 0x; Ox; v
ou Ov 0 ou
~ Jo Ox; Ox; du = /Q Ox; <3$z‘ U> e
:/Du-Dvdw—/div (vDu) dx

Q Q

Joq vDundS

where n; is the ith component of the outward unit normal and %Z = Du - n. Thus, we have

Classical Form: New Form:
Au=f infl /Du-Dvdx—/ OUsIS =0V v e CE(Q)
u=0 on 0N Q n

since v=0 on OS2

/Du'Dvdmzo vV ve i)
Q S——
veH (), v=0 on 9N
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Remark H.3. Notation: Einstein Summation

@ B zd: 0%u 0%u
N i=1 0

Remark H.4.

Fact: C5°(Q) is dense in a certain subspace of H((2).
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I 4-13-11

Theorem I.1. Morrey’s Inequality

Given: y € B(z,r) CR%, p > d. Then

[u(z) —u(y)| < Or'=7 || Dullo(pary ¥ ue CF(Blx,2r))
N———

or C1

Corollary 1.2. Sobolev Embedding (k=1)

whr s CO,l—d/p(Q)
There exists C' > 0 such that [[ul|co.1-a/p@) < Cllullwieg) Y ou € WhP(Q).

Definition 1.3. C"7(Q)

C%7(Q) = Holder space with the norm given by

lulloon = llull o + oy

u(z) — u(y)]

[U]CO,V(Q) = max p—T

this interpolates between C? and C'.

Notation: f

f f(z)de = |—1| Jo f(x) d = average value of f over Q
Q

Lemma 1.5.

[Du(y)]

—dy  y € B(z,r)
B(z,r) |I - y|d !

f ) iy <c
B(z,r)

Proof. (2-D) ‘ A
y=xz+ se?, se (0,7), e e S =0B(0,1)
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u(y) — u(z) = u(z + se?) — u(z)

:/ Or(z —i—Tew)dT FTOC
0
= / Du(z + 7e?)e® dr chain rule
0
lu(y) — u(x)| < / | Du(x + T6i0)| dr
0

2T 2T S
/ uly) — u(z)| do < / / \Du(z + re%)| dr df
0 0 0
< /27T *|Du(z + 76i6)|

T
2 s
< [T [,
0 o |z—yl

<[ I,
) ly —
T 27 ’DU

/ / lu(y) — u(z)| dO dr </ / dydf
0 0 (z,r) |y -
» p—1
1 \#1 z v
][ lu(y) —u(z)|dy < C (/ <d1> dy) (/ | Du|P dy) Holder’s
B(z,r) B(z,r) \S B(z,r)

Let Z = B(x,r) N B(y,r). Then

Tdr df
~——

measure

=

u(z) —u(y)] < Ju(z) —u(2)| + |u(z) — u(y)]

Integrating this over Z gives

Theorem 1.6. Interior Approrimation

C>®(8) is dense in WHP(Q), meaning that for every u € W*P(Q) there exists u¢ € C*(€2,) such
that

u® — u in VV{Z’CP(Q)
u€ — uin WHP(Q)V Qcc Q
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Suppose that v(®) is the ath derivative of u ¥V |a| < k. We want to show:
DU — v as e \, 0 in L7 .(Q)
Why is u¢ smooth?
Let u® = pe * w. This is smooth by the LDCT.
DO‘/Q pe(x — y)u(y) dy = / Dy pe(z — y)u(y) dy
. Dt

1)lel /Q pele — )o@ (y) dy
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J 4-15-11

Lemma J.1. Review from Last Time

Let y € B(z,r). Then

[Du(y)|
u(y) —u(x)| dy < C/ dy
][B(m,r) ‘ ( ) ‘ (z,r) |y - |d !

Idea: y = z + sw, w € S9!

" D
/ / lu(z 4+ sw) — u(z)| dw </ / [Duly d ldy s lds
0 Jgd-1 B(z,r) ’y - :E|

dld

Theorem J.2. Review from Last Time

u(y) — u(z)| < Cr'=?|| Dul po((rary) Y ueC!

Morrey’s inequality comes from Holder’s Inequality:

» p—1 1

—1 p D
/<d11>p " 501 s du </ Du|pdm>p
B \$ B

Integrability determines the embedding (integrability requires p > d).

Theorem J.3. Sobolev Embedding Theorem (k=1)

p>d, WhP — ¢O1=d/p
lullgoa-a/nay < Cllullwrpgay ¥ ue WH(R?)

Example: d =1
HY — C%1/2 (1 derivative gain)

Density

For  bounded, C*°(Q) is dense in W*P(Q) for 1 < p < occ.

RY: C$°(R?) is dense in WhP(RY).

Proof. (Sobolev Embedding Theorem, k = 1) Suppose we are working with C3(R%). Morrey’s Inequality
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gives us that

uy) — u(z)|

T S CllDullze(B(z,2r)

So it suffices to prove that |u(z)| < Cl|ully1p(ra)-
|u(y)—u()|

Recall: by definition, [[ul|co1-a/pgae) = max |u(x)| + max =T

wwnsémﬁmw—meyyé@mewy

D
scf DU 4 e
B(z1) [y —

< Cllullwrrmay YV ue CLRY), z € spt (u)

Suppose there exists u; € C§°(R?) such that u; — U in C%1=4/P Then U = u a.e., and

lujllgoa-am < Cllugllwr.n

||U||0071—d/17 < CHUHWM

Corollary J.6.

If d < p then the weak derivative of u € WP is equal to the classical derivative a.e.

Theorem J.7. Gagliardo-Nirenberg
Suppose d > p > 1. Let p* = %' Then
[ull o= (may < CllDul| Lo gay VoueWwh?

(For example, if we have d = 2 and p = 1 then p* = 2 and ||ul|z2 < C||Dul|11)

Hardy’s Inequality

Suppose 2 = (0,1), u € H', u(0) = 0. Then “ € L?(0,1), and

T
u
15] .. < Clullm
T

£2(0,1)
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Hardy’s Inequality (Simple Version)

Suppose 2 = (0,1), u € H', u(0) = u(1) = 0. Prove

X

/
L, <2l

(HINT: Let v = ¥ so that u = zv.)
WANT: ||v]|r2 < C||(zv)| 2.
(zv) =z’ +v € L?

1
w2 fv=0 = wv=—¢L>
x
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K 4-18-11

Theorem K.1. Hardy’s Inequality (from last time)

Let u € H'(0,1), u(0) =u(1) =0 (u € Hj(0,1)).
Then % € L?(0,1) and

Recall: HuHH1 0.1) HuHL2 o1 T Hu’HL2 0.1)- Thus, we need to prove that

|2l
T

< Cllu
ey < Cllulmio

< c||u
o S 14| 20,1

Proof. Let v =% = u = zv. Want: [[v| 2 < C|(2v)'||2 = Cllav" 4 v]| 2.
Formal computation:

Jzv 4+ 072 = (zv' + v, 20" +v)

1
_ 2,12 / 2
—/O(xv + 22v'y +v7)dx

cross-term
CcT

1
CT:/ Qx@vdx
0 dx

1 d 1
:/ d|v|2da::—/ lv|? dz
0 ar 0
lzv" + vlf2 = [l2v'||72

But how do we make this rigorous?
Start with smooth functions and show that

lvllz2 < C|l|(zv) |2 ¥ u smooth

H%‘ < O|lu||gz ¥ u smooth, C5°(0,1)

Then v € C§° and li{‘n zv? = 0. Using this dense subset of smooth functions rules out singular behavior.
x

L2
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Sobolev Embedding (Scaling)

lull oo ny < C (lullzr (R™) + [ Dull pony) ¥ w € WH(R™), p>n
Let v(z) = (%). Then v € WP and

[0]| Lo (rny < C (l|v][Le + [| D] Lr) (K.1)

Compute ||v||r and || Dv||Le:

| wawde= [ fu(5) dw=x [ jowrray

[ e = [ |pu(E)] ar=xs [ pute)iay
n n Rn

where the A" term in the first equation is due to the Jacobian. Plugging these into (K.1) yields

n n—-p
Jullz= < € (A flull o + X"7" | Dulz» ) (K.2)
Minimize the right hand side by taking a derivative with respect to A:

n_ n_ n — n_1_
= Ylul| e + Tpm 1 Dl o

—)\571 {HUHL + A 1 ”DUHLP:|
D
a= 10U )
[l Lo
Plugging this into (K.2) yields
n R4l
<o (1Pul” o, 1Dl
Juf| e < /- llullze e
el
[ull 7

p—n

< OIDulg ullZ . n<p

Note: % + % =1.
This result is called an interpolation identity.
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Green’s Function

Consider —Au = f in R™.
A Green’s function G(x — y) satisfies —AG = § in D'(R"™).
The solution is given by u = G * f, and G is called the fundamental solution.

2-D: G = Clog|z|
1

3D: G=C-—
||

Note that these functions are smooth everywhere except the origin; they are very singular at the
origin.
Suppose § € C5°(R™) with 6 = 1 in a neighborhood of 0.
F=0G
—AF =0—1, ¢ € C5°(R")
u=—u*xAF +u") =Dux DF +ux*1

Young’s Inequality:
[ulle < C([[Dul|ze | DF|[La + [Jullze 1]l 2a)

DF e L9 p>nand ¢ € LY.
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L 4-20-11

p >n = Classical differentiability
p < n = Gagliardo-Nirenberg

lull o+ @y < CllDullpoeny ¥ u € C5(R™)

where p* = 1<p<n.

np’

Scaling Argument
If this holds for u(x), x € R", then it holds for v(z) = @, AeR.

”UHLP*(R”) = )
H
HDUHLP(R") =\ HDUHLP(]R")
n—-p_ n
lull o gy < CAUT* 5 Dt oy

we must have that

n=2 1<p<?2

p=1 Pt = ||UHL2(]R2) < C||DUHL1(R2)

p=35 p'= [ull o2y < CllDullg3/2(me)

b= %88 p* =398 ||u||L398(R2) < CHDU||L199/100(R2)

p/ 2 pt =00 |ullpeme) £ ClIDullp2re) £ Cllul| g

Theorem L.3.

(n=2=p) Vqelo0):

Jullporey < Cvallullgey ¥ u e CH(R?)

Proof of Gagliardo-Nirenberg (n = 2)
Step 1: p =1, p* = 2, prove ||ul|;2 < C||Du||:

2
/ / u(xy, o | dr1dxy < C </ / | Du(z1, z2)| dxq da:2>
<C </ / |Du(x1, 22)| dxy d$2> (/ / | Du(xy, x2)| day dx2>
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We want to apply the Fundamental Theorem of Calculus.
1 T2
u(z1, w2) = / Oru(y1, v2) dyr = / Dou(r1,y2) dys
—o0 —0o0

|u(z1, 2)] S/ |01u(y1, x2)| dyr

—00

< / |01u(z1, y2)| dyo

—0o0

(s, 22)] < / Dulyr, 22)] dys / Dulay, y2)] dys

/ / u(z1, x2)|dry drg < / / / |Du(yy, x2 |dy1/ | Du(x1,y2)| dyadxy dao

|u| +— |ul”, plus Holder’s inequality for the general case.
Reminder: we want to prove
lullorey < Cvallullmgey ¥ ue Ci(R?)

Proof. Let r = |y — x|. Let 1 be the same cut-off as in proof 1 of Morrey’s Inequality.

27 |Du

x)| <
w—ﬂ
< / 2 13@,1)@ — | Duy)| dy

< K %« Du

where K(z) = 13(071)]x|_1. We employ Young’s Inequality:

lull Larey < N5l Lk m2)l| Dull L2 m2))

1 11 2q
SHl=c4s = k=
q+ k:+2 244q
2
1 c il 4
drdf ~ ——r*7F Q= —
.A A e e 5 2+q
2\ /¥ 1 2
fullr < e (52) " 1Duls =2t

< c¢y/q||Dul|2  in the limit
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M 4-22-11

Definition M.1. C' Domain, Localization

Let © C R™ be open, bounded, and have a C' boundary. This means that locally around each
point, each region is dipeomorphic to R”. A domain is C" if

1. there exists an open covering on 9§ by K open sets {U;}5X

2. Forl=1,...,kand 0; : V; C R" — U; with the following properties:

(a) 6; is a C*! diffeomorphism (the map has an inverse which is also C1).
(b) 6;(V;") = U; N Q (the upper half of the unit ball is mapped into )
(¢) 6;(B(0,7) N {zn, =0}) = 02N U, (known as straightening the boundary)

k
3. there exists a collection of functions {1, }¥_, such that 1, € C§°(U;), 0 < v < 1 with > () =
=1
1V ze Ul

The idea behind these partitions of unity is that if we have u :  — R, then

k
u=u (Z wl(x)> =
=1

= l

(Yru) ().

k
=1

This is called localization.

We may define u; = ¥yu with u = > u;. We can then remap by defining (for each 1), U; = u; o 0,
with U; : V; = R. Then each U is zero on the boundary of these open sets. The idea now is that if
we can do what is needed on a half-space, then we can do it on an arbitrary domain.

Definition M.3. H} (1)

We define Hg () to be the closure of C§°(Q) in the H;(f2) norm.

We'd like to say that H(Q) = {u € H(Q) ‘ u =0 on 0Q2}. The problem is that since the boundary
has measure zero, U ‘ aq 1s only defined up to equivalence classes.

Theorem M.4. Trace Theorem

There exists a continuous linear operator T : H(2) — L?(99) such that

L Tull 20y < cllullmo)
2. Tu= u‘ag for all u € C°(Q) N HY(Q)
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Proof. Suppose first that u € C(Q). Then
K
ul?ds S/ Du)|? ds
foletds < [ S it
< Z/ |ul’2d81

oaNy;

where u; = ¥;u. We check each summand:
/ |ul]2 ds; = / ]ul|2 dsy
0Ny, 0;(Vin{zn=0})
:/ lu; 0 6|?| det DOy dxy - - - day_q
Vin{z,=0}

)
=— —— |ug 0 6;|* det D, dx
‘/l+ 8.%'”

where the arguments follow by localization, a change of variables and the divergence theorem. We use the
product and chain rule to arrive at

C/ u109l\|Dloélldaz§/ |ul\|Du1]d:c
vt U;nQ
A change of variables yields the inequality in the line above. Then applying Cauchy-Schwarz gives us
¢ fullDulde < Clul: + [ Dul-
U,nQ

We then sum over all [ to yield the result. Let {u;} € C°°(Q) converging in H*(Q) to u. Then
1Tw — Tup||12(a0) < Cllur — upl| g1 (q)-

We know our sequence on the right converges, so the one on the left does as well. Hence, this defines the
operator T'. 0

The goal behind the Trace theorem is to use

/ :L‘l dacl / / .%‘1,.%'2 da:l dm'g

and use the partitions of unity.
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N 4-25-11

HYQ) = {ue HY(Q) | u=0o0n 00} = Co()"

Theorem N.2. Poincare Inequality

lullr() < ellDullrz@) ¥ ue Hy(Q)

Corollary N.3.

There exist constants cq, co such that

cillull i) < 1Dull 2 < collullgi) YV u € Hy(Q)

ull g2 () = [1Dull72 (0

Definition N.4. — in H}(Q)

Uy, — u in H&(Q) iff ||Duy, — DuHLz(Q) — 0.

Definition N.5. — in H'(Q)

un — win H'(Q) iff (un, ¢) = (u,¢) V ¢ € [H(Q)]

FACT:
[H'(SY)) = H (S
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Definition N.7. H ()

—Au=f inQ (N.1)
u=0 on df

Definition N.9. Weak Solution

u is a weak solution to (N.1) if

/Du-Dvdm:/fvdx Ve Hy Q)
Q Q

Equivalently,
(Du, Dv)r2(q) = (f,v)12(0) (N.2)

For any f € L?(f2) we have a unique solution to (N.1) because
(u, U)H&(Q) = <f,U>H37H—1 fe H_I(Q)

There exists a unique u € Hg(Q) solving (N.2) by the Riesz Representation Theorem.

—div(A(z)Du) = f inQ (N.3)
u=0 on 00

1] _ :

NOTE: in previous example(s) we had A% = [Id]”, and thus |, g—; g;l_ dx
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Definition N.12. H}(Q)) Weak Solution

u is an Hg(Q) weak solution to (N.3) if

ou 0O
/QA (;E)asja;}l da:—/fvda: or (f, >H1 ) Vo € HY ()

Suppose there exists A\, A > 0 such that A < A%(z) < A. We have an H'-norm because

A(Du, Dv) ) < / A9 ;: g;) < A(Du, Dv) 20
J i

H1() equivalent norm V ueH} ()

Let © = (0,1), a(y) = 1-periodic function, 0 < XA < a(y) < A, a*(z) = a (£). Given f € L*(0,1),

—% <a€(x)cf;§> = in(0,1)
u*=0 ond0,1)=u(0)=u(1) =0

GOAL: u* - u as € — 0.

a¢ S ain L=(0,1), a= [, a(y

GUESS: — & (af) = —a%y = f = COMPLETELY WRONG!
ANSWER: —-L v — ¢

In general:
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Weak form: Given f € L?(0,1), find u € H{(0,1) such that

L dudv !
/Oa(x)dxd:vdx_/o fvdx Vv e Hy(0,1)

1. V € > 0, there exists a unique solution u¢ € HE(Q)

2. Let v = ufe
du®
dzx

2 1
¢, ~du® duf c
M| = [ @ an < il

L2

)\HUEHE(}(OJ) < A2l 2 0,1
1
a1 0,1y < X”f”m

{u€}es0 is uniformly bounded in H}, so there exists a subsequence such that u’ — win H 2(0,1).

Definition N.16. Def 1

(u, <P>H5,H,1 — (u, ¢>H&,H*1

Definition N.17. Def 2

(U, ) 10,0y = (U 0) gr3(0,0) Vv e Hy(0,1)

(This is equivalent to Definition N.16 by the Riesz Representation Theorem)

Definition N.18. Def 3

u® — u in H}(0,1) iff

[y, [,
o dz dx o dzxdx

Definition N.19. Def 4

up, — u in HF(Q) iff Du, — Du in L*(Q).
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The weak limit of a product is not the product of the weak limits.

du®
dx

d
— €= fin L*(0,1)
&€ is uniformly bounded in H;(0,1)
£ —¢in H'(0,1)

Let &€ = af

Rellich’s Theorem:

H'(0,1) < L*(0,1) is compact
¢ — ¢in L2(0,1)
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O 4-27-11

Weak Formulation, Variational Formulation

a(z) = a (%) and a(y) is I-periodic, 0 < A < a < A.
a® is uniformly bounded in L*°(0,1).

* 1
at 2 a= fo a(y) dy.
Sequence of solutions to

i (@)
us(0) = u(1)

The obvious guess (see Example N.14) is wrong.

fin (0,1) (0.1)
0

Step 0: (O.1) has a weak formulation or variational formulation

Step 1: Let v = u®. Then
1
HU€HH3(0,1) < XHfHLQ(O’l)

Then {u}¢o is uniformly bounded in H'(0,1). By weak compactness, there exists a subsequence
u¢ — u in H&:

L due L du
d —od v L?(0,1

Step 2: Let &€ = aﬁ%. This is uniformly bounded in L2(0,1) by the boundedness of {u€}eso.
Then p
- d—fe = f is uniformly bounded in L*(0,1) (0.2)
x

Thus, £ is uniformly bounded in H'(0, 1). Weak compactness implies that there exists a subsequence
(same index used) £ — ¢ in H(0,1).
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Weak Formulation, Variational Formulation (Continued)

Rellich’s Strong Compactness: There exists a subsequence £¢ — £ in L2(0,1).
Notice that %< = L. ¢¢. We know that % — du iy 12(0,1).
1 € -1

We also know that % A Tin L>(0,1) and & — ¢ in L?(0,1).

du —
_— = -1 =
dx = € -1 dz

(from O.2)

1 du

Q

Proof. (Proof of 0.3) L
Goal: Vo € L*(0,1), [y L¢5¢pda — [} a¢¢du, ie.

—0 ase—0

1 1 -
‘ / Loy aiepdz
0 a

We compute:

where (0.4) is due to strong convergence of £€¢ — ¢ in L? and the uniform L> bound on -

1 1 -
‘ / Loy aiepds
0 a

! € 1 1 1
—| [ -ogore (s -a) o
0 a a
1 1
< [e—d| ol [ (- eoa
I II

$
ae

I <& —&llre — 0 (0.4)

L2

ac’

For II, we see that

1
[ eoldn < lellol: = et

— A a1 in L%(0,1)

Thus, IT — 0. O
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Theorem O.3. Rellich’s Theorem (Strong Compactness, Arzela-Ascoli for WP Spaces)

Given: Q C R" bounded, smooth; p < n; 1< ¢ < %.
For a uniformly bounded sequence (uj) C W1P(€2), there exists a subsequence (uj, ) — u in LI(€2).
That is,

H%(0,1) < L*(0,1) r<s

In the previous example, we used H'(0,1) < L?(0,1) compactly.

The proof of this theorem relies on Gagliardo-Nirenberg on bounded domains and Sobolev extension
operators.

Theorem 0.4. Sobolev Extension Theorem

Let ©Q be bounded and smooth, and let Q also be bounded such that Q cC . There exists a
continuous linear operator E : W1P(Q) — W1P(R") with the following properties:

1. Fu=wa.e. in Q)

2. spt (Fu) C Q

3. HEUHWLP(Rn) < C(p,Q,Q)HuHWLp(Q) Vuée Wl’p
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P 4-29-11

Theorem P.1. Extension Theorem

E: W'2(Q) — WP(R") such that for some Q, Q cC Q,
1. Fu=w a.e. in Q
2. spt (Fu) C Q
3. | Bullwisgey < C, %0 |ullpree

Theorem P.2. Gagliardo-Nirenberg on Bounded Domains

1<p<n, p* =5

n—p

ull o (@) < Cllullwir  Yue WP (Q)

Proof. By the extension theorem,

HUHLP*(Q) < HEUHLP*(Rn)

G.N.
< C||D(Eu)|| prwn)
< CllEullwrown)

continuity

< Cllullwieg)

Theorem P.3.

WyP(Q), 1< q <p*
Holder
lullLag) < llullper ) < CllDullzeo)

C3°(Q) is dense in Wol’p(Q), so we use a sequence (u;) C C§°(12), extend by zero to R", and use
continuity of norms.

Theorem P.4.

1<g<
lull ooy < C@Dullny Y ue WH(Q)

with C(q) — oo as ¢ — oo.
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Theorem P.5.

p>n
n
Ulleor@ < Cllulwroey — 7=1-2
Theorem P.6. Rellich’s Theorem (Strong Compactness)
1 <p<n, Q bounded
1 . np *
WHP(Q) — LY(Q) is compact, 1<g<——=p
n—p

Proof. Step 0: 1 <r<s<t<oo =
lull s ) < llullfoqyllull vy @€ [0,1] (Holder)
Goal:

———
small by properties G.N.
of convolution

Wl < IWlgie WL
~————

Given: sup |[u;|wir@) < M
Want: uj, — uin L9(2) Know: (Arzela-Ascoli) if (uj) C C°(€2) is uniformly bounded and equicontinuous,
then there exists u;, — u

Pick an element u; € WHP(Q). Extend it: Fu; € CSQ), € CP(R™), Buj = uj a.e. in Q, ne x Buj — Eu;
in WiP(Q) ase -0 = Fuj = Eu a.e.

extend

Step 1: u; —— Fu; = u;
Step 2: Mollify

u5 =nexuj € C5°(Q)

For fixed € > 0, (HE) is a) uniformly bounded and b)equicontinuous. (Hint: Young’s Inequality)

e . . e o )
u; —u; is small in certain norms. |[u§ — ;|| rq(q) is ridiculously small:

_ _ _ _ — l=
175 = sllzacy < 15 =517 ) 175 — 5l v
GN.
< w5 = U117 () 1P — D o
< 7§ = Ul pa gy - CM

@) - @) < [ il - y) - w()dy (®)

0,¢

Recall that 1
ne(y):—n(g> = z:% = dy=n"dz
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Thus, continuing from (O.1), we have

[ it - w@ia= [ [ o o) - o)

= / n(z)
B(0,1)

We get that (@) is uniformly bounded by Young’s Inequality:

1
d
/ @ﬂj (x —etz)dt|dzdx < eC
0

r=o00 |Inela < oo
e _ C . o
5o < lInellzee @l pe ~ = (uniform in 5)
Holder
| DTS || oo < s (uniform in 7)
15, — @ | Loy < Ce

Let e = % and use a diagonal argument.

10-15 min. (3 such problems on Midterm)

uj — uin Wol’l(O, 1)
Show u; — u a.e.
uj — u weakly in Wol’l((), 1) if

Midterm Comment

Shkoller is tempted to give a problem on computing a weak derivative, but he probably won’t. BUT
you should know how to compute

0
8.7}1'
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Q 5-6-11

Test Question 1

Morrey’s inequality:

fu(x) — u(y)| < Cr""P|Dulls Yy € Bla,r)
lu — e < C | Dullse n=3,p=6= e
< OVel Dull s sy

GN. )
< OVe| D ull p2(rs)

def
< COVellull g2 (rs)

Test Question 2

=Gxf
fla) = lim f@)dy=lim e [ () ds()
X)=1m ———— Yy y=lm ——7—— Y Y
=0 |B(2,7)| J B r=0 |0B(z,7) J1aB(w,r)|
2 €
I =lim / logrAy f(xz — y)rdrdb RSEN)
e—0 Jo 0
oG _ 11w oz 1
Ox;  2m|z||z| 27 |x|?
Ly 0 1 / Yi . Of
II:/ — r—y)dy — — = N; —(z—vy) dS
R2_B(0,6) 27 |y[? 3yz‘f( y)dy 27 Jap(o,e) lyI? 8yi( v) \,(,‘@
— edf

1
€

1/‘ YD p(w —y) dS(y)

21 Jopo.e ly1? 1yl
1

=5 flz —y)dS(y
27¢ Jomoe ( )dS(y)
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Q.1 Fourier Transform

Definition Q.3. Fourier Transform, F

For u € L?(R"), we define
Fu(e) = @) [ u@)e i da

n

Note: Fu € L>*(R™) by Holder’s inequality.

Fourier Transform, L?>(R") Case

F : L? — L? is an isometric isomorphism
Question: why does F make sense on L?(R")?

Given u € L?(R"™).
/ ]u|2dm<oo;:$/ |u| dz < oo
R" R"

Answer: the Gaussian, g(z) = ce 17"
To make sense of this, we introduce the Tempered Distribution:

S(R") = {u € C®(R") | 22D € L®(R™) ¥ a, 8 € Z1}
= the functions of rapid decay

S'(R™) = dual space = tempered distributions
F:S(RY) = §'(R")

On S(R"), Fo F* =Id = F*o F.

Definition Q.5. Inverse Fourier Transform

Fru(§) = (2#)_"/2/ u(z)e™/* dx

n
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R 5-9-11

Definition R.1.

feL'(RY)

FI©=@m" | Fy)e ¥ dy

f*f(x) _ (271’)_”/2 f(g)ezxg dr
RTL

Definition R.2.

S(R™) = rapidly decaying = {u € C*°(R") ‘ 2P D € L®(R"), o, B € Z"}

FACT: F : S(R") — S(R")

P Dg Ff(€)] = |F(Dz f)]

Notation

A

f(§) = Ff(E)

0 o )
& -n/2_ Y —iyé
o =20 g / e () dy

= (2m)~"/? /R e f(y) dy
= F(—iy;f)y))
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1) = (2m) 2 / £5¢E £ (y) dy
-

0 )
= (2m) /% ——e W f(y) dy
m 2 [ e )

o — _ive Of
= —i27 ”/2/ e W= () d
) ayj(y) y

No boundary terms since f € S(R™).

FACT: D(R") = C°(R™) C S(R)

Example:

G(z) = (2m) "2 1P/2 ¢ S(R™)

SinceDc S, S'cD.

For u,v € S(R™), we have that

(.FU, U)Lz(IR") = (U,f*U)L2(Rn)

FACT: F* is the L? adjoint of F.

Theorem R.10.

F*F=FF =1d onS(R")
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Since C§°(R™) is dense in L*(R") and C§°(R™) C S(R™), S(R") is dense in L?(R™).

Proof. Want to prove:
FrFf(x)=f(z) ¥V [feSR")

J,—_-*J,—_-f n/ f zyf dyeixf df
7 JR

—z [ f e ) f(y) dy de
T lim 275~ /n /n —el¢|? gig(z— y)f(y) dy d¢

e—0
PRI jipy 9 / f() / e~ IEPHEE=Y) ge gy
e—0 n n
Let
K(z) = 2n7" / e~cleil+iat ge
Then

F*Ff(z) =lim K. * f
e—0

=lim | Kz —y)f(y)dy

e—0 Rn

Recall: standard mollifier
p1(zx) spt p1 € B(0,1)
1 T
Ps (33) = 57P (5)

/nﬂ5(x)d97_ 1

6= Ve

Ki(z) = 27r”/ e &P g ge
Kl/z(.’L') = 27_(_—71/ 6_%‘&26”:5 d§
— 7 (anne P

Claim: )
—|x|? —
Kl/Q(IE) = —56 | | /2 = G(IZ‘)

In other words, the claim says that G = FG.
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Then in 1-D:

Keep in mind that
o—lo?/2 — j—a3/2—a3/2——a2 /2

— e_w%/2e_x§/2 N 6_"2%/2

Compute the Fourier transform of (R.1):
~i(Lee +¢ce)) =0
i Tz =

Thus,
G(&) = Ce 612
Recap: We wrote it out, used an integrating factor via DCT, used Fubini to write it as convolution with

kernel K, where K. = WK (\%) And we get that F*Ff = f. O
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S 5-10-11 (Section)

Au=0 on {2 bounded, open, connected
ulog = f fecon), o9 is C!

Prove that the solution is unique.

Let w1, us be solutions. Take u = u; — us. Then

Au=20
ulpg =0
Remark:
ov
/uAv—Du-Dvda:: u—dS
0 oo On
0
/ (w7 — Du - Du) d:E:M
/ |Duf*dz =0
Q

|Du| =0 on
Du=0 on {2

Thus, u is a locally constant function: u = c.

xg € Q.
Q' ={z | u@) =u(zo)} CQ = Q=0

V' is closed. €' is open (Prove!).

fr=0

(0,1)U(3,4)

{ c1 on (0,1)
¢y on (3,4)

)
Il
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Lemma S.3.

Let f be a nice (smooth, C*°) function.

V21 J o
Then
Frg=f*g
Proof.
f*gzr/ fx ge ™ dg
/oo (/ f zky )dy) k(x y)d
F‘u_lmf « g
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Solving the Heat Equation with the Fourier Transform

Pu, o
0z? = oy
u(z,0) = f(z)

— k|2 a(k & k.y)=0
k70K, y) + sulk,y) =

dy
1 [ "
fa’(kvy) = m/ u(x,y)e_z “dx
ak,y) = cbkye®  tepe M

Riemann-Lebesgue

Lemma

= F(kye e
u(z,y) =Py f
P, = e Ikly

Calculate the inverse Fourier transform of Py.

1 o ;
P,(z) = \/ﬁ/ e~ kly gikz g

1 o
_ —[kly k ;3
= e cos kx + @1‘ dk
V2T /_oo
even/odd
e " cos kx dk

1
n \/27r/o
2 1

= e ™ (ksinz — ycoskz) ‘ZO:O

Vana? + g
:\fy
7Ta?2+y2

Plugging back in to our equation for u = P, x f, we get

u(z,y) = \/i/_‘x’ (:U—t)%gﬂf(y) dy
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Proving the Fourier Inverse Transform

1 RN } 2,42
— t)e e dt =
5| O

‘We know:
e ¢ F2* = Gaussian
o fxg=fg

ASS
@‘H*
= =

-
)

()

(z

)
1:¢@amﬁ

uniformly

¢ € S(R)
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T 5-11-11

Theorem T.1. (From Last Time)

F*F=I1d=FF* on S(R")
Consequence:

(Fu, Fo)pamny = (u, F*F0)p2mny = (U, 0) 2mn) ¥ u,v € S(R™)

H]:UHL‘Z(Rn) = HUHLZ(IR{”)

(T.1)

Definition T.2.

Let (uj) C S(R™) such that u; — u in L*(R").

Fu = lim Fu; for u € L*(R™)

j—)OO

This is independent of the approximating sequence that you take. This is because of (T.1).

Corollary T.3.

polarization

1Fullz = llull 2 ¥ ue LXR") (Fu, Fo)r2 = (u,v) 2

e >0 zeR?

Does this have rapid decay? Yes.

Topology of S(R™)

S(R™) is a Frechet space with semi-norm

k
pe(u) = sup 1+ |z [D%(x)

z€R", |a|<k

and distance function

22_k Pk U_U)
1+ p(u—v)
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Definition T.6. Convergence in S(R")

uj — uin S(R™) if pyp(u; —u) - 0as j — ooV k> 0.

Definition T.7. Continuous Linear Functional on S(R"), Tempered Distribution

T:S(R") — R,
| (T, u) | < Cpi(u) for some k& > 0

S’(R™) = dual space of S(R™) = tempered distributions

Definition T.8.

F:S'(RY) = §'(R")
(FT,u) = (T, Fu)

d € S'(R™), where (6,u) = u(0), {9z, u) = u(z)

n

(F,u) = (6, Fu) = Fu(0) = (2m) /2 / e 0Ty () dx

i : LP(R") — §'(R"), and

]Rn
Fo = (2m)~ /2 in S'(R")
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Fourier Transform

Compute the Fourier transform of e %%, ¢ > 0, 2 € R™.

n=1:
1 o0 .
F(eftm) = Wors e~ trle=iwE gy
T J—oc0
0 : I :
= Wors / e dy + Wors / et (g
VLT J—-—x V4T JO
_ 1 1 x(t—i€) |0 1 —1 —z(t+1i€) oo
T Vant—icC ‘—°°+\/ﬂt+z'§e o
1 2t
T Va1 &
_ ft
CVre2 42
n > 1
Guess: -
e tel :/ g(t,s)e_‘s"”‘2 ds
0
Take the Fourier transform of this guess:
o0
Fletlly = / Fle*17) ds
0
We know that
‘/’-'((271-)*”/26*@‘2/2) — g /20— |z%/2
Then
n
]:(€*S\x|2) — aﬂ\/T o167 /4s
s
N— ——
a(§)
and we have
o0
1
‘F(eft‘xl) — / g(t’ S)aﬂ-\/_"€|£|2/4s d.’E
s
10 & 4
Fle™) = / e e g where A = |z| >0
™ —0oQ
Verify that
[o.¢]
_ t2+§2 . 1 _ t2+§2 - 1
/0 e s( )ds__7t2—|—§26 s( )‘So_tg_’_gg

2 o0 2 2
= \/715/ e e ds
™ Jo
t 2
—tA *
p— f —_— -
¢ <t2 +e \/;>

Then we have that
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1-D:

e [2 ¢
F(et‘l): ﬁm7 t>0

/OO a2 _SEQd 1
(& (& S = 55
0 2+ &2

2 oo
]:(e_tm) = \/>t/ 6—8t26_852 ds
T Jo
2 o0
e~tlel = \/>t/ eiStQ}"*(efsg) ds
T Jo

F*(e %)

Combining 1-D and 2-D:

Use that

ver"

1 2 1 2
T /2_;* &2/2
¢ (\/2—7r€ )

1 2 1 2
;( A olEP/2
oL

Le—g/?emf d¢

Goal:

1 o0 s 4 /OO 2 . 1
&4 iz y?/2 Jizy/V2s
— e e'*sd = e e —d
\/27[' /—oo § —0o0 \/23 Y

—s& = —y*/2
y = V2s¢

_ Y
5_@

dy = V/2s d¢

1
dé¢ = ——d
5\/%11

e (\/5)2/2

(U.3) =
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... Continued

T (efs\w) _ Ll

2

—ta /°° st L ja2jas g
e = e (& S
0 V 25"

Guess: n > 1

e tl = /00 Lg(t, S)ef‘xlz)/45 ds
0 V2s

Goal: find g(t, s).

A=|z|>0

2 t
—tA *
- F -
‘ <\[rt2+ |5y2>

= 1/00 #e“‘g ds
T oo B2 4 €2
1 00 00 2 ) N

= / t/ e e dse™ de
T J— 0
1 o

o0
= / te_StQ/ 56 giM d€ ds
T™Jo —0o0

0o . 9
—amn/ Vs e~ 1217 /4s g
0
1 2
ar—g(t,s) =te /s
Vs"

g(t,s) = amnte—‘%2 \/En_l

Thus,

o0
f(e_t‘ﬂ) :/ a,Tt\/5"_1(2_3152@_‘(”§2 ds
0

—t|z| t > no1 -5
‘F(e ) = Qrn — 71 s 2 e °ds
(2 +[¢]7)7 2 Jo

Arpnt <n—|—1>
= ntl )
(2 +1€]2) 2 2
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V 5-16-11

Fundamental Solution to —Au = f in R3

0%u
—Au = z -
— 83:?
F(-Au)=F(f) < [P = f(©)
ae) = |€1,2f<§>

The solution is given by applying F*:
u(w) = Fri = ( e f(&))

o) = (1)«

convolution, and the converse is also true.

1 c 1
F l—s]=—-——
<|£!2> 4r ||

(in 3-D) = -Au=f
1
u(z) = 0/11%3 Hf(y) dy

multiplication

F,F*

Green’s Function:

Gla) = —

]
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Last Time

(n + 1) /Oo n_1 _
~y = s2 2e %ds
2 0
o
o= [
0
Let’s look at the integral

R 2 1 1
/ sTV2e7sl2" g = |27ty ()
0 2

t=slz?, s=tlz|?
ds = |z| 2 dt

_ 1 e gl
x|~ = T s 1275121 g
0

7(3)
]:(|1'|_1) = \/17?/0 3_1/2]-"(6—8\90|2)d$

1 o0 1 2
F(|-1 :/ 2L e/ g
e A
- 3/OO s 2e 1P/ g
VT2~ Jo
2
L= /s, s =1
_ o oleP
ds = —t 1 dt
1 /OO —4 —t,2 2
- el et ¢[2 ds
Jaivz o
2
SONE
T
Thus,
_ _ 1
Fllal ) =cle (o) =c [ f(y) dy
R3 \1’ - ?J’

whenever —Au = f in R3.
—Au = f in S'(R?)
~A <1> =c6 in S'(R?)

o)
. f
w(§) = CW +0

Not all solutions decay fast enough at +0o. The Fourier transform in L?(R"™) gives uniqueness.

86




Definition V.3. ()

(€) = V1+I¢P

Using this notation, we have
aiEn) = {ue 2@ | [ (©HaOP i€ < oo
Rn

H*(R") = {u € L*(R™) ‘ (Ju(z)|* + |Du(z)|?) dz < oo}
R

Old:

1/mny U 2/mn 2,& 2 00
H®) = {ue 2@ | [ 1+ PR de < oo

RI
H'(RY) = {u € L*(R) | /Rﬁ(f)\2+52|ﬁ( )J? dé < oo}
du
/R<u<x>ﬁ ) )d:c<oo}
RQ
12y _ 2 (2 2 ou 2 ou
H(R)_{ueL(R)\/ <|u(az)| + | + am() dz <

={U€L2 ®) | [ (©F + 1 + leal1a©R) d5<°°}

Definition V.6. Functions with 1/2 derivative in L*(R")

e = {ue 2w | [ VIR de < oo
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Theorem V.7. Trace Theorem

Given: u(x) = u(xy, z2), define f(x2) = u(0,z2).
Old: T : H'(R?) — L*(R?)
New: T : H'(R?) — H'Y?(R) continuous, linear

General Trace Theorem: s > 1/2, T : H*(R") — H*~'/2(R*~!) continuous, linear
Also, T is onto.
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W 5-18-11

Theorem W.1. Trace Theorem

T:HY(R") — HY?(R"!) continuously

More generally:
1
T : H*(R") — H*"Y2(R""!) continuously for s > 3

Lemma W.2.

u € C(R?) N LY(R?), u = u(z1,x2), f(z2) = u(0, z2).
Then for all u € C' we have that

f(&) = j% /R (61, 6)dey  (average over &)

Proof.

1
52 \/7 / e im282 dxo

ﬁ/ O .%'2 —iw282 dl’Q
1
ulwr, ) = o- / (€1, 62)e ™12 g, i,

1 ~ T
u0,z2) = oo [ (6, €2)eE déy de

Proof of Trace Theorem (W.1)

Proof. Want:
1F ey < Cllullgigey  Vue H'(R?)
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Fourier:
/ L+ f (&) de < C / (€)iu(1, &) déy dés
R R2
fle) = —— / (61, &) déy _ / (e, E)(6)(€) " dey
2m R R&

2
/(&) (\/%/R&l /R51 a6, &)(€) (€)™ d§1>
€51 N 2/¢\2 -2
- ( [, e eare d&) ( [ e d&)

o
-1 1
/ 1 tan < TLS%)
R

G+ =

—00

3
=
+

S

1+§2

/52 L+ (@) de < \f/%/&l (1, &2)[2(€)2 de dé

(Recall that:

X
oo G+ 2 Va

[l _ ()

Theorem W.3.

T : H3(R") — H* V2R is onto

Proof. (n=2)
Given f(&), construct w. A
(&1, 6) = ﬂ"zgi) S

Given f € HY2(R), verify that this u is in H*(R?).
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Poisson Integral Formula

We are considering harmonic functions in the disk:

~Au=0 inD={zeR?||z <1}
u=g¢g ondD (Dirichlet boundary condition)

Solution:
u=Plxg
Corresponding problem:
—Au=0 inD
% =G ondD (Neumann B.C.)
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X 5-20-11: Fourier Series Revisited

Definition X.1.

For u € L'(T),

F o LT — £

Definition X.2. s

s =S8(Z")

Rapidly decreasing functions on Z", i.e. for every N € N,
(k)™ || € €

F:C®(T") —s

Definition X.3. D, D’

D(T") = C>(T")
D'(T") = [C>=(T™))'
5/ — [5]/

F: L*(T") —
F* 02 — L*(T)

We define the inner products as

(1) 120n) = g [ wle)ola) da
1

(4,0) = kgz:n ﬁkﬁ(zﬂ)n||u|\L2(Tn) = [|d]l2

—~




Extension to D'(T")

FD(T") — ¢
F* s — D/(T)

Definition X.6. Sobolev Spaces on T"

HYT") = {ueD(T") | (k)’ae*}, seR

Definition X.7. A?

ANu=F*" (Z (k)® ﬂkeikw>

kezn

(Where (k) = /1 + |k|2.)

H3(T™) = A~*L*(T")

This is an isomorphism.

A= (1-A)
A2=(1-A)"
A? =1d
AM=vViI-A
A

This is like exponentiating a matrix in linear algebra: e”.

Definition X.9. H*(T") Inner Product

(ua U)HS(']I‘”) = (Asu7 AsU>L2(Tn) seR
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Poisson Integral Formula

PI (f)(r,0) = Zf‘kﬂkleike’ r <1

keZ
Let
u(r,0) =PI (f)(r,0)

For example,

D={z| <1}, oD=S'=T1"
—Au=0in D
w=fondD =T

Recall from week 2:

e )
u(r,0) = 5 /0 r2—2rcos(9—¢)+1d¢ r<l

Given f € H*(T'), how smooth is v in D?

Recall from Weeks 1 € 2

fec@D) XL vec@@ne*D) VDccD
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A in 2-D

0? 0?

A=—+—
6x%+8x%

Then our problem becomes

—Au=Fin D
u=0o0n oD

Significance: we are ignoring the cross derivatives, 105"

—Au = F in R?
1
ulz) = — log |z — y|F(y) d
(@) = <= [ Joxle — sl () dy
?

1
u=GxF, G = —log|z|
27

Basic Laplacian Info

—A=div D
L = div [A(z)D]

Theorem X.14.

PI : H*"1/2(T') — H*(D) continuously

In particular,
lullepy < Clf L gr-172(m1)s k=0,1,2,...

Proof. Our clutch formula is

u(r,0) = karweike, r<l

keZ

Case 1: k=0
Given f € H~'/?(T"). This means that

SRl < oo
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Compute L?(D) norm of u(r, 8).

2m 1 R ) )
HuH%Q(D):/O /O‘memema’ cdrds

2-D Lebesgue
measure

MCT . 1
< 27TZ|fk;|2/ 21K+ g,
0
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Y 5-23-11

Theorem Y.1. Poisson Integral Formula

u(r,0) = kar‘k‘eikg, r<l (Y.1)
keZ
—Au=0in D
u=fondD
Theorem Y.2.
[ull 7Dy < Cllf lzre-1/2(6p)> k= 0,1,2,...
(Last Time)
lull 2y < Cllfllgr-172m1y ¥ f € HTYA(TY), k=0
Today we look at k& > 0.
k=1 Case
Goal: Show
[ull ety < Cllfllgaregeny, w € L?
Prove that: 9 5
gu _ 2 gu _ 2
89_u9€L and o ur € L
Taking 0y of (Y.1) gives us that
ug = Z Fikr!F k0 (Y.2)

keZ
What’s the relationship between f € HY/2(T?2), dgf € H-'/2(T")?

dp : H® — H*™! continuously (by definition)
1 follzz-172¢11y < ClIf gz

This implies that
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ug(r,0) = (fo)xlr|*e™

kEZ

or,6) = 3 e

kEZ

From k£ = 0:
luollzz(py < ellfoll g—/2¢any < ellflgrro ()
We want to know o7 o7
?
o =="—(21,0)

£2=0 Oxo

Two ways to proceed:
1. Keep estimating 892, 83, e

1 1
“Upr — —Up = 5 UGH
T T

—10r(Tur) = ugp
rzurr + ru, € L?
2. [|rurll 2oy = lluoll L2 ()
up(r,0) = Zfﬂk]r‘k‘_leike
ru,(r,0) = Zfﬂk]r‘k‘eike
This has the same L? inner product as (Y.2). Thus,
Irurllr2py < el fll 2 py

?
lurll L2y <cll f | g2y

10 f(¢)
u(r,0) = 27 /T2—2TCOS(9—¢)+1d¢

We can differentiate this as my times as we like in the region r < % Thus, v € C* (B (O, 5))
Suppose we wanted to solve this problem instead:

—Aw=~h inD fefgi&rl) —Au=0 inD
w=0 ondD="T"! w=f ondD=T!

w=u—fondD =T

w:u—fonD
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From the trace theorem we know that 7' : H'(D) — HY?(D) is a continuous surjection. For every f €

H'Y2(dD) there exists f € H'(D) such that HfH}p(D) < Clfllgrr2omy-

f e HY*0D)

feH (D)

u:w+f
Then

—~Aw=Af=hinD
w=0on 0D

Let v € C§°(D).
0:—/(Aw—|—Af)vdx
D
:/Dw-Dvdx—}—/Df-Dvdx
D D

:/ Dw - Dvdx
D

:_/Df-Dvd:cvueHg(D) C5(D) = Hy(D)
D

= (w,v) g1 (py = —/ Df - Dvdx
D

(Y.3)

Why is it true that ||Dw||2(p) is an H'(D) equivalent norm for every w € H}(D)? Answer: the Poincare

Inequality.
[wllL2(py < CllDw] 2

From (Y.3), the Riesz Representation Theorem gives us that there exists a unique w € H} (D).

~Aw =h € H Q) in © C R™ open, smooth, bounded
w =g e HY*dQ) on 9Q

Better yet, have h € C*°(Q2) and g € C*°(99).
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Z 5-24-11 (Section)

Q open, 0N is C*

Au=0
ou
8n_g

If w1, us are solutions to the above, then

U1 = Uug +c¢

Set
u=u; — uy
Then
Au=0
ou
= _0
on
Ov
ulAv 4+ (Du, Dv) dV = Uz ds (u=v, Au=0)
Q

oN
/|Du2dV—/ W2 s
Q o On
=0

Thus, Du = 0. If Q is connected, then u = ¢ constant.

Note:
Ou_Ow Ow _
on  On 8n_g 9=

Au=01in Q= B(0,1)

%:gOHGQ:Sl
on
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Then the solution looks like

u(r,0) =Y fi(r)e™, || <1

keZ

Use polar coordinates for A, solve the ODE for f; (using the sum):

fu =M,
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Au=01in Q

g:f =g on )
then R ' o
ka’k’ezkﬁ _ kaezke
keZ kezZ
We have R
gk = fulkl, feHSY
Define o
Nf =" |kl fre™
k€EZ
Questions:

1. Is N linear?

2. What is the image of the map?
3. Is the map bounded?

4. More...

N:HSY - H7Y(SYH,  Hy(SY) = {g | /Sl g= 0} c H5(Sh)

This is a closed space because if g, — g in H*(S'), [1gn = 0, then [;, g = 0 by DCT (since
g € L2(SY) c L(SY)). Also, because

| /S g < ellgllze < Cllgllmsren

Also because N is a linear surjective mape:

%k otk0 _, Z G k0

~———
€Hs(St)

Is N bounded?
HNfH%{sfl(Sl) = Z ’k‘2’f<k)|2(1 + ‘k|2)s—1
k
< Y+ KPPl
k
<1 By
kerN:{C‘ce(C}g@

N is surjective with coker N = {0} = H*"}(S')/Im N. Therefore, N is a Fredholm operator, ind
N =1—-0=1. Why do we need Fredholm operators? They have a pseudo-inverse:

T:z—y, ye€lmT

Tr = y 13 T = cLTflny

TUZ




Find the “inverse” of N : H*(S!) — HSil(Sl)

zk‘@
s \k!
Nf=g

f=c+N"1'g general solution to (Z.1)

1

= — t)e ™t dt
5 g()6

Gk

3 ik(t—0)

Z 27 /Sl T

k0

k0
1

=5 | gE@®-t)dt

Given a function g € HY2(SY) — (pick) f € H3/2(Sh).
Neumann problem = Dirichlet problem. = u € H’(f)

—~
N
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u = Zr\k\fkeike
ugy = — Z r‘k‘kakeikG
k

2 1
Hueeﬂiz(m:/o /O|u@9]2rdrd9

1
— CZ k4‘fk’2/0 T2|k|+1 dr
k

2)2

32 (1+ [K[%)'/2
k] + 1

<> |frl@+ k)
p
lull 2Dy < Ellfll sz sy

ool r2(py ~

[rur| = |ug|
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A 5-25-11

—Au=0inQcCD

0
a—z =gon dD
where
ou .
I Du-n, n = outward unit normal.
n

1.  open, bounded, smooth

—A: H} () — H7Y(Q) is an isomorphism.
2. Q

—A: HY(Q) — L?*() is an isomorphism? No.

o —A:HY(Q)\R — L?(Q) is an isomorphism.

3. Q=T"

—A: HY(T") — H~Y(T") is an isomorphism?

Note:
(—Au,v) = /QDu - Dvdx

—Au=0in Q
ou
%—001189

Du-n=20

u =1 is a solution, dim (N(—A)) =1
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w:Q— R3

—Au' = ffin Q
ou’ i
8ijnj = ¢ on 0f)

J=1

What is the null space of this operator?

L*(Q) = N(L) @2 R(L)

(Compactness allows us to not require the closure of R.) What we are trying to do is get rid of the
null (N) part and restrict entirely to the R part so that we can invert things.

Whenever you remove the null space, N(—A), you recover the Poincare inequality:

[ull2() < CllDull 2

—Au=0in Q
u = g on 0f2

We can always solve this problem. And this problem:

—Au=~hin
u = 0 on 0f)
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—Au=0inQcCD
ou

%:gonaD

When can we solve this problem?

—Awu = —div Du in open set €2

Ou = Du -n on 9f2
on

/dvadm—/ @ -ndS
/ Audx—/ —div Dudzx

= — Du ndS

/ o s
o0 0

Recall that
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—Au=FinQ=D

gz =gon 0D
We require that
/ F(z) dx+/ g(x)dS =0
Q a0
—Au = —div Du in open set 2
—Au=FinQ
0
a—z =0 on 0

Solvability condition:
/ F(z)-1dx =0
Q

In words, we need a function that has 0 average.

/ div Qdx = @ -ndS, n= outward normal
Q oN

/curlex: Q- -T,dS, T, =tangent vectors,a=1,...
Q o0

Laplace operators and the like always have finite-dimensional null spaces.
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—Au=f

u=~0

This operator is an isomorphism. We showed this by studying this problem:
/ Du - Dvdx = / frvde¥Yve HI(Q), feL*Q), ue H}(Q)
Q Q

The reason we can take the Laplacian of an H! function is the following theorem:

Theorem A.12.

For u € H%(1),

—Au = f a.e. in Q
1wl z20) < Clfllz2e)
lull sy < Clflls—2(), 520, real
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B 5-27-11

Homework Problem 1 (6.1)

—AUf:OinD
up = f on dD

1. f—yg
u(r,0) = kar‘k‘eike, r<l

keZ
2. Compute %(r, ) in D
3. Take the limit as r 1, compute the trace of %(1, 0) = g(0). (This is not a pointwise limit.)

—Au=0in D
(?)z =gon 0D
Dirichlet-to-Neumann:
0

g=Nf = “g= ‘
ik = |kl fr

We are given f € H3/2(S1). According to N = ‘%
proven that

, we should require that g € H'/2(S). We have

ou
lullg2py < Cllflgsreopy = 5 € HY(D)

Fixing r close to 1, we can think of

0
a—u( r ,0) = function on (0, 27)
" parameter
Both
Forlkl ikt Fl |rH1—1 k0

are absolutely summable, since |k| < (k:>3/2 <k:>71/2.

Zfﬂk]r‘k‘_leik@ _ ka‘k|r|k|—leik6‘
keZ keZ
k20

We bring the derivative through the sum, and the goal is to get uniform bounds on H'/ 2(0,2m). We
pass the limit as r /* 1 weakly and argue 1) that we can obtain a limit and 2) that this limit is the

g that we started with.
ou
—— v

eHl/Q GH_1/2
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B.1 Compensated Compactness

Suppose we have sequence (u;), (v;) that are uniformly bounded in L?(12).
Question: u; - v; —7

uj, — u in L*(Q)
— v in L*(Q)

— u - v in any topology? No.

Uji,

gy, * Vg,

ug + D(u?) = f
R N
7 () —
uy + oz, (u'u?) = f
Smooth out and make nice, e.g. by convolution:
8tue + D(usue) = fe
Now we want to pass the limit as ¢ — 0. We have that

[tell L2 < M

However, we can’t pass the weak limit because it doesn’t like nonlinearities.

Lemma B.4. Div-Curl Lemma

Suppose u; — u in L? and v; = vin L?. Suppose curl uj,div v; are weakly compact in H~'. Then
u; -v; — u-vin D'(Q)

We are compensating for a lack of compactness by introducing a new structure.
Curl is a measure of rotation
Div is a measure of stretching
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Identities from Vector Calculus

curl D¢ =0 ¢ scalar

div curl w =0 w vector

For all ¢ € C3°(Q),
/uj-vjcﬁdx%/u-vd)da:
Q Q

|vjllL2) < M uniformly in j

We have

—ij :vj n Q
w; = 0 on 00

v; is bounded in L2, so
|willz2@) < Cllvjllrz) < CM

So wjy = w in H?*(). Rellich’s theorem tells us that wj — w in H'(1).

—Aw = curl curl w — D div w

/ uj - vjpdr = / uj - (—Awj)pdx
Q Q
= / uj - curl curl wj¢ dxr — / uj - D div w;j¢ dx
Q Q

:/uj- curl ¢ curl wj —uj- D¢ x curl w; d:v—i—/ div u; div wjgbd:n—{—/uj- div w; D¢ dx
QN—— Q Q

curl u;-

—>/u-v¢dw
Q
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C 5-31-11 (Section)

There is an error in the practice problem
K(z) = [«['/?
u=kxf = wueW'?

because
=14y, —0<a<b<oo

If z > b then
’ 2 3/2|b
= | Vr—ydy=—3(@—y)*,
2 2
= —g(x—b)3/2+§(x—a)3/2

and this is not bounded. So if we are working with W1P(R) then it is not correct, but if we have

WLP(Q) with ©Q compact then it might make sense. Or if we have VV&)’?(R). Or replace |z|'/2? with
|x’71/2.

uj — u in Wol’l((), 1)
u; — u a.e. TRUE

We have u € W,'(0,1), o' € L'(0,1).

I
c\ﬁo\;
S

1[0 x) d

[ty

U 1[0:E t
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Ine * (f9') = fne * g'llz2 < Cllfllcp @) l9ll L2y

feCyR), Ifllcs = 1l + 1 lloo-
Hint:

*(fg) =ne*(f'g) +ne*(fg')
(e * W) (z) = / ne(z — y)H () dy

0 0
/ 3y —ne(z —y)h(y) dy afyng(x—y) = —%ne(:c—y)
3 ne*h
nex g'(x) = / ne(y)g' (x —y) dy

<1F e \ / e dy'

< f Cllgll 2wy
<1 e / n2(x — y) dy|lgl| 2
/ ne* (F'9)(@)| dz < |/l

h=fg

We can estimate the term 7. by:

Ine* gl 2 = |10} * gl 12
< Cligllz2

And now a double integral term:

J [ ] [ (2] s
—//|77(t1—t2)|2 dt, dt;

t t dt dt
T = y:—2, dxdy = 1 2
€

where
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U =1Mj_1 % U, u € H'(R)
] 2my < M

Banach-Alaoglu. We have a sequence u; — g in L3 (R).

<u;k’ 90> = <u.,7k’ (p,>
(9, 0) = — (u, &)

Then g = v/, and v € H*(R).

lull = llgllze < 1imjinf||u}|| <M
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C! Domain, 57 weak formulation, 64
compactly contained, 30 weak solution, 60
compensated compactness, 111 weak-* convergence, 35
conjugate exponent, 28 WkP(Q), 39

dilated family, 31

Fatou’s Lemma, 5

[ 31

Fourier transform, 71
Fredholm operator, 102

Gagliardo-Nirenberg Theorem, 50

Hy(9), 57

H} () Weak Solution, 61
Holder’s Inequality, 28
Hardy’s Inequality, 50
HE(Q), 41

indicator function, 29
interior approximation, 47
interpolation identity, 53

Lebesgue Differentiation Theorem, 6
Lebesgue Dominated Convergence Theorem, 5
localization, 57

LP space, 28

L:IDOC’ 30
Minkowski’s Inequality, 28
mollifier, 30

Monotone Convergence Theorem, 5
Morrey’s Inequality, 46

norm, 40

Rellich’s Theorem, 66
Riesz Representation Theorem, 34

tempered distribution, 81
Trace Theorem, 57
truncation operator, 29

uc, 31
variational formulation, 64

whr 37

weak 1st derivative, 37
weak convergence, 35
weak derivative, 39
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