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1 4-2-12

1.1 Dimensional Analysis

We have a fundamental system of units: (dy,da, ..., d,).

Mechanics

e mass M
e length L

e time T

Derived units, e.g. velocity V = % and acceleration A = %

tal units (provided they’re independent). For example, we could use mass

We can use different sets of units as fundamen-

, velocity, and acceleration. Any

model of a system must be invariant under rescalings that correspond to changes in the system of units.

Let’s say we have a fundamental system of (independent) units: di,ds, ...

in the model:
ai,asz,...,a, with dimension [a;] = d;

brgiye--,bn
Let’s say b; has dimensions
o) = i
Then the model can only depend on ,
j

- B1j B2y Brj "
al a2 ceeQp

1I;

So our model has:
e 7 independent dimensions
e n independent quantities

Then dimensional analysis says it depends on n — r dimensionless variables
Pi Theorem.)

1.2 Fluids Flows, Reynold’s Number

Let’s say we have a sphere in a flow. What is the drag on the sphere?

Parameters:
e u = speed of the fluid, [u] = %
e d = diameter of the sphere, [d] = L
e 1 = viscosity of the fluid, [u] =

e pp = density of the fluid, [pg] =

e Sk

,d.. We have a set of quantities

. (This is called the Buckingham

Assume the fluid is incompressible (this is OK if u < ¢, the speed of sound in the fluid)




Fundamental units: M, L,T.

In a Newtonian fluid:

e T = viscous stress tensor,
T = p(Vu+ Vu'),

where u = velocity. This gives the force/unit area. The dimensions of T" are

ML 1 M
T = — . — =
7] T2 L[2 LT?
1
[Vu] = T
=M
M=Tr
We define the kinematic viscosity:
v="1
Po
L2
[v] = T

The physical interpretation of this quantity is diffusivity of momentum.
v ~ Imm?/s in water
v~ 15mm?/s in air

We can define the Reynold’s number:

ud

v

Re =

This is the crucial dimensionless parameter that controls everything.

Back to our question about drag on a sphere. D = drag force with dimensions [D]

M L?* , ML

2927 _

o 1= e V=
D

oz~ F(Re)

D = pou’d®F(Re)



2 4-4-12

2.1 Navier-Stokes Equation

w(Z,t) is the fluid velocity

g

p(&,t) is the pressure

3

U = (ur, ug, u3)
o 7= (

T = (x1,22,23)

— o) o 0
. V*(aTlvazvaT;g)

Parameters
e po = fluid density
e 1 = fluid viscosity
o U = “typical” flow velocity
o [ = “typical” flow length scale

Dimensionless variables

o it =1
o i*=12
o tr=UL
°p = _n

— [Vp] = [poti]

— Bl = po) &

~ ol = [polf
e V=1V"
o =20 =Y

Po %(Uﬁ*

po(tiy + i - Vi) + Vp = poAd
V- -4=

U2
Jor @V

poU?
L

ulU
iz

1
G 0V VT = AT

V*adr =0



2.2 Low Reynolds Number Flows (Re — 0)

p*=£
(§]

UL L
p=Re-p'=—> 2=,

As Re — 0, we get Stokes equations:

V*-at =0.

These are linear!

Drag on a Sphere as Re — 0

D = poU?L*F(Re)

Consider RlimOD. Since the drag is linear in U, we need
e—r

C

F = —

(Re) Re
U?L%v
D= pRUL?. S P 2V L
UL R =L cHot/

Stokes (1851):
D = 6mppal,

where a is the radius of a sphere.

2.3 High Reynolds Number Limit (Re — c0)

Formally, we get the Euler equations.

i 4 i Vit + Vit =0
Vi =0

This is nonlinear!

Turbulence, Prandtt boundary layer term — singular perturbation neglecting higher derivatives
2.4 Similarity Solutions
Consider the heat flow due to a point source.

ur = VAU
u(x,0) = Edé(x)

u(x,t) = temperature of (infinite) body. Inject total heat energy F at =0 at t = 0.



e 0 = temperature dimension, [u] = 6
e L =length, [x] =L
o T =time, [t|] =T

Parameters v, E

o [] = %2
o [E]=0L"

— At t=0, [ude = [Ej(x)de =F
— [E] =[[ udz] =0L"



3 4-6-12
3.1 Heat Equation
u = vAu
u(z,0) = Eé(x)
u(x,t) is the temperature, x € R".
Parameters
e v: thermal diffusivity, [v] = L%
e F: initial heat, [E] = L™

Dependent variables: u ([u] = 6).
Independent variables: © ([r] = L), t ([t] =T).

So we have
e 5 quantities: v, E,u,rt
e 3 dimensions: 6, L,T

We can form 2 dimensionless quantities.

e Time: ¢

— There is 1 variable with dimensions of time: ¢. This will lead to the self-similarity of the problem.
That is, a solution on one time scale is a rescale of a solution on another time scale.

o Length: /vt

e Temperature: %
So we have
ut = Y
ORE
E *
r
= —

So our dimensionless temperature depends only on & = ﬁ



Let u* = F. We will look for solutions of the form

o= Gt <ﬁ>

Up = V 1 ﬁ 7‘”_1@
L =1 gy or

(-2)E E r 1 r

2) /

— Ay F o)

RAVYYEE N O T (ﬁ)( 2) Jt3?
—F n 1 r

- = |\ZF4+-F—

/25 [2 *3 V€¢}

E

T2 [¢F' +nF]

_E 1 0 ( ,,0F
Au= (vt)n/2 rn=1 or (T or >

__F 1 4 (fn—ldF>
= (yt)%H en—1d¢ d¢
1 E )  E—~ 1 d (,,_dF
5t 4] = (€%
1 d (,qdF\ 1.,
e (¢ ) = 36D

So we have reduced our PDE to an ODE for F'(§). This is a second-order, variable coefficient ODE. We
have

Ut =

py o e 1
F" + ¢ F' = 2£F 2nF
-1 1 1
F// n - F/ - F —
+ ( ¢ + 25) + 5" 0
/
1 -1 1
(F’ + 2§F> +n§ <F’ + 2§F> -0
—_—
G
G+ (n—1)E2G =0
(€"G) =0
c
G = gnfl
Take ¢ = 0; otherwise G — 0o as £ — 0 (r — 0). So
G=0
1
(&/1F) =0

A = (constant)

F(§) = ce/!

10



Using the initial condition:

/u(x,O) de = E
1

© (4m)n/2

u(z,t) = Lex —@
" (Amvt)n/2 P\t

11



4 4-9-12

4.1 Heat Equation

u = vAu

u(z,0) = Eé(x)

Since this is a linear PDE with constant coefficients (on R™), we can solve this using the Fourier transform.

4.1.1 Fourier Transform

f(@), x=(z1,...,2y) € R"
fk), k= (ki,... ko) ER"

fk 27T / f zk-mdw
flz) = f( )& d

We say that f = F[f], where F is the Fourier transform. Then

8f 0 P ik-x

S (a) = / F(k)e*e d;
= [ fo (e an
= / ik f (k)™ dk

F <§Z> = iko f(K)
In particular,
FIAf) =~k (k)
We can define v/—A by
FIV=Af] = [k|f(k)

12



Example 4.1.

o) = et

oy = (=) e

4.2 Back to the Heat Equation

u(z,t) = / a(k, t)e* dk

= Flu)
f[ut] = ﬁt
FlAu] = —|k[*a

1

F@) = G5 [ s = (271T)n

So the heat equation becomes

iy = —v|k|*a
. E

The solutions look like

13



Figure 1: The heat diffuses with time.

This is a Green’s function:

1 2
S . VRS 2
Gla,t) (4vt)n/2 € '

Gi = vAG
G(x,0) = d(x)
So the solution of the heat equation,
ur = vVAu
u(z,0) = f(z),
is

u(l‘, t) = G(J? -, t)f(f) d§

R

1 |z — ¢
- (4rvt)n/2 /Rn P (_ x4yt ) f(&) d.

4.3 A Porous Medium Problem

Figure 2: The aquifer is fully saturated with water. z = h(z,t) is the height of the aquifer.

Assume slow transverse flow, so the pressure is hydrostatic:
p=pg(h—z).

14



The pressure head is

H =p+pgz,
H = pgh independent of z.

Assume the fluid is incompressible = conservation of volume. The change in the volume between a and b is

b
R

=— /ab(hv)x dx

/ bt (ho)aldz =0 ¥ [a.]
ht + (h'l))x =0. (4.1)

Darcy’s law:

k
v=——VH.
I
k is the permeability, and p is the fluid viscosity. This is saying that the velocity is proportional to the

gradient of the pressure head. In our case, we have

k
v=——pghg.

w

Plugging this into (4.1), we get
hiy = K(hhy)y
k

K="P9

w

This is the 1D porous medium equation. This is a nonlinear, degenerate diffusion equation. When h — 0,
the diffusion drops out.

15



5 4-11-12
5.1 Porous Medium Equation
hi = k(hhy)y
h(z,0) = Id(x)
(Barenblatt)

Dimensions

o (vertical) height H
e (horizontal) length L

e time T

Dependent Variables: h (H)

Independent Variables: x (L), t (T')

Parameters: k (%), I (HL)
Use t, k, I to nondimensionalize the problem.
[t]=T
(61 = L
I —
(kIt)1/3|
I2%/3 T
h(x,t) = F
)= g (i)

/h(x,t) da = I/F(g) d¢

2/3 2/3
_1 I F+ I _} LF/
3 k1/3¢4/3 (kt)1/3 3 (kI)1/3t4/3

2
12/3] s FFY

(kt)V/3 | (kIt)2/3
1 1 T
——F — ~¢F' = (FF"Y =—
1
(FF'Y = —Z(€F' + F)
1
= —5(€FY
1
FF/ = —ggF +c
We expect FF — 0 as £ — oo. Take ¢ = 0.
1
FF' = ——¢F
3¢
1
F'=—2
3¢



We need

| rei=1

_ [ l@—g) fl<a
F(g)‘{ﬁ 0 1¢>a

“1 2 2 _
| gl -ede=

9 1/3
2
12/3 912/3 z2 okIt\1/3
h(z,t) =4 6(kt)'/3 [(5) B (klt)2/3] 2] < (%57)
0 otherwise

a

5.2 Perturbation Theory

p(z) =0

Problem for  depending on a small parameter €. Solution:
x = x(e)

Suppose p¢ “simplifies” at € = 0. Goal: to find approximations of the solution z(e) when € is small.

Definition 5.1. Regular, Singular

Classify perturbation problem as

e regular if the e = 0 problem is “close” to the € # 0 problem

e singular if the e = 0 problem is “different” from the e # 0 problem

17



6 4-13-12

6.1 Regular vs. Singular Perturbations

Look for a solutions

x3 4 3exdry + [3xdxe 4 3woxd] + - -

2 —z4+e=0
z(€) = zo + ex1 + 19 4 - --
23 = (zo+ exy + 204+ )3
= x5 + 3exdry + € [3xdxs + 3xozt] + - -
—x0—6x1—62$2—-"—|—6:0
zy —20=0

3x3r; —21+1=0

Bx%xg + —x9 + Sxox% =0

.7}0:0,:&1
1
T =—-7
1—390(2)
3zow?
Tro = 3
1 — 3z

x0=0: t=0+e+0-+0(&)
1 3
xo=1: $:1—§6—§62+O(63)
1 3
xo=—1: $:—1—§€+§62+O<63)

18




6.1.1 Example #2

e —x+1=0
T =x0+ €r1 + T2+ -
6($0+6$1+62$2+"')3—(x0+€x1+€2332+"')+1:0

ex% + 362:33301 4 —xp—ex) — ET9+ 1= 0(63)

—x90+1=0
x%—xlzo

31‘%33‘1 —29=0

I‘ozl
331:1
To =3

r=1+e+3ed+--

This equation is singular: the cubic equation degenerates to a linear equation at € = 0.
We only get one root; the other two go off to co as € — 0. So we introduce a scaled variable:
Y
r=—, =0(1
50 y=0(1)
=0

—_

€
R
— =~ 3

O @

To get a nontrivial limit, we need a dominant balance between (at least) two terms.

Two-Term Balances
¢ W~@r e/ =1/56 =5~ 1 (O.D~ 1/ O~ >B)
e (D)~B):1/5=1;6=1,2),3)~1;,1>1) ~e
e 3)~(1): ¢/ =1;6=¢03),1)~1;1<(2)~1//3

The first two are dominant balances.

To get the remaining roots... § = e'/2

Y

xr= ——
c1/2

€ 3 1
— ) — ——y+1=0
63/2y 61/23/

f—y+éﬂ:o
y=yo+e Py +eyat--

19



As before:
y=0+€24+0(e)
1
y = :l:l — 561/2 + O(E)

r=14+e+3+---
x =1+ 0(e?)

x = :tm —3 +O0(e’?)
(1-ez?—-22+1=0
x:x0+ex1+62x2+~~
2% = 22 4 2expxry + € (2r0T0 + 23) + - -
(1 — €)[xd + 2exozy + (220w + 23) + -] — 2(20 + ex1 + 2x2) + 1 = O(%)

xf — 229 +1=0
2xor1 — x% —2x1 =0
2(zo — 1)y = 23
Tro = 1
There is no solution of the assumed form (perturbing off a repeated root).
r=1%/e
The correct expansion is

x:x0+el/2x1+ex2+---

20



7 4-16-12

7.1 Asymptotic and Convergent Series

o] €_t
I(x) :/ dt
0 1 + xt

How does I(x) behave as x — 01? This integral is well-defined for = > 0.

Euler 1754:

Formally: for small x,

1
1+ ot

I(a;)—/ etdt—x/ tetdt—|—~--+(—1)"m”/ the tdt 4 - -
0 0 0

=1-z+22%+ 4 (=D "nlz" +---

o0

I(z) =) (-1)"nla" (7.1)

n=0

—1—at+ (@)=t (1) (@) + -

For example, at z = 1:

[e'¢) eft
/ dt=1—2043—4l +5!...
o 1+t

The ratio test shows that (7.1) has zero radius of convergence, so it diverges for all x # 0. Where did we
go wrong? The expansion for ﬁ is only valid for xt < 1. So our expansion doesn’t converge everywhere,
namely when ¢ is large. But when ¢ is large, we have exponential decay in our integral.

For example, at x = 0.1:

12
> (1)l = 0.91542

n=0

(o) eft
——— dt = 0.9156

/0 1+ (0.1)¢
Theorem 7.1.
x>0, N=0,1,2,....
N
I(z) =Y (=1 nl2"| < (N + 1)1V

n=0

21



Proof.

0 e—t
I(z) = / dt
0 1 + xt

9 e*t P
/0 (1 + xt)?
=1—gz4 -+ (—1)NN!JIN + RNJrl(l‘)

Ryii(x) = ()TN + 1)tV /OO e’

"
0 (1+xt)N+2
Byvar(z)] < (N + 1)+ / et dt
0
=1

We write this as

N
I(x) = Z(—l)"n!x" +O(zN T asx — 07
n=0

O(zN*1) stands for a term bounded by a constant times |z|V*1.

Convergent: Fix x, N — oo
Asymptotic: Fix N, z — 07

7.1.1 Optimal Truncation

N
I(x) = (=1)"nla”| < (N +1)laV*!
n=0

Sn(x)

As long as the x power is beating out the factorial, the error is going down. The optimal truncation is at

N ~ [%] Then the error is
1
Error ~ ()!xl/m
T
N\/2—7Te_1/x asr — 0T
T

1
n! ~V2rn" e as n — 0o.

where we have used Stirling’s formula:

So we get exponential accuracy by optimal truncation (asymptotics beyond all orders).

22



7.2 Notation for Asymptotic Behavior

f(@),9(x), © = xo (20 =07, 00,...)

We write f(z) = O(g(x)) as x — xg if there exist constants C,J > 0 such that
F@] < Clgl@)|  for |z — 0| <6

We write that f(x) = o(g(x)) if for all € > 0 there exists § > 0 such that

@) < egl@)|  for || <8
If g(z) # 0, this is equivalent to
lim M =0.
T—T0 g €T
o implies O.
flz) ==
g(z) = 2*

As z — 0, 22 = o(z). As x — o0, = o(z?).

o —sn 2)

g(z) =1

As x — 0, there is no relation between f and g. But we can say that sin (1) =0(1) asx — 0.

T

flx) =
g(x) = 10%log =

Asm—>0,x:0(%).
log —

e /* =o(z") as x — 0F.

23



8 4-18-12

8.1 Perturbation Theory for ODE’s
1. Regular perturbation problems
2. Singular perturbation problems

(a) Boundary/initial layer problems. These are treated by the method of matched asymptotic ex-
pansions (MMAE)

(b) Oscillation problems. These are treated by the method of multiple scales (MMS)

8.2 Overdamped Simple Harmonic Oscillator (Logan 2.4)

my+ay+ky=0
y(0) =0

4(0)

Dimensions: mass M, length L, and time T

Parameters: m (M), a (), k (%), I (%4£)

Variables: y (L), t (T)

For large damping, choose time scale { (which has dimension T'). Choose length scale é (which has dimension
L). Set

I*
y=—y

a
t=2p
Tk
d_kd
dt  adt*

(Henceforth, dots will denote derivatives with respect to ¢*.) Since the equation is linear, the rescaling factor

of y will cancel out. So we have
m| =)y +al= |y +ky =
a a

y*(0) =0
EN /1 I
i Z ) af0) = —
() (o=
— Iy Y=
y*(0) =0
2
a
#(0) =
y7(0) "
._mk
€ . a2

24



Nondimensionalized problem (drop the *’s):

We want to find the approximate solution when e is small (and positive). This is a singular perturbation
problem because if we set € = 0 then we change the order of the ODE from 2nd order to 1st order. We can’t
solve a 1st order ODE with 2 initial conditions.

The solution consists of two parts:
(a) a short initial layer where ¢ is large = fast
(b) long outer regions where § is O(1) = slow

Idea: construct different “inner” and “outer” approximations, then match them.

Outer solution (b)

y=yo(t) +eyi(t) + ya(t) ...
efjo + %1 + Yo + €51 + €92 + Yo + ey1 + €7y2 = O(?)
Yo +yo =10
Yoy1 +y1 =0
Un +Yn+Un-1=0
yo(t) = ce™, t=0()

This is the leading order outer solution.

Initial layer (a)
Say t = O(0). Introduce the time variable

t
T=-

5
d_1d
dt  §dt

y(t;e) =Y (Tse)
e d¥Y 1dY
il Y =0
s2ar? T sar *

The dominant balances will be
1. +=1,5=1 (outer)
2. 55 = %, 6 =t (inner)

3. The third possibility, 55 =1, is not a dominant balance

We get
A’y dy
ar? Tar T =
Y(0) =
ay
—(0) =1
a7 (0)



So the inner expansion is:

Py dYo _
dT? dr
Yo(0) =0
dYy
2 =1
a7 0

The leading order inner solution is

The matching condition is

26



9 4-20-12

9.1 Strongly Damped Oscillator

A note on expansions

1 1
1+2)*=14ax+ -ala—1)2*+ ~ala—1)(a—2)a> +---, x| <1
2 3!
1 1/1\/ 1\ ,
1 S -z _Z
Vitz +2x+2<2>( ?»r+

S
Tt TRY

1
=l-az+a? 23+

1+=x

eyt+y+y=20
y(0) =0
. 1
9(0) =

27



The characterisitic equation, y = e", gives

er’+r+1=0
—14 /1 —4e
ry=———/——
2¢
1
’I"_:—E-'-O(].)
—1+ (1—1 -4e+0(e)?)
ry =
2¢
=—-14+0(e¢)
y(t) = Ae"™' 4 Be+!
y(0)=0 A+B=0
1
9(0) = — r-A4+ryB=-
€
B=-A
=)
e \r— —ry

T 2¢ 2¢
_ V1—de
€
1 1441 —4e
Exact solution: y(t) = — exp —Qt
1 —4e 2e
1 1—+/1—4e
+ exp |— ( )t
1 —4e 2e

Ase— 0T,

y = _e—T_|_€6T

Balancing ejj + ¢ gives e /¢, while balancing § + y gives e .

Ase— 0T,

_etle +—Ofe
y(t)~{1 tle t=0(e)

e t=0(1), t>0
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9.2 Phase Plane

ef+y+y=0
y==z
. 1
z——z(y—i—z)

Two regimes:

1. “Slow” manifold, y + z = 0. The approximate equation for y is then

y:—y = yzce

2. “Fast” system, Z = O(1/¢) and y = O(1).

r=1
€

d_1d

dt  edT
ldy _

edl
lk—_l( + )
edl yrz
dy
ﬁ—ezNO
dz

a7 —(y+2)

y + z # 0, so the approximate equation is

Figure 3: “Geometric Singular Perturbation Theory”

9.3 Michaelis Menton Enzyme Kinetics

H02 — H2 04O

E+s&efy olyp
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Law of mass actions:

rate of reaction o< product of concentrations,

where the constant of proportionality is the rate constant.

e c(t) = concentration of E
e s(t) = concentration of S
e ¢(t) = concentration of C
e p(t) = concentration of P

Ccl; = —kies + (ko + k2)c
Zi = —kies + koc
3; = kies — (ko + ka2)c
b
We see that
C;lt(e +¢)=0

e + ¢ = constant
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10 4-23-12

10.1 Enzyme Kinetics (Continued)

E+§&0 Fyokyp

@
dt
ds

7 = —k1es + kgc

= —kies + (ko + k2)c

e+c=e¢g

%[e—i—c] =0
de

% = —kies + (k‘o + k‘g)(eo — 6)

ds
i —kies + ko(ep — €)

Dimensions: time 7', concentration C'

Independent Variables: ¢ (1)

Dependent Variables: e (C), s (C)

Parameters: eq (C), so (C), ko (7). k1 (g7), k2 (F)
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_s(?)
u(r) ==
_ c(b)
oir) = L
T ::kleot
d
d—z =—u+(ut+k— Ao
d
ed—:)_ =u—(u+k)v
u(0) =1
v(0) =0
€0
€= —
50
ko + ko
k pu—
k130
ko
A= 2
k130

We have two regimes:
(a) Short time, 7 = O(e)

(b) Long time, 7 = O(1)

(b) Long time. Expand

u=uo(7) + eus () + - -
v=129(7) + evi(T) + -

%:fqur(qurkf)\)vo
OZUQ—(Uo+]€)U0
v = ug + k
CZj_O:—UO‘F(UO‘Fk—)\)‘UOU—iO_k
o ,Xuo
_-Ain-+-k
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(a) Short time.

r="
€

d_1d

dt  edT
U(T) = u(t)

duU
=AU+ U +k=MV]
av

T =U—(U+hV

U=Uy+ely +---

V=Vo+eVi+--
dUs

ar Y

dv;
d—j?:Uo—(UoJrk:)VO
Up(0) = 1
Vo(0) =0
Uo(T) =1

dVo
ﬁ_l—(l—kkz)vo
Vo(0) =0
1—6_(1+k)T

="
Vo(T) 1+k

(b) Matching.

uo(0) = lim Up(T) = 1

Figure 4: E+ st o k2 p
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11 4-25-12

11.1 Geometric Singular Perturbation Theory

et = f(z,y)

y=yg(z,y)
z(t) e R™, y(t) e R", f:R™ xR" - R™, g:R™ x R" — R"™. x contains the “fast” variables, y contains
the “slow” variables. Introduce a fast time: T' = é Let ' = % and * = di. So %% = %.

o' = f(z,y)

y = eg(z,y)
“Slow” system:

flz,y) =0
y=g(z,y)

“Fast” system:

x = f(xa y)

y' =0

The slow manifold is f(z,y) = 0. We can’t satisfy all of the initial data in the slow system, because the
initial data for  has to be such that f(z,y) = 0. Physicists say that the x variable is a slave to the y variable.

For the fast system, y = yo (constant) and 2’ = f(z,yo).

Simplest case:

e The slow manifold is a graph, z = ¢(y), ¢ : R — R™.

Figure 5: f(¢(y),y) =0, 9= g(6(y),v)-

e Assume that z = ¢(y) is a globally asymptotically stable (unique) equilibrium for the “fast” equation,
x = f(xv y)

Tikhonov (1948) and Levinson (1949) gave a theory for attracting slow manifolds in these “fast-slow” systems.
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Fenichel (1971) proved that the full system has an invariant manifold close to the slow manifold for small e
provided = = ¢(y) is a hyperbolic equilibrium of the “fast” system z’ = f(z,v).

11.2 Van der Pol Oscillator

€+ (x? — )i 42 =0

N—_—— —
==y
Small mass/large damping: 0 < € < 1
Negative damping/excitability: |z| < 1
Positive damping: |z| > 1
Lienard variables:
1.3 .
=x— -1’ —€x
Y 3 €
L3

€L =2 — —x° —
3 Y
y=x

Slow manifold: y =z — %1‘3

Figure 6:

Slow system Fast system

35



12 4-27-12

12.1 Heat Flow in a Slowly-Varying Rod

Figure 7: u(z,t) = temperature

Up = VUgy, O<z<L(t), t>0
u(0,t) =0
u(L(t),t) = g(t)
u(z,0) = f(x)
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Nondimensionalization

Ly = L(0)
Tp = time-scale of variations in L(t)

0 = typical temperature

xr
*
=
Lo
=L
To
u
*
ut = —
to
1
o) — O
T Lo x
1
Op = — O
t TO t
By
Ut = — Uy
t TO t
Oy .
Ugy f%ux*x*
Ut = VlUgy

So we have
EUfe = Une o s 0<z"<L*(t"), t*>0
u*(0,t*) =0
u* (2", 0) — f*(z7)
Interpretation of e:

e T, = diffusion-timescale, i.e. time, for heat to diffuse from one end of the rod to the other. L ~

VT & T~ L*/v.

L2
.Td:70
-t

Assume € < 1. This means that heat diffuses rapidly over the rod relative to the timescale of variations in
the length/boundary data.
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Drop the *’s.

€U = Ugy, 0<xz<L(t), t>0

u(0,t) =0
u(L(t),1) = g(t)
u(z,0) = f(z), 0<z<l1, L(0O)=1
Outer expansion:
u = ug(z,t) + euy(x,t) + O(e?)

U zz = 0, O<z<L
UQ(O, t) =0
UU(L7 t) =g

We have to drop the initial condition (because we wouldn’t be able to satisfy it with the outer solution).

Inner expansion:

="
€
u(z,t;e) =U(z,Tse)
1
Oy = -0r
€

Uy = Uy, O0<xz<L(T), T>0

U0,T) =0
U(L(eT), eT') = g(eT)
U(z,0) = f(x), 0<zr<l1

U=Uy(z,T) + Ui (x,T) + O(c?)

Uor = Uouz, O<z<1,T>0
Up(0,7) =0
Uo(1,T) = g(0)
Uo(z,0) = f(z), 0<z<1
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Solve by separating variables.

U, T)=9(0)X +V(x,T)

Vi= Vi
V(0,T)=0
V(1,T) =0
V(z,0) = f(z) — g(0)x
Vix,T) = i epe T sin(nmx)
n=1

1
Cn = 2/0 [f(z) — g(0)x] sin(nmx) dz
Uo(z,T) = g(0)x + V(x,T)
So we have

9(t)

L®"
Inner solution: Uy(z,T) = g(0)z + V(x,T)

Outer solution: wug(z,t) =

Do they match?

lim Up(z,T) = g(0)z

T—o0
lim ug(z,t) = g(0)x
Tim o, 1) = 9(0)
Uniform solution:

U ~ Uinner T Uouter — Umatching

~ gV ()
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13 4-30-12

13.1 Boundary Layer Problems

Navier-Stokes equation for incompressible fluid:

i - VU + Vp = eAd, e:i
Re
V-u=0 (“no slip” condition)
u(Z,t) =0 on 0f)

Setting € = 0 (no viscosity), we get the Euler equation:
U+ u-Vi+Vp=0

The Euler equation with no-slip boundary condition is overdetermined. So we impose the “no-flow” condi-
tion:

u-n=0

Prandtl (1905) introduced boundary layer theory.

The velocity goes quickly from zero to something large, so the derivative is very large.

13.2 Model Boundary Layer Problem

ey’ +2y +y =0, <<l
y(0) =0
y(1) =1

We want to find an asymptotic approximation of the solution for 0 < € < 1.

Straightforward (outer) expansion:

y = yo(z) + ey1 (z) + y2(z) + O(€’)
2yp+yo =0
201 +y1 +yp =0
2y + Yn + Y1 =0
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Problem: can’t satisfy both BC’s because the order of the ODE drops from 2 to 1 at € = 0. It turns out
that the correct BC to impose is the BC at = = 1.

yo(1) =1
y1(1) =0
yn(l) =0
yo(z) = ce ™/
_ ol/2p-/2

So we get a boundary layer near z = 0 where the solution adjusts rapidly from ~ e¢'/2 to 0 at z = 0.

Inner expansion (near x = 0):

_
)
y(.’ﬂ,E) - Y(Xa 6)
Hpre) = 29 1y
y(x76) 5dX 5
2
2y’ —
+5Y'+ 0

Dominant balances:

Y'+2Y 4+ €Y =0
Y =Yo(X) +eVi(X) + -
Yy +2Y5 =0
Y +2Y] + Yy =0
¥(0) =0
YézceiQX

Yo(X) = e1 4 e = ¢(1 — e 2X)
Matching condition:

I = lim Yp(X
Jim yo(2) = lim ¥o(X)
o1/2

Yo(X) = e!2(1 - e72¥)

=c

Leading-order asymptotic solution:

. el2e7%/2 ase—»0t, 0<z <1
y(x76) ~ 61/2(1 _ e—2z/e) 0< 2 < oo
- €
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Uniform solution:

Yinner T Youter — Yoverlap
y(ﬂc;e) ~ 61/2(6—90/2 - 6—290/6)

Let’s compare this to the exact solution. The characteristic equation is

er?+2r+1=0

—1£+v1—-c¢
r= -
€

r = —ale), —@
B =2+
—1+\/1—€:—1+(1—%€) :—%e

e—0T _ e—Bz/e
y@ie) = —— g

e—x/? _ e—2x/e

~ =
e—1/2 _ o—2/e

This agrees with the uniform solution (to leading order in ¢).
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14 5-2-12
14.1 Follow-Up: Why is the boundary layer at 07
ey +2y +y=0, O<z<l

y(0) =0
y(1) =1

Try to find the solution with the boundary layer at x = 1.

(a) Outer solution.

y=yo+eyi(z)+---

2y, +yo = 0, 0<ax<l1
yo(0) =0

(b) Inner solution near x = 1.

y(z;e) =Y (Xse)

d_ td
de  edX
Y —2Y' + €Y =0, 0< X <o (Y’:
Y(0)=1
Yy —2Yy =0
Yo(0) =1
Yo(X) = ¢1 + cpe?X
=1+c(1—e*)

(¢) Matching. We want yo(x) as * — 1~ to match with Yp(X) as X — oo.

yo(x) =0 asx — 1~

oo ¢>0
Yo(z) — 1 ¢=0
-0 ¢<0

So after going through all of this analysis, we find that it won’t work.

14.2 General Linear 2nd Order BVP’s



Find an asymptotic solution as € — 0%. Suppose a(x) > ¢ >0on 0 <z < 1.

Claim: we get a boundary layer at z = 0.
1. X = 2. The leading order inner equation for Yy is
Yy +a(0)Yy =0
K)(X) =c1 + Czeia(O)X

—c as X —»ooifa(0) >0

2. X = 17% for a boundary layer at = = 1.
Yy — a()yg = 0
Yo(X) = ¢1 4 cpe®MX

We need a(1) < 0 in order to permit matching.

So
1. If a(x) > § > 0 we get a boundary layer at = = 0.
2. If a(z) < —6 < 0 we get a boundary layer at x = 1
If a(x) changes sign (turning points), we get more complicated behavior.
3. If a(0) <0, a(1) > 0, we get no boundary layers (maybe interior/corner layer).

4. If a(0) > 0, a(1) < 0, we can have boundary layers at both endpoints.

14.2.1 Boundary Layer Example 1

ey + 2y —y=0, —l<z<1
y(-1) =1
y(1) =2
a(-1)=-1<0 = no BL possible at either endpoint
a(l)=1>0 P P

(a) Outer solution.

y=1yo(z) +eyr(x) +---
2yo— Yo =0
yo(z) = Cx

Impose left and right boundary conditions to get left and right outer solutions.

Yo' (z) = —
Yo' (z) = 2z

Try

(z) = -z —-1<x<0
YoIJI=9 92 0<az<1
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(b) Inner solution. Introduce scaled variable

T
X ==
)
y(z) =Y (X)
d_1d
de  §dX
z=0X
CY"isx -ty —y =0
52 )
€ /
ﬁY +XY' -Y =0
We have a dominant three-term balance for § = /2.
Y'+ XY —-Y =0, —0< X <0

Matching.

Y(z)~2X as X — o0
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15 5-4-12

15.1 Boundary Layers (Continued)

ey + a(z)y + b(x)y
(0)
(1)

<

0
Q
B

Y

A boundary layer at x = 0 is possible if a(0) > 0, and a boundary layer at = 1 is possible if a(1) < 0. If
a(x) changes signs, more complications may occur.

15.1.1 Boundary Layer Example 1 (From Last Time)

e +ay —y=0, -l<z<1
y(=1) =1
y(1) =2

There was no way to put in a boundary layer at either endpoint because as x changes signs you change from
growing to decaying solutions.

OQuter solution:

y=yo(z) +eyr(z) +- -

Yo —yo =0
yo(xz) = Cx
yo'(z) = —a
yp(x) = 2z

The simplest, where we have a corner layer at x = 0, is the right solution because it can be matched.

Inner solution: (for the corner layer)

xT

= m
Here we have a 3-term dominant balance, and we get

Y+ Y]~ Yy =0
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and then we have to subject this to the matching conditions.

Matching conditions:

inner limit of outer solution = outer limit of inner solution
v (2) = — Y& (z) = 2z
— 2t — 9212
l/2
= —¢/2x
The solution -
Yo(X) =1 X + ¢ [eéX +X/ e~ t/2 dt}
—0oQ
as X — —oo, and this looks like ¢; X, so let ¢; = —1. As X — oo,
o0 2
Yo(X) ~ [014—02/ et /th]x
—o0

Question: what is the uniform solution? It would look like

L R L R
Y ~ Yinner + Youter + Youter — yoverlap - yoverlap

312, 3 /e,
~—z+ e ” /25+x/ et
Y V2T V2T )00

More important than using the inner solution is that it matches with respect to the boundaries and outer
solution.

15.1.2 Boundary Layer Example 2

ey —xy +y=0, —-l<z<1
y(-1) =1
y(1) =2

So here a(r) = —x, a(—1) =1, and a(1) = —1 (so boundary layers are possible at both z = —1 and z = 1).

Outer solution: (away from any boundary layers)

y=yo(x) +eyr(x) + - -
—zyy+ 4o =0

yo(z) = cx

WEe’ll leave c arbitrary since it is not clear which BC to impose.
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Inner solution at x = —1:

_:1:+1

y(wse) = Y(X;e)

4 _14d
dr  edX
z=—-14+¢eX

1 1
Y= (-14+eX)-Y' +Y =0
€ €

Matching condition at x = 1:

Y (0;e) =1
Y = Yo(X) 4+ Vi (X) +---

Yy +Yy =0

Yo(0) =1

Yo(X) =1+ A(1—e )

lim Y(X) = lim1 yo(x)
T——

X—o0

1+A=—c
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16 5-7-12

16.1 Boundary Layer Example 2

ef) —xy +y=0, -l<z<1
y(-1) =1
y(1) =2

Boundary layers are possible at both endpoints.

Outer expansion:

y=1yo(x) +eyr(z)+---
—wyy + 90 =0
yo(z) = Cx

Inner expansion (x = —1):

r+1 x—1
r= (‘ 5)

Y(Xs€) = y(zse)
Y =Yo(X) +eVi(X) + -+
Yy +Yy=0
V(X)=1+A1-¢¥)  (Yo(0)=1)

Matching at x = —1:

lim yo(z) = lim Yp(X)

z——171 X—o0

—C=1+4
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Inner expansion (z = 1):

XZl—:L‘
€
Y(Xs5e) =y(z;e)
d _1d
de ~  edX
‘;w+%ﬂ+fXﬂﬂ+Y:0 Y (0;¢) =

Y = Yp(X) + e¥i(X) + -
Y 4Yi =0, Yp(0) =2
Yo(X) =2+ B(1—e)

Matching:
lim yo(z) = lim Y5(X)
x—1 X—00
C=2+1B

So the solution is
—14+ A1 — e (+a)/e]

Y ~ Cx

2+ B[1— e (ma)/e]
—C=1+A4
C=2+B

The problem is that C' is undetermined. It remains undetermined to all orders in e.

We can find C here by using symmetry of the problem.

1
y(z) = 5o+ 2(2)
1
ez"—x<2+z'>—i— r+2z2=0

o= NN W

This is invariant under x — —z, z — z. So for a solution y =
function of z.

x + z (assuming it’s unique), z is an even
b

—C — Ae—(14m)/e
Y~ Cx
C — Be~(1-2)/e
C=1+4
C=2+1B
1
“=3
A=p=-2
2
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This holds in the leading order solution if C' = %, which implies that A = B = —%.

1 + §€*(1+x)/6 l+z= O(e)
r —-l<x<l
1+ %e_(l_l’ /¢ 1—2=0()

y(x) ~

The uniform solution would be
1 3 _ o1 13 _a_ave 1 1
Yuniform ™~ *5 + 56 (1+2)/ + 5% + 5 + 56 (1=z)/e _ <> - =

_ L 3 e e%m)/e]

2 2

16.2 Boundary Layer Example 3

ef) —yy +y=0, 0<z<l1
y(0)=1
y(1) =1

A comparison with the linear equation suggests no boundary layer at x =0 or z = 1.
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17 5-9-12
17.1 Boundary Layer Example 3
ef) —yy' +y=0, <zl

y(0)=1
y(1) =1

Look for a solution with no boundary layers at x =0 or x = 1.

Quter solution:

Y =yo(x) +eyr(x) + -
—Yoyo + Yo = 0
vo(—yp+1)=0

Either

Yo = 1, 20 =x+c

The left outer solution is

yy(x) =z +1

Y5 (0) =1
The right outer solution is

vo () =z — 2

vp (1) = ~1

Look for an interior layer of width O(e) where, at xg (0 < zp < 1), the solution jumps from the left outer
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solution to the right outer solution.

X — T — X0
€
Y(Xse) = y(z5€)
d 14
dr ~ edX

Y —YY' 4+ ¢V =0
Y = Yo(X) + €Y1 (X) + -

Yy —YoYy =0
1
YO’—§Y02:k:
1
YO’:k+§YO2

Matching:
1
k=—§a2<0 (a>0)
1 1
Yy = —§a2 + 51/02

Yo(X) —a as X — —o0
Yo(X) = —a as X — o0

This requires that zg = % in order to jump from —a to a.

Matching condition:

lim Yp(X) = lim y{¥(x) —a= 3
X—00 r—ag 2
lim Yo(X)= lim yf(z) a= 3

X—=—00 T—xy 2

Soa= % The solution is

3 3
Yo(z) = ~5 tanh [Z(X - c)]
This constant c is left undetermined (to all orders in €). Note that the system is invariant under x — 1 — =z,

y — —vy (and the boundary conditions also remain unchanged). So the solution (if unique) must be odd
about x = % So y (%) = 0 and therefore ¢ = 0.

Summary:
r+1 O§$<%
3(x—1
y~14 —3tan [%] z—%=0()
r—2 %<x§1
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The uniform (composite) solution is

y(m)wx—i—itan
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18 5-11-12

18.1 Method of Multiple Scales (MMS) and Oscillations

Pendulum

T +sinz =0

Linearized equation at x = 0:

i+x=0 (simple harmonic oscillator)
x(t) = acost + bsint
— At + A*eit,
a—1b
2

A=

Look for small-amplitude solutions of the nonlinear equation (weakly nonlinear). Introduce a small parameter
€ > 0 and look for solutions

z(t,€) = exq (t) + Exo(t) + €x3(t) + O(€7)

For example, we could have

1
sinx =z — 63:3 + O(z°)

1
=ex) + a9 — 6631‘% + 0(65)
1
€ 4 39 + ex1 + € (mg — gx?) +0() =0
O(e) : Z1+21=0
. 1
O(é%) : To+ a2 = gx“;’
x1(t) = A’ + A%
= Ae't + c.c.
complex conjugate

o — [Aeit + A*e_it]?’

D~

[A363it + 3|A|2Aeit + 3|A|2A*e—it + (A*)3e—3it]
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Side calculation: the solution of
:-y' + y = Ce3it
y(t) = De™
i+y=(-9+1)De*"
— _8D63it

1
D=--C
8

Another side calculation: consider

ji+y=Ce"

e’ is a solution of the homogeneous equation, so try

y(t) = Dte™
D(it + 1)e™
D(—t +1i)e + iDe"
= D(—t + 2i)e’
ij+y = 2iDe"
_¢
i

Y=
(1

Back to our problem, we have

A3 it [APA L JAPAY L (A%
48 + 43 BT 43 te 48

x9(t) = — L e % 4 Be' + Bre "

Note: terms like te? appear in z5(t). The actual solution is a periodic function of time! Terms like te' are
called secular terms.

The perturbation expansion becomes invalid when t = O (1/€?) and €2z = O(ex1).

18.1.1 Example

The origin of secular terms is the change in period/frequency of nonlinear oscillations with amplitude:

ecos((1 + €2)t) = ecos(t + €*t)
= ecost — (sint)edt + O(e*)

There is a nonuniformity in the expansion as ¢ — 0 for large ¢. In a sense, the largeness of ¢t overcomes the
smallness of e.

18.2 Poincaré-Lindstedt Method

Introduce a rescaled time,
T = w(e)t.
Expand the frequency as
we) =14 wy +---

Choose wo to ensure that no secular terms appear.
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19 5-14-12

19.1 Poincaré-Lindstedt Method
Pendulum:

Z+sinz =0
We want to obtain an asymptotic solution for small-amplitude periodic solutions. Straightforward expansion
fails due to secular terms (from dependence of the period on amplitude).
Idea: introduce a “strained” time

T=wt

z(t) = y(wt) = y(7)

Recall that y(7) is 2m-periodic in 7. The 27 is for convenience. The important point is that the period of
y(7) is fixed.

d d

at~ “ar

L . dy

T =wy, y—%
ng'j—l—siny:O

Expand:
y = ey (1) + Eya(r) + - -

w=uwy+ w +---
y(T+27) = y(1)
. 1
siny =y - 2y + 0()
1
= ey + Yo — 6€3y? +0(€)
2e2wowy ew(%y'l + ¢ [w%jjg + 2w0w1y1] + -

.. .. 1
(wg + 262w0w1 + ) (el + 63y2 +- ) ey + e (yQ — yi’) = 0(55)

6
O(e) : Wi +y1 =0
y1(7 +27) = y1(7)
. 1 .
O(e%) : Wiija +y2 = éy? — 2wow11

ya(T +2m) = ya(7)
From the leading order equation, we need wi = 1 (wp = 1). Then
() = Ae'T + AfemiT
Next order:

. 15 .
Yo +y2 = gy~ 2w 1
y2(T + 27) = yao(T)

1 ) ) ) ) . )

o 12 = ¢ (AP€PT + BAPATET + 3a(A) 2T + (AT 4 2w (AT + A%eTT)
1 , 1 . 1 . 1 .

= EA?’@?’” + [QA]A]Q + 2w1A] et + [2A*]A]2 + 2w A% e + E(A*)?’e’:}”
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The solution has the form

Y2 (1) = Be3™ 4+ Cre’™ + complex conjugates

Cre'™ is a secular term (non-periodic), from the resonant term oc €7 that solution of the homogeneous
equation. We only get a periodic solution for yo(7) if the coefficient of '™ on the RHS is zero. So

1
aAP+m4=o
1
w1 = —Z’AP

1 _
Yo +y2 = 6A363” + complex conjugates
ya2(T) = Be®™ 4+ complex conjugates
1
«&B+B:6ﬁ

1
B=-—A3
48

y(1) = Ae'™ + complex conjugate — %5’/1363” + complex conjugate + O(e?)
w:1—iémﬁ+0@ﬁ
z(t;€) = y(wise)
= eAe™t — 4—1863A3e3m + complex conjugate + O(e°)
wle)=1- 262’14‘2 + O(eh)

For example, consider the solution with

T =a
jc:()} att=0

A+ A7) — A+ (A =at -
iwe(A— A*) + Zl8 - Biwed[A3 — (A3 =04 -
A=A" isreal
L 3.3 _
2¢A 246A =a

So we are solving

T +sine =0

z(0) =a
#(0) =0
x(t) = laem + lae_m + La?’(em 4 ety La?’(e?’m + e + 0(a”)
2 2 384 384
x(t) = acos(wt) + %a?’ [cos(wt) — cos(3wt)] + O(a®)
w=1-— %aQ + O(a%)
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The period of the solution is
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20 5-16-12

20.1 Poincaré-Lindstedt Method

I+ x=¢€eF(t,z, )
Look for periodic solutions.

T =uwt
d’x d
2F+x—eF (t,x,wﬁ)
(T + 2m;€) = (15 €)
z(75€) = wo(T) + €1 () 4 - -
w=wo+Eews+- -
d2
gT+$0—O
wo =1 to get 2m-periodic solutions
x():Ae”—i—A*e_”

d2
s 22y = [, fn depends on xg,...,xp—1 and w1, ..., wp_1
This has the form
Lxy, = fp
2
L= I —— +1 acting on 2m-periodic functions z, € L*(T)

L is a self-adjoint (Sturm-Liouville) operator with periodic BC’s.

2w

(fgy=[ f(D)g(r)dr

0

(f,Lg) = (Lf,9g)

The eigenvalues are

Lo =)\
Ao =1 o =1
A\, =-—n’+1 b, = eint_ gint
For f € L?(T), when is Lu = f solvable? If L¢ = 0,
(¢, Lu) = (¢, f)
(Lo, u) = (¢, f)
(¢, f) =0

Fredholm alternative: Lu = f, L* = L is solvable only if
<¢7f>:O V(ZsSHCh that Ld):O

(The eigenfunction expansion shows it is sufficient also.)
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For L = % + 1,
Lyp=0
¢ = cre™ + coe™
The solvability condition is
<ei‘r’f> _ <e—i‘r7f> -0

which says that the Fourier coefficients f; and f’,l vanish.

Lx() =0
x0 :AeiT+A*e—iT
LfIIn = fn((L’O, ey Ip—1,W1, - awn—l)

2n = 2P 4+ Apel 4+ Afe™

Determine wy,_1 and (possibly) |A,—_1| from the solvability conditions for z,.

20.2 Weakly Damped Simple Harmonic Oscillator

T+ex+x =0, I<ex1

Straightforward expansion:

x=xo(t) + exi(t) +---

Zo+xo=0
o :Aeit+A*e—it
T1+ 11 = -0

1 +x1 = —iAe" 4 iA*e

Get te™" terms in x1 (secular). Here, introducing a variable 7 = wt and looking for periodic solutions in 7
doesn’t help!

The solutions look like e™.

r’4+er4+1=0

e+ Vet —4
2

’r‘:
2

€ €

— S 4a/1-=
9 " 1

Basic idea: we have two time-scales
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1. The period of oscillations, O(1) = t =t
2. The time-scale of the damping, O (%) = T=c¢t

Introduce two “multiple-scale” variables simultaneously. Look for solutions of the form
x=x(t,T;e)

and treat ¢t and T as independent variables. (Evaluate T' = et at the end.) This seems crazy because we
have replaced an ODE with a PDE.
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21 5-18-12

21.1 Weakly Damped Oscillator

(ODE) i+et+x=0

We want to obtain an asymptotic solution that is valid for long times, t = O (%) Straightforward expansion
for x(t;€) leads to secular terms. For the method of multiple scales, we will introduce two time variables:
t, T = et. Look for a solution of the form

x(t;€) = y(t, et;€).
Then

@(t;€) = yi(t, et; €) + eyp(t, et; €)

i = yu + 2eyer + Eyrr
d 0

o — 5% + 37 (derivative expansion)

(PDE) Yu + 2eyir + Eyrr + e(ye +eyr) +y =0

x(t; €) satisfies the ODE if and only if y(¢,T;€) satisfies the PDE on T' = et. The idea of the method of
multiple scales is to require that y(¢, T; €) satisfies the PDE for all (¢,7"). So we start by introducing a lot of
freedom, requiring that z(t; €) = y(t, et; €), and then we take it away by saying that it must satisfy the PDE
for all (¢, 7).

Expand:

y(t. Tse) = yo(t,T) + eyr(t,T) + O(€?)
O(1) : Yot + Yo =0
O(e) : Y1, + Y1+ 2y047 + Yo = 0
yo(t, T) = A(T)e" + A*(T)e "
Y1t + 1 + 2iApe’ + complex conjugate + iAe™ + complex conjugate = 0
Y+ y1 + (247 + At —i(24% + A*)e ™ =0
n(t,T) = Cte't
Y1 + 1 = C(—te' + 2e™) 4+ Cte' = 2iCe

1
C=- <AT + 2A>
1 ,Lt .
n(t,T)=—Ar+ §A te" + complex conjugate
+ Be' + complex conjugate

We require that the y,(¢,T) don’t grow too fast in ¢ (e.g. bounded functions of ¢ or sublinear). We get that
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y1(t, T) is a bounded (periodic) function of ¢ only if the coefficient of ¢ vanishes:
27+ A =0
A(T) = Age™ 172
yo(t,T) = Age T2 4 Aae_T/Qe_it
. 1
z(t;€) = Age” 2 + complex conjugate + O(e) fort =0 (—)
€

2 4er4+1=0

1
r:—giuh—zé

21.2 van der Pol Oscillator
We already looked at strong damping:

€+ (22— )i 42 =0.
Weak damping:

i+e(@®—1)i+xz=0.
Strong damping:

T =y
ey=1x— (2 -1y
Slow manifold: y = _r
1 — 22

Figure 8: There is a limit cycle in here somewhere. This is why we use the Lienard variables... (See Figure 6.)

Weak damping:

Figure 9: We spiral into the limit cycle from the outside, and we spiral away from the limit cycle on the inside.
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22 5-21-12

22.1 van der Pol Equation

Fte(@®—1)i+z=0 (weak damping)
Multiple scale variables: ¢, T = et. Look for a solution of the form

x(t;€) = y(t, et; €)
4,9
dt ot
Yir + 2eyer + Eyrr + e(y® — 1) (s +eyr) +y =0
yi + € 201 + (v2 — Dye] + € [yrr + (v — Dyr] +y =0
y=v(t,T)+ ey (t,T) + O(e)
Yot + Yo =0
Y1+ Y1+ 29007 + (¥§ — 1yoe = 0
yolt, T) = A(T)e + A*(T)e~"
Y+ y1 + 2 [iApe™ —iAje ] + [A%e* + 2|A + (A%)%e 7 — 1] [iAe™ —iA*e™] =0
Y + Y1+ i A3e3it 4 [QiAT + i]A\QA — iA] e + complex conjugate = 0

+ 6i

t

We require that y;(¢,7) is a periodic function of “fast” time t. So we must have

Ar + %(|A|2 —a)A=0
A(T) = r(T)e ™)
Ar = [rr +irgr] e
rr +ir¢r + %(7“2 —1)r=20
rr + %r(rQ -1)=0

¢or =10
¢ = ¢o

z(t;e) = A(et)e™ + complex conjugate + O(e)

. 1
= r(et)e’ %) 4 complex conjugate + O(e) for times t = O (—)
€
r=0 = z=0 (equilibrium)

r=1 = x=2cos(t+ ¢o)
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Let’s try to formulate an energy argument for this system. Energy equation:

id + iz +e(z? — 1)i? =0

d (1 1 i ;
( .2 2) = —e(a® — 1) { >0 |z| <1 (negative damping)

at \ 2" + 2" <0 |z|>1 (positive damping)

For a periodic solution,
§1§(x2 ~1)i%dt =0
For weak damping:

x(t) = acost

27
/ (a®cos’t — 1) -a?sintdt =0
0

(12 2T 1 2T
or cos2t-sin2tdt:2—/ sin’ t dt
™ Jo ™ Jo
27 ) 1
— in“tdt = -
o/, sin 5
1 27 1 27
- (cos® tsin” t) dt:2—/ (sin?t — sin*t) dt
™Jo ™ Jo
_1 3
2 8
_1
8
a2_1
8 2
a=2
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23 5-23-12

23.1 Method of Averaging

zt = ef(z,1)
z(0) =c
241
Z2
r = .
‘TTL

flz,t+27m) = f(x,t)

f:R*" xR — R", fis periodic in time.
We introduce multiple scale variables t, T" = et. Then

z(t;e) = y(t, T €)|r=e
4,0, .9
at ot or

yi +eyr = €f (y, 1)
We look for solutions that are periodic in ¢ (i.e. no secular terms):
y(t+2m, Ts€) = y(t, T €)
y=w(t,T) +ey(t,T) +O(e)
Yo+ eyre + eyor = €f (o, t) + O(€?)

0(1): Yot =0
Yo = yo(T)
O(e) : Y1t +yor = f(yo,t)

y1(t +2m,T) =1 (¢, T)

2w 2
O:/ ytdt:/ g(t)dt
0 0

1 2

Need: g= 5 g(t)dt =0
0

We have
Y10 = —yo,r + f(yo,t)
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The solvability condition is that

27
5 | (ot F 0yt =
yor = f(%o)
— 1 27
Flyo) =5 | flyo.t)dt
y(t) = yo(et)
3T = %8,5
e = ef(y)
_ 1 27
flyy=5_ | flyt)d
™ Jo
xy = ef (z,t)

Theorem 23.1.

For smooth t-periodic vector fields f(x,t) there exist constants €y, ¢,k > 0 such that for all e with
le| < €9 we have

|z (t; €) —y(t)| < ke

for [t] < €.

23.2 Geometrical Interpretation

xy = ef (z,t)
p°: R" — R" (Poincaré map)
z(0) — z(2m)
p(z0) — z0 = O(e€)
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Figure 10: Poincaré map.

The flow of the averaged equation approximates the Poincaré map of the full equation (on times t = O (%)
). Hyperbolic fixed points of the averaged equation correspond to 27-periodic solutions of the full equation

(for e sufficiently small) with the same stability.

23.3 Periodic Standard Form

i+y=-eg(y,9,t) (2m-periodic)
y(t) = x1(t) cost + xo(t) sint
y(t) = —x1(t) sint + xo(t) cost (23.1)

(y> ( cost  sin t) (:1:1)
Y —sint cost/) \x2
9 = —x1cost —xosint — &y sint + 2o cost
= —y —x18int + xocost
—dysint + £ cost = eg(x cost + xosint, —xy sint + xg cost, t) = ef (z,t)
Z1cost+ &gsint =0 (so 23.1 holds)
&1 = —e(sint) f(x,t)
&9 = €(cost) f(x,t)
T =e€f(x,t)
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24 5-25-12
24.1 WKB Method

Simple harmonic oscillator with slowly varying frequency:

Ty + wi(et)r =0

Figure 11: A pendulum system where the length of the pendulum can change.

T = et
4a_.4
dt  dT

€237TT + OJQ(T)X =0
Slow vs. small variations in frequency. Here, we use the fact that the variations are slow.

We want to find an approximate solution that is valid for ¢t = O (%) Try a multiple scale expansion:

t, T = et.
$(t; 6) = Z/(t, T; 6) |T:5t
)
di ot " or
&2 P, P

_l’_

a2 oz gt T ar

Yu + 2eyer + Eyrr + w? (T)y = 0
y=yo(t,T) +en(t,T)+ -
Yot +wi(T)yo = 0
Y1 +w(T)y1 + 2y0r = 0
yo(t, T) = A(T)e™ Tt  A*(T)e (Tt
Yot = iwAe™t + complex conjugate
Your = i(wA)Tei“’t — wwpAte™! + complex conjugate
Y1t + Wiy = 2wwr Ate™ — i(wA)pe™ + complex conjugate

We get secular terms, and the solutions is not valid for long times t = O (%)
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Problem: the period is changing on a slow time-scale.

We've got oscillations with phase w(7T')t = w(et)t. The right way to do this is to use a “fast” phase

0— qﬁ(eft)

or(T) = w(T).

WKB expansion:

aj(t; 6) = y(07 T; 6)‘9:M7 T=et

z(tie) =y <¢(:t) , €t; 6>

de 0Oy oy
a =~ Tos T ar
d’z 0%y 0%y oy 0%y 0%y

@ =T [‘f’Taez * eaTae] TeorHp e [¢Taeazv T eore

= dFyeg + € [dTTY0 + 207Y07] + EYTT
b7ye0 + € [OrTYe + 207Y0r] + Eyrr + W (T)Yy =0

Expand:
Y= yO(Ha T) + 62/1(97T) + -

Require: y(0,T;¢€) is a 2m-periodic function of 6.

%000 + w?yo = 0
DTY1,00 + WY1 + drTY0,0 + 20TY0,0m = 0

yo(0,T) is 2m-periodic in @ if and only if ¢2 = w?, or ¢7 = +w.

yo = A(T)e"® + A*(T)e %

w?(y100 +y1) + orr(iAe’® + cc. )+ 2¢7(iAre'® 4+ c.c. ) =0

w2(y1799 +uy1) +i(200Ar + ¢ A) e+ ce. =0

—0so y is 2m-periodic

207Ar + ¢r7A =0

¢r =w

(wlA)r =0
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25 5-30-12
25.1 WKB Method

i+ wi(et)z=0

= (i¢/ A+ eA)etd/e

) d
primes denote —

ar
i = i¢f (ig) A+ eA)e/ + (cig A+ i) A' + 2A")e™0/¢
= [—(¢')2 A+ ie(2¢' + ¢"A) + € A"] il
0= —(¢))2A +ic(2¢/' A’ + ¢"A) + 2 A" + A

Choose (¢')? = w? to eliminate leading-order terms.
2¢/A/+¢/IA:,L-6A/I
(Liouville-Green)

So far we haven’t made any approximations. Let’s look for an expansion

A=Ay +eA + A+
20/ Ay + ¢ Ag = 0
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Let’s say we choose ¢/ = w.

1 )
Ao(T) = §CL(T)6“s
2wa' +w'a=0
a’ w'
@ 2w

1
loga = —5 log(w) + ¢
ao
Vw

T = AO(T)e’W € + complex conjugate + O(¢)

a =

1 ..
= §ae"sel¢/ € + complex conjugate + O(e)
T = acos (? +5) + O(e)
€

T
o(T) = /O () dT

wa® = constant

2 = alet) cos [@] to=0 (%)
P(eto + 68)] s =0(1)

= a(ety + €s) cos [
€

= a(ety) cos E [@(eto) + €¢' (eto)s + 0(62)]]
o (etp)

~ afeto) cos [ + W(eto)s]

wa? is conserved under slow variations in w. For this reason, we say that wa? is adiabatic invariant, and we
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call it the action.

Energy = %;icQ + %waQ =F
& = —ag'sin <¢ + 5) + O(e)
€
_ (@
= —awsin | =+ ) + O(e)
€

T = acos <f —|—(5> + O(e)

1
Energy = §a2w2 + O(e)
1 E
Action = —wa? ==
2 w

There’s an interesting quantum mechanical interpretation of the action involving energy levels.
25.2 Schrodinger Equation

, h

U, 1) = (o) B
h2
_%qu +V(z)p = E¢
h?

h — 0 corresponds to the WKB approximation, and this is called the semiclassical limit.
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26 6-1-12
26.1 WKB Method and Turning Points
ey" +q(x)y =0
y ~ a(z)e?@)/e
(@) +q=0
¥ =V

¢g>0 = ¢ ==i/g ¢==iS

Yy~ ae:l:iS(x)/e

g<0 = ¢ =+/—q o¢=4=8

Yy~ ae:I:S(x)/e

A turning point is where q(z) = 0, z € R. At a simple zero (x = 0 is a turning point):
q(z) = cx + O(z?).
the behavior changes from oscillatory to exponential. Airy equation:
' +2y=0

The solutions are Airy functions: Ai(x) and Bi(z). Note: the A stands for area, and B follows A.

Let’s say
q(z) >0 when x < x
q(z) <0 when x > x
€y" + q(z)y =0

Schrédinger equation:

. h?

(r,t) = o) P
1 " _
50"+ V(@)o = o

¢ +2mlE — V(2)]é = 0
6(x) = 2m[E — V()]

75



26.2 A Model Bifurcation Problem for PDEs

u(x,t) satisfies the following:

U = Ugpy + psinu, O<x<l, t>0
u(0,t) =0
u(1,t) =0
u(,0) = f()

This is a heat equation with a nonlinear heat source, pusinu. g > 0 is a (dimensionless) parameter that
measures the strength of the nonlinear heat sources.

Consider the equilibrium solution v = 0. Is it stable?

1. We start by linearizing the PDE around u = 0.

Ut = Uy + pU, O<r<l1
u(0,t) = u(l,t) =0

Separate variables.

u(z,t) = e sin(nnz), n=123,...

Op = —n?r? + o
on < 0 for all nif p < 72 (u = 0 is linearly stable). o1 > 0 if u > 72 (u = 0 is linearly unstable).

2. How does the nonlinearity affect instability?

Assume 4 is close to 72. Linear growth rate: o = p — 72 is small.
Ut = Ugy + u-g u + , u = 0(e)
e €3



This suggests the following expansion:

u = eui(z,T) + Suz(z, T) + O()
p=m%+ s+ O(e*)
T = é*t
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27 6-4-12
27.1 Model PDE Bifurcation Problem

Up = Ugy + psinu, O<z<l1l, t>0
u(0,t) = u(l,t) =0
u(z,0) = f(z)

e u(x,t) = temperature
e 1, = strength of the source
u=01is
e linearly stable for p < 72
e linearly unstable for p > 72
Look at the effect of nonlinearity near the point of marginal stability, © = m2. The dominant blance suggested

p— 1% = 0(e)
u = O(e)

1
time-scales ¢t = 0O <2>

€

Expand:
p=1%+ s + O(e*)
u = euy(x,T) + Sug(x, T) + O(°)

T = et
O = €20r
e2uT:um—i—(ﬂ'2—|—e2u2)sinu, O<z<1, T>0

u(0,t) =u(l,t) =0

1
sinu =u — 6u3 + O(uP)

1
= euy + Sug — 663’&? +0(e)

1
e3u17T + = €Ul gy + 63ug,m + (7T2 + €2U2) (eul +é [u;), — 61&’} + .. >
O(e) : Ul gz + 72uy =0
u1(0,t) =u1(1,t) =0
3 2 m° 3
O(€”) : U3z + 7T U3 = urT + €U1 — M2u1

U3(0,t) = U3(1,t) =0
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We get

uy = a(7T) sin(7x)
2
2 . T
U3 gz + T Uz = ap psin(rx) + 9

uz(0,t) = ug(1,t) =0

3sin®(mz) — ppasin(rz)

Lus = f(x)

d2
L=— +7°
P + 7

This is solvable if for ¢ such that L¢ = 0, we have that

<¢7 L’LL3> = <¢7 f>

<L¢7 ’LL3> = <¢7 f>
0=1{(a,f)
Thus, we must have that
(sinz, f) =0
1 2 1 1
ar [/ sin?(mz) d:c] +Ea3 [/ sin? (1) dw] —l2a [/ sin?(mz) da:] =0
0 0 0
1 s 1
2 8 2
1 7T2 3

§aT+1—6a - §u2a20
2

aT—,uga—l—%aB:O

This is typically called an amplitude equation (Laundau-Stuart). The equilibria are:

a=0 OR a2:8“2

T2

Figure 12: This is a (supercritical) pitchfork bifurcation.
A rigorous analysis of the equilibrium states is obtained using Liapunov-Schmidt reduction.
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Initial layer: take

t=0(1)
n= 2+ 62,U2
u = eup(z,t) + Sug(x,t) + -
ULt = Ul gz + Ty
u1(0,t) =u1(1,¢) =0
ui(z,0) = f( )

Sm(mrx)

n=1

= ¢y sin(7z) + Z o U sin(nmx)
n=2

Cn = 2/1 f(x)sin(nrz) dz
0
Ast — oo,
up ~ ¢ sin(mrz).
So we require

a(T) = ¢ asT — 0

—2/f sin(7x)
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28 6-6-12

Final: Tuesday June 12 from 1:30-3:30
Office Hours: Monday 2:30-4:00

28.1 Outline of Topics

1. Dimensional analysis and scaling

e Buckingham-Pi Theorem

e Self-similarity
2. Asymptotic expansions

e 0, O notation
e Asymptotic vs. convergent series
e Expansion of integrals

e (Did NOT cover the method of stationary phase or steepest descent)
3. Regular vs. singular perturbation problems

e Algebraic equations (e.g. polynomials)

e Dominant balance (distinguished limits)
4. Method of matched asymptotics

e Construct inner & outer solutions and match them

e Uniform solutions

Initial layer problems (e.g. enzyme dynamics)

Slow-fast dynamics in systems of ODE’s

Boundary layer problems

5. Method of multiple scales

Poincaré-Lindstedt method (periodic solutions)

Multiple scales (¢,7') and applications to oscillations

Method of averaging
e WKB method

e Fredholm alternative & solvability conditions = these were a unifying theme

The final will probably be 5 questions (roughly one from each topic).
1. Multiple scales
2. Boundary layers
3. Nondimensionalization
4. Asymptotics
For example:

e Nondimensionalize this equation
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e Here’s a polynomial involving €, find the roots

Most of this is discussed in chapters 1 and 2 of Applied Mathematics.

Things to know:

e Taylor expansion for tan

28.2 Sample Problems

Logan 2.1.4

1
f(i%e):m

y=1yo+ ey + 0(62)

Expand f(y,€) in € up to O(€?).

3 15
=1-— §€y + §62y2 + 0(63)
3 15 3
=1- 590 +é {Sy(% - 2?/1} +0(e)

Logan 2.1.5h

How does exp(tane€) behave as e — 07 We are supposed to show that exp(tane) = O(1).

f)=0(g(e) = [fO <Clgle)] forle| <4
f(e) =o(g(e)) = 'Z]"ég —0 ase—0 (if g(e) #0)
(6) ~ 90 HEIRE

~ and o each imply O




exp(tane) — 1 ~ ¢

36 >0 such that

|exp(tane)| <2-1

exp(tane) ~ 1 as € — 0

as e — 0

exp(tane) = exp(e + O(€%))
=1+ (e+O(e*) + O(¢%)
=1+ 0(e)
li_l}(l) exp(tane) =1
|exp(tane) — 1| <1
for e] < ¢

for |e] < ¢

Logan 1.2.3

e m = biomass

e 1 = linear dimension

Assume m = pz3.

Nondimensionalize.

m' = az?® — ba®

e ax? is the growth term (proportional to the surface area)

e bx? is the eating term (proportional to the volume)

3pz2a’ = az® — ba?
z(0) = xg

The dimensions are
e )M = biomass
e [ = length
e T = time

The parameters are

o a,ld=2L
o b, [V =75
o p [l =15

® To, [1:0] =L

The variables are

83




o t,[t|]=T

oz, [z]=L

We have 3 dimensions and 4 parameters, so we should have 1 dimensionless parameter

and use a, b, p to nondimensionalize mass, length, and time.

BEE
a3
i) =
i
B=T
= a—/b
po b
~ p/b
(think)  3(")(z") = (¢*) — (2")?
v (0) = 20
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. Let’s leave xq alone



Index

amplitude equation, 79
Fredholm alternative, 60
regular, 17

secular terms, 56
singular, 17, 19

turning point, 44, 75
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