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1 4-2-12

1.1 Dimensional Analysis

We have a fundamental system of units: (d1, d2, . . . , dr).

Example 1.1. Mechanics

• mass M

• length L

• time T

Derived units, e.g. velocity V = L
T and acceleration A = L

T 2 . We can use different sets of units as fundamen-
tal units (provided they’re independent). For example, we could use mass, velocity, and acceleration. Any
model of a system must be invariant under rescalings that correspond to changes in the system of units.

Let’s say we have a fundamental system of (independent) units: d1, d2, . . . , dr. We have a set of quantities
in the model: 

a1, a2, . . . , ar with dimension [ai] = di
...

br+1, . . . , bn

Let’s say bj has dimensions

[bj ] = d
β1j
1 d

β2j
2 · · · d

βrj
r .

Then the model can only depend on

Πj =
bj

a
β1j
1 a

β2j
2 · · · a

βrj
r

.

So our model has:

• r independent dimensions

• n independent quantities

Then dimensional analysis says it depends on n− r dimensionless variables. (This is called the Buckingham
Pi Theorem.)

1.2 Fluids Flows, Reynold’s Number

Let’s say we have a sphere in a flow. What is the drag on the sphere?

Parameters:

• u = speed of the fluid, [u] = L
T

• d = diameter of the sphere, [d] = L

• µ = viscosity of the fluid, [µ] = M
LT

• ρ0 = density of the fluid, [ρ0] = M
L3

• Assume the fluid is incompressible (this is OK if u� c0, the speed of sound in the fluid)
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Fundamental units: M,L, T .

In a Newtonian fluid:

• T = viscous stress tensor,
T = µ(∇u+∇uT ),

where u = velocity. This gives the force/unit area. The dimensions of T are

[T ] =
ML

T 2
· 1

L2
=

M

LT 2

[∇u] =
1

T

[µ] =
M

LT

We define the kinematic viscosity:

ν =
µ

ρ0

[ν] =
L2

T

The physical interpretation of this quantity is diffusivity of momentum.

ν ≈ 1mm2/s in water

ν ≈ 15mm2/s in air

We can define the Reynold’s number:

Re =
ud

ν
.

This is the crucial dimensionless parameter that controls everything.

Back to our question about drag on a sphere. D = drag force with dimensions [D] = ML
T 2 .

[ρ0u
2d2] =

M

L3
· L

2

T 2
· L2 =

ML

T 2

D

ρ0u2d2
= F (Re)

D = ρ0u
2d2F (Re)

5



2 4-4-12

2.1 Navier-Stokes Equation

ρ0(~ut + ~u · ∇~u) +∇p = µ0∆~u

∇ · ~u = 0

• ~u = ~u(~x, t) is the fluid velocity

• p = p(~x, t) is the pressure

• ~u = (u1, u2, u3)

• ~x = (x1, x2, x3)

• ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
Parameters

• ρ0 = fluid density

• µ = fluid viscosity

• U = “typical” flow velocity

• L = “typical” flow length scale

Dimensionless variables

• ~u∗ = ~u
U

• ~x∗ = ~x
L

• t∗ = Ut
L

• p∗ = p
ρ0U2

– [∇p] = [ρ0~ut]

– [p]
L = [ρ0]

L
T 2

– [p] = [ρ0]
L2

T 2

• ∇ = 1
L∇
∗

• ∂t = dt∗

dt ∂t∗ = U
L∂t∗

ρ0

[
U

L
(U~u∗)t∗ +

U2

L
~u∗ · ∇∗~u∗

]
+
ρ0U

2

L
∇∗p∗ =

µU

L2
∆∗~u∗

~u∗t∗ + ~u∗ · ∇∗~u∗ +∇∗p∗ =
1

Re
∆∗~u∗

∇∗ · ~u∗ = 0

6



2.2 Low Reynolds Number Flows (Re → 0)

p∗ =
p̃

Re

p̃ = Re · p∗ =
UL

ν
· p

ρ0U2
=

L

µU
p

As Re → 0, we get Stokes equations:

∇∗p̃ = ∆∗~u∗

∇∗ · ~u∗ = 0.

These are linear!

Example 2.1. Drag on a Sphere as Re → 0

D = ρ0U
2L2F (Re)

Consider lim
Re→0

D. Since the drag is linear in U , we need

F (Re) =
c

Re

D = ρ20U
2L2 · c

Re
= c

ρ0U
2L2ν

UL
= cµ0UL

Stokes (1851):
D = 6πµ0aU,

where a is the radius of a sphere.

2.3 High Reynolds Number Limit (Re →∞)

Formally, we get the Euler equations.

~u∗t∗ + ~u∗ · ∇~u∗ +∇∗p∗ = 0

∇∗ · ~u∗ = 0

This is nonlinear!

Turbulence, Prandtt boundary layer term → singular perturbation neglecting higher derivatives

2.4 Similarity Solutions

Consider the heat flow due to a point source.

ut = v∆u

u(x, 0) = Eδ(x)

u(x, t) = temperature of (infinite) body. Inject total heat energy E at x = 0 at t = 0.

7



• θ = temperature dimension, [u] = θ

• L = length, [x] = L

• T = time, [t] = T

Parameters ν,E

• [ν] = L2

T

• [E] = θLn

– At t = 0,
´
u dx =

´
Eδ(x) dx = E

– [E] = [
´
u dx] = θLn

8



3 4-6-12

3.1 Heat Equation

ut = ν∆u

u(x, 0) = Eδ(x)

u(x, t) is the temperature, x ∈ Rn.

Parameters

• ν: thermal diffusivity, [ν] = L2

T

• E: initial heat, [E] = θLn

Dependent variables: u ([u] = θ).

Independent variables: r ([r] = L), t ([t] = T ).

So we have

• 5 quantities: ν,E, u, r, t

• 3 dimensions: θ, L, T

We can form 2 dimensionless quantities.

• Time: t

– There is 1 variable with dimensions of time: t. This will lead to the self-similarity of the problem.
That is, a solution on one time scale is a rescale of a solution on another time scale.

• Length:
√
νt

• Temperature: E√
νt

So we have

u∗ =
u

E/(νt)n/2

u =
E

(νt)n/2
u∗(ξ)

ξ =
r√
νt

So our dimensionless temperature depends only on ξ = r√
νt

.
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Let u∗ = F . We will look for solutions of the form

u =
E

(νt)n/2
F

(
r√
νt

)
ut = ν

1

rn−1
∂

∂r

(
rn−1

∂u

∂r

)
ut =

(
−n

2

)
E

νn/2t
n
2
+1
F +

E

(νt)n/2
F ′
(

r√
νt

)(
−1

2

)
r

√
νt3/2

ut =
−E

νn/2t
n
2
+1

[
n

2
F +

1

2
F ′

r√
νt

]
= − E

νn/2t
n
2
+1

[
ξF ′ + nF

]
∆u =

E

(νt)n/2
1

rn−1
∂

∂r

(
rn−1

∂F

∂r

)
=

E

(νt)
n
2
+1

1

ξn−1
d

dξ

(
ξn−1

dF

dξ

)
−1

2��
���E

νn/2t
n
2
+1

[
ξF ′ + nF

]
=

�
����ν
E

(νt)
n
2
+1

1

ξn−1
d

dξ

(
ξn−1

dF

dξ

)
1

ξn−1
d

dξ

(
ξn−1

dF

dξ

)
= −1

2
(ξF ′ + nF )

So we have reduced our PDE to an ODE for F (ξ). This is a second-order, variable coefficient ODE. We
have

F ′′ +
n− 1

ξ
F ′ = −1

2
ξF ′ − 1

2
nF

F ′′ +

(
n− 1

ξ
+

1

2
ξ

)
F ′ +

1

2
nF = 0

′(
F ′ +

1

2
ξF

)
︸ ︷︷ ︸

G

+
n− 1

ξ

(
F ′ +

1

2
ξF

)
= 0

ξn−1G′ + (n− 1)ξn−2G = 0

(ξn−1G)′ = 0

G =
c

ξn−1

Take c = 0; otherwise G→∞ as ξ → 0 (r → 0). So

G = 0

F ′ +
1

2
ξF = 0

(eξ
2/4F )′ = 0

eξ
2/4F = c (constant)

F (ξ) = ce−ξ
2/4

10



Using the initial condition:

ˆ
u(x, 0) dx = E

⇒ c =
1

(4π)n/2

u(x, t) =
E

(4πνt)n/2
exp

(
−|x|

2

4νt

)

11



4 4-9-12

4.1 Heat Equation

ut = ν∆u

u(x, 0) = Eδ(x)

Since this is a linear PDE with constant coefficients (on Rn), we can solve this using the Fourier transform.

4.1.1 Fourier Transform

f(x), x = (x1, . . . , xn) ∈ Rn

f̂(k), k = (k1, . . . , kn) ∈ Rn

f̂(k) =
1

(2π)n

ˆ
Rn
f(x)e−ik·x dx

f(x) =

ˆ
Rn
f̂(k)eik·x dk

We say that f̂ = F [f ], where F is the Fourier transform. Then

∂f

∂xα
(x) =

∂

∂xα

ˆ
f̂(k)eik·x dk

=

ˆ
f̂(k)

∂

∂xα
(eik·x) dk

=

ˆ
ikαf̂(k)eik·x dk

F
(
∂f

∂xα

)
= ikαf̂(k)

In particular,

F [∆f ] = −|k|2f̂(k)

We can define
√
−∆ by

F [
√
−∆f ] = |k|f̂(k)

12



Example 4.1.

f(x) = e−|x|
2/2σ2

f̂(k) =

(
σ√
2π

)n
e−σ

2|k|2/2

4.2 Back to the Heat Equation

u(x, t) =

ˆ
Rn
û(k, t)eik·x dk

û = F [u]

F [ut] = ût

F [∆u] = −|k|2û

F [δ(x)] =
1

(2π)n

ˆ
δ(x)e−ik·x dx =

1

(2π)n

So the heat equation becomes

ût = −ν|k|2û

û(k, 0) =
E

(2π)n

The solutions look like

û(k, t) =
E

(2π)n
e−ν|k|

2t

13



u(x, t) =
E

(4πνt)n/2
e−|x|

2/4νt

Figure 1: The heat diffuses with time.

This is a Green’s function:

G(x, t) =
1

(4πνt)n/2
e−|x|

2/4νt.

Gt = ν∆G

G(x, 0) = δ(x)

So the solution of the heat equation,

ut = ν∆u

u(x, 0) = f(x),

is

u(x, t) =

ˆ
Rn
G(x− ξ, t)f(ξ) dξ

=
1

(4πνt)n/2

ˆ
Rn

exp

(
−|x− ξ|

2

4νt

)
f(ξ) dξ.

4.3 A Porous Medium Problem

Figure 2: The aquifer is fully saturated with water. z = h(x, t) is the height of the aquifer.

Assume slow transverse flow, so the pressure is hydrostatic:

p = ρg(h− z).

14



The pressure head is

H = p+ ρgz,

H = ρgh independent of z.

Assume the fluid is incompressible ⇒ conservation of volume. The change in the volume between a and b is

d

dt

ˆ b

a
h dx = −[hv]x=bx=a

= −
ˆ b

a
(hv)x dx

ˆ b

a
[ht + (hv)x] dx = 0 ∀ [a, b]

ht + (hv)x = 0. (4.1)

Darcy’s law:

v = −k
µ
∇H.

k is the permeability, and µ is the fluid viscosity. This is saying that the velocity is proportional to the
gradient of the pressure head. In our case, we have

v = −k
µ
ρghx.

Plugging this into (4.1), we get

ht = K(hhx)x

K =
kρg

µ
.

This is the 1D porous medium equation. This is a nonlinear, degenerate diffusion equation. When h → 0,
the diffusion drops out.

15



5 4-11-12

5.1 Porous Medium Equation

ht = k(hhx)x

h(x, 0) = Iδ(x)

(Barenblatt)

Dimensions

• (vertical) height H

• (horizontal) length L

• time T

Dependent Variables: h (H)

Independent Variables: x (L), t (T )

Parameters: k
(
L2

HT

)
, I (HL)

Use t, k, I to nondimensionalize the problem.

[t] = T

[(kIt)1/3] = L[
I

(kIt)1/3

]
= H

h(x, t) =
I2/3

(kt)1/3
F

(
x

(kIt)1/3

)
ˆ
h(x, t) dx = I

ˆ
F (ξ) dξ

−1

3

I2/3

k1/3t4/3
F +

I2/3

(kt)1/3

(
−1

3

)
x

(kI)1/3t4/3
F ′

= k

[
I2/3

(kt)1/3

]2
1

(kIt)2/3
(FF ′)′

−1

3
F − 1

3
ξF ′ = (FF ′)′, ξ =

x

(kIt)1/3

(FF ′)′ = −1

3
(ξF ′ + F )

= −1

3
(ξF )′

FF ′ = −1

3
ξF + c

We expect F → 0 as ξ →∞. Take c = 0.

FF ′ = −1

3
ξF

F ′ = −1

3
ξ

F (ξ) =
1

6
(a2 − ξ2)

16



We need
ˆ ∞
−∞

F (ξ) dξ = 1

F (ξ) =

{
1
6(a2 − ξ2) |ξ| < a

0 |ξ| ≥ aˆ a

−a

1

6
(a2 − ξ2) dξ = 1

a =

(
9

2

)1/3

h(x, t) =

{
I2/3

6(kt)1/3

[(
9
2

)2/3 − x2

(kIt)2/3

]
|x| <

(
9kIt
2

)1/3
0 otherwise

5.2 Perturbation Theory

pε(x) = 0

Problem for x depending on a small parameter ε. Solution:

x = x(ε)

Suppose pε “simplifies” at ε = 0. Goal: to find approximations of the solution x(ε) when ε is small.

Definition 5.1. Regular, Singular

Classify perturbation problem as

• regular if the ε = 0 problem is “close” to the ε 6= 0 problem

• singular if the ε = 0 problem is “different” from the ε 6= 0 problem

17



6 4-13-12

6.1 Regular vs. Singular Perturbations

Example 6.1.

x3 − x+ ε = 0

Look for a solutions

x(ε) = x0 + εx1 + ε2x2 + · · ·
x3 = (x0 + εx1 + ε2x2 + · · · )3

= x30 + 3εx20x1 + ε2[3x20x2 + 3x0x
2
1] + · · ·

x30 + 3εx20x1 + ε2[3x20x2 + 3x0x
2
1] + · · · − x0 − εx1 − ε2x2 − · · ·+ ε = 0

x30 − x0 = 0

3x20x1 − x1 + 1 = 0

3x20x2 +−x2 + 3x0x
2
1 = 0

x0 = 0,±1

x1 =
1

1− 3x20

x2 =
3x0x

2
1

1− 3x20

x0 = 0 : x = 0 + ε+ 0 · ε2 +O(ε3)

x0 = 1 : x = 1− 1

2
ε− 3

8
ε2 +O(ε3)

x0 = −1 : x = −1− 1

2
ε+

3

8
ε2 +O(ε3)

18



6.1.1 Example #2

εx3 − x+ 1 = 0

x = x0 + εx1 + ε2x2 + · · ·
ε(x0 + εx1 + ε2x2 + · · · )3 − (x0 + εx1 + ε2x2 + · · · ) + 1 = 0

εx30 + 3ε2x20x1 + · · · − x0 − εx1 − ε2x2 + 1 = O(ε3)

−x0 + 1 = 0

x30 − x1 = 0

3x20x1 − x2 = 0

x0 = 1

x1 = 1

x2 = 3

x = 1 + ε+ 3ε2 + · · ·

This equation is singular : the cubic equation degenerates to a linear equation at ε = 0.

We only get one root; the other two go off to ∞ as ε→ 0. So we introduce a scaled variable:

x =
y

δ(ε)
, y = O(1)

ε

δ3
y3︸ ︷︷ ︸

1

− 1

δ
y︸︷︷︸

2

+ 1︸︷︷︸
3

= 0

To get a nontrivial limit, we need a dominant balance between (at least) two terms.

Two-Term Balances

• 1 ∼ 2 : ε/δ3 = 1/δ; δ = ε1/2; 3 ∼ 1; 1 , 2 ∼ 1/ε1/2; 1 ∼ 2 � 3

• 2 ∼ 3 : 1/δ = 1; δ = 1; 2 , 3 ∼ 1;, 1� 1 ∼ ε

• 3 ∼ 1 : ε/δ3 = 1; δ = ε1/3; 3 , 1 ∼ 1; 1� 2 ∼ 1/ε1/3

The first two are dominant balances.

To get the remaining roots... δ = ε1/2

x =
y

ε1/2

ε

ε3/2
y3 − 1

ε1/2
y + 1 = 0

y3 − y + ε1/2 = 0

y = y0 + ε1/2y1 + εy2 + · · ·

19



As before:

y = 0 + ε1/2 +O(ε)

y = ±1− 1

2
ε1/2 +O(ε)

x = 1 + ε+ 3ε2 + · · ·
x = 1 +O(ε1/2)

x = ± 1

ε1/2
− 1

2
+O(ε1/2)

Example 6.2.

(1− ε)x2 − 2x+ 1 = 0

x = x0 + εx1 + ε2x2 + · · ·
x2 = x20 + 2εx0x1 + ε2(2x0x2 + x21) + · · ·

(1− ε)[x20 + 2εx0x1 + ε2(2x0x2 + x21) + · · · ]− 2(x0 + εx1 + ε2x2) + 1 = O(ε3)

x20 − 2x0 + 1 = 0

2x0x1 − x20 − 2x1 = 0

2(x0 − 1)x1 = x20

x0 = 1

There is no solution of the assumed form (perturbing off a repeated root).

x = 1±
√
ε

The correct expansion is

x = x0 + ε1/2x1 + εx2 + · · ·

20



7 4-16-12

7.1 Asymptotic and Convergent Series

Euler 1754:

I(x) =

ˆ ∞
0

e−t

1 + xt
dt

How does I(x) behave as x→ 0+? This integral is well-defined for x ≥ 0.

Formally: for small x,

1

1 + xt
= 1− xt+ (xt)2 − · · ·+ (−1)n(xt)n + · · ·

I(x) =

ˆ ∞
0

e−t dt− x
ˆ ∞
0

te−t dt+ · · ·+ (−1)nxn
ˆ ∞
0

tne−t dt+ · · ·

= 1− x+ 2x2 + · · ·+ (−1)nn!xn + · · ·

I(x) =
∞∑
n=0

(−1)nn!xn (7.1)

For example, at x = 1:

ˆ ∞
0

e−t

1 + t
dt = 1− 2! + 3!− 4! + 5! · · ·

The ratio test shows that (7.1) has zero radius of convergence, so it diverges for all x 6= 0. Where did we
go wrong? The expansion for 1

1+xt is only valid for xt < 1. So our expansion doesn’t converge everywhere,
namely when t is large. But when t is large, we have exponential decay in our integral.

For example, at x = 0.1:

12∑
n=0

(−1)nn!xn = 0.91542

ˆ ∞
0

e−t

1 + (0.1)t
dt = 0.9156

Theorem 7.1.

x ≥ 0, N = 0, 1, 2, . . .. ∣∣∣∣∣I(x)−
N∑
n=0

(−1)nn!xn

∣∣∣∣∣ ≤ (N + 1)!xN+1
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Proof.

I(x) =

ˆ ∞
0

e−t

1 + xt
dt

= 1−
ˆ ∞
0

e−t

(1 + xt)2
dt

= 1− x+ · · ·+ (−1)NN !xN +RN+1(x)

RN+1(x) = (−1)N+1(N + 1)!xN+1

ˆ ∞
0

e−t

(1 + xt)N+2
dt

|RN+1(x)| ≤ (N + 1)!xN+1

ˆ ∞
0

e−t dt︸ ︷︷ ︸
=1

We write this as

I(x) =

N∑
n=0

(−1)nn!xn +O(xN+1) as x→ 0+

O(xN+1) stands for a term bounded by a constant times |x|N+1.

Convergent: Fix x, N →∞
Asymptotic: Fix N , x→ 0+

7.1.1 Optimal Truncation

∣∣∣∣∣∣∣∣∣∣
I(x)−

N∑
n=0

(−1)nn!xn︸ ︷︷ ︸
SN (x)

∣∣∣∣∣∣∣∣∣∣
≤ (N + 1)!xN+1

As long as the x power is beating out the factorial, the error is going down. The optimal truncation is at
N ∼

[
1
x

]
. Then the error is

Error ∼
(

1

x

)
!x1/x

∼
√

2π

x
e−1/x as x→ 0+

where we have used Stirling’s formula:

n! ∼
√

2πnn+
1
2 e−n as n→∞.

So we get exponential accuracy by optimal truncation (asymptotics beyond all orders).
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7.2 Notation for Asymptotic Behavior

f(x), g(x), x→ x0 (x0 = 0+,∞, . . .)

We write f(x) = O(g(x)) as x→ x0 if there exist constants C, δ > 0 such that

|f(x)| ≤ C|g(x)| for |x− x0| < δ.

We write that f(x) = o(g(x)) if for all ε > 0 there exists δ > 0 such that

|f(x)| ≤ ε|g(x)| for |x− x0| < δ.

If g(x) 6= 0, this is equivalent to

lim
x→x0

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0.

o implies O.

Example 7.2.

f(x) = x

g(x) = x2

As x→ 0, x2 = o(x). As x→∞, x = o(x2).

f(x) = sin

(
1

x

)
g(x) = x

As x→ 0, there is no relation between f and g. But we can say that sin
(
1
x

)
= O(1) as x→ 0.

f(x) = x

g(x) = 106 log x

As x→∞, 106 log x = o(x). Similarly, 106 log(log x) = o(log x) as x→∞.

f(x) = x

g(x) = log
1

x

As x→ 0, x = o
(

1
log 1

x

)
.

e−1/x = o(xn) as x→ 0+.
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8.1 Perturbation Theory for ODE’s

1. Regular perturbation problems

2. Singular perturbation problems

(a) Boundary/initial layer problems. These are treated by the method of matched asymptotic ex-
pansions (MMAE)

(b) Oscillation problems. These are treated by the method of multiple scales (MMS)

8.2 Overdamped Simple Harmonic Oscillator (Logan 2.4)

mÿ + aẏ + ky = 0

y(0) = 0

ẏ(0) =
I

m

Dimensions: mass M , length L, and time T

Parameters: m (M), a
(
M
T

)
, k

(
M
T 2

)
, I

(
ML
T

)
Variables: y (L), t (T )

For large damping, choose time scale a
k (which has dimension T ). Choose length scale I

a (which has dimension
L). Set

y =
I

a
y∗

t =
a

k
t∗

d

dt
=
k

a

d

dt∗

(Henceforth, dots will denote derivatives with respect to t∗.) Since the equation is linear, the rescaling factor
of y will cancel out. So we have

m

(
k

a

)2

ÿ∗ + a

(
k

a

)
ẏ∗ + ky∗ = 0

y∗(0) = 0(
k

a

)(
I

a

)
ẏ∗(0) =

I

m

mk

a2
ÿ∗ + ẏ∗ + y∗ = 0

y∗(0) = 0

ẏ∗(0) =
a2

mk

ε : =
mk

a2
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Nondimensionalized problem (drop the ∗’s):

εÿ + ẏ + y = 0

y(0) = 0

ẏ(0) =
1

ε

We want to find the approximate solution when ε is small (and positive). This is a singular perturbation
problem because if we set ε = 0 then we change the order of the ODE from 2nd order to 1st order. We can’t
solve a 1st order ODE with 2 initial conditions.

The solution consists of two parts:

(a) a short initial layer where ÿ is large ⇒ fast

(b) long outer regions where ÿ is O(1) ⇒ slow

Idea: construct different “inner” and “outer” approximations, then match them.

Outer solution (b)

y = y0(t) + εy1(t) + ε2y2(t) . . .

εÿ0 + ε2ÿ1 + ẏ0 + εẏ1 + ε2ẏ2 + y0 + εy1 + ε2y2 = O(ε3)

ẏ0 + y0 = 0

ÿ0ẏ1 + y1 = 0

ẏn + yn + ÿn−1 = 0

y0(t) = ce−t, t = O(1)

This is the leading order outer solution.

Initial layer (a)
Say t = O(δ). Introduce the time variable

T =
t

δ
d

dt
=

1

δ

d

dt
y(t; ε) = Y (T ; ε)

ε

δ2
d2Y

dT 2
+

1

δ

dY

dT
+ Y = 0

The dominant balances will be

1. 1
δ = 1, δ = 1 (outer)

2. ε
δ2

= 1
δ , δ = t (inner)

3. The third possibility, ε
δ2

= 1 , is not a dominant balance

We get

d2Y

dT 2
+
dY

dT
+ εY = 0

Y (0) = 0

dY

dT
(0) = 1
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So the inner expansion is:

Y = Y0(T ) + εY1(T ) +O(ε2)

d2Y0
dT 2

+
dY0
dT

= 0

Y0(0) = 0

dY0
dT

(0) = 1

Y0(T ) = A+Be−T = 1− e−T

The leading order inner solution is

Y0(T ) = 1− e−T

T =
t

ε
= O(1)

The matching condition is

lim
T→∞

Y0(T ) = lim
t→0+

y0(t)

1 = C

y(t, ε) ∼
{

1− e−t/ε t = O(ε)
e−t t = O(1)
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9 4-20-12

9.1 Strongly Damped Oscillator

Remark 9.1. A note on expansions

(1 + x)α = 1 + αx+
1

2
α(α− 1)x2 +

1

3!
α(α− 1)(α− 2)x3 + · · · , |x| < 1

√
1 + x = 1 +

1

2
x+

1

2

(
1

2

)(
−1

2

)
x2 + · · ·

= 1 +
1

2
x− 1

8
x2 + · · ·

1

1 + x
= 1− x+ x2 − x3 + · · ·

εÿ + ẏ + y = 0

y(0) = 0

ẏ(0) =
1

ε
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The characterisitic equation, y = ert, gives

εr2 + r + 1 = 0

r± =
−1±

√
1− 4ε

2ε

r− = −1

ε
+O(1)

r+ =
−1 +

(
1− 1

2 · 4ε+O(ε)2
)

2ε
= −1 +O(ε)

y(t) = Aer−t +Ber+t

y(0) = 0 A+B = 0

ẏ(0) =
1

ε
r−A+ r+B =

1

ε
B = −A

A =
1

ε

(
1

r− − r+

)
B =

1

ε

(
1

r+ − r−

)
r+ − r− =

−1 +
√

1− 4ε

2ε
−
(
−1−

√
1− 4ε

2ε

)
=

√
1− 4ε

ε

Exact solution: y(t) = − 1√
1− 4ε

exp

[
−
(
1 +
√

1− 4ε
)

2ε
t

]

+
1√

1− 4ε
exp

[
−
(
1−
√

1− 4ε
)

2ε
t

]
As ε→ 0+,

y(t) ∼ −e−t/ε + et

t = εT

y = −e−T + eεT

Balancing εÿ + ẏ gives e−t/ε, while balancing ẏ + y gives e−t.

As ε→ 0+,

y(t) ∼
{

1− e−t/ε t = O(ε)
et t = O(1), t > 0
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9.2 Phase Plane

εÿ + ẏ + y = 0

ẏ = z

ż = −1

ε
(y + z)

Two regimes:

1. “Slow” manifold, y + z = 0. The approximate equation for y is then

ẏ = −y ⇒ y = ce−t

2. “Fast” system, ż = O(1/ε) and ẏ = O(1).

T =
t

ε
d

dt
=

1

ε

d

dT
1

ε

dy

dT
= z

1

ε

dz

dT
= −1

ε
(y + z)

dy

dT
= εz ≈ 0

dz

dT
= −(y + z)

y + z 6= 0, so the approximate equation is

ẏ = 0

ż = −1

ε
(z + y)

Figure 3: “Geometric Singular Perturbation Theory”

9.3 Michaelis Menton Enzyme Kinetics

H2O2 → H2O + O

E + S
k0←− k1−→ C

k2−→ P

29



Law of mass actions:
rate of reaction ∝ product of concentrations,

where the constant of proportionality is the rate constant.

• e(t) = concentration of E

• s(t) = concentration of S

• c(t) = concentration of C

• p(t) = concentration of P

de

dt
= −k1es + (k0 + k2)c

ds

dt
= −k1es+ k0c

dc

dt
= k1es− (k0 + k2)c

dp

dt
= k2c

We see that

d

dt
(e+ c) = 0

e+ c = constant
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10 4-23-12

10.1 Enzyme Kinetics (Continued)

E + S
k0←− k1−→ C

k2−→ P

de

dt
= −k1es + (k0 + k2)c

ds

dt
= −k1es+ k0c

dc

dt
= k1es− (k0 + k2)c

dp

dt
= k2c

e(0) = e0

s(0) = s0

c(0) = 0

p(0) = 0

e+ c = e0

d

dt
[e+ c] = 0

de

dt
= −k1es+ (k0 + k2)(e0 − e)

ds

dt
= −k1es+ k0(e0 − e)

Dimensions: time T , concentration C

Independent Variables: t (T )

Dependent Variables: e (C), s (C)

Parameters: e0 (C), s0 (C), k0
(
1
T

)
, k1

(
1
CT

)
, k2

(
1
T

)
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u(τ) =
s(t)

s0

v(τ) =
c(t)

e0
τ = k1e0t

du

dτ
= −u+ (u+ k − λ)v

ε
dv

dτ
= u− (u+ k)v

u(0) = 1

v(0) = 0

ε =
e0
s0

k =
k0 + k2
k1s0

λ =
k2
k1s0

We have two regimes:

(a) Short time, τ = O(ε)

(b) Long time, τ = O(1)

(b) Long time. Expand

u = u0(τ) + εu1(τ) + · · ·
v = v0(τ) + εv1(τ) + · · ·

du0
dτ

= −u0 + (u0 + k − λ)v0

0 = u0 − (u0 + k)v0

v0 =
u0

u0 + k
du0
dτ

= −u0 + (u0 + k − λ) · u0
u0 + k

= − λu0
u0 + k
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(a) Short time.

T =
τ

ε
d

dt
=

1

ε

d

dT
U(T ) = u(t)

dU

dT
= ε[−U + (U + k − λ)V ]

dV

dT
= U − (U + k)V

U = U0 + εU1 + · · ·
V = V0 + εV1 + · · ·

dU0

dT
= 0

dV0
dT

= U0 − (U0 + k)V0

U0(0) = 1

V0(0) = 0

U0(T ) = 1

dV0
dT

= 1− (1 + k)V0

V0(0) = 0

V0(T ) =
1− e−(1+k)T

1 + k

(b) Matching.

u0(0) = lim
T→∞

U0(T ) = 1

Figure 4: E + S
k0←− k1−→ C

k2−→ P
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11.1 Geometric Singular Perturbation Theory

εẋ = f(x, y)

ẏ = g(x, y)

x(t) ∈ Rm, y(t) ∈ Rn, f : Rm × Rn → Rm, g : Rm × Rn → Rn. x contains the “fast” variables, y contains
the “slow” variables. Introduce a fast time: T = t

ε . Let ′ = d
dT and ˙ = d

dt . So 1
ε
d
dT = d

dt .

x′ = f(x, y)

y′ = εg(x, y)

“Slow” system:

f(x, y) = 0

ẏ = g(x, y)

“Fast” system:

x′ = f(x, y)

y′ = 0

The slow manifold is f(x, y) = 0. We can’t satisfy all of the initial data in the slow system, because the
initial data for x has to be such that f(x, y) = 0. Physicists say that the x variable is a slave to the y variable.

For the fast system, y = y0 (constant) and x′ = f(x, y0).

Simplest case:

• The slow manifold is a graph, x = φ(y), φ : Rn → Rm.

Figure 5: f(φ(y), y) = 0, ẏ = g(φ(y), y).

• Assume that x = φ(y) is a globally asymptotically stable (unique) equilibrium for the “fast” equation,
x′ = f(x, y).

Tikhonov (1948) and Levinson (1949) gave a theory for attracting slow manifolds in these “fast-slow” systems.
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Fenichel (1971) proved that the full system has an invariant manifold close to the slow manifold for small ε
provided x = φ(y) is a hyperbolic equilibrium of the “fast” system x′ = f(x, y).

11.2 Van der Pol Oscillator

εẍ+ (x2 − 1)ẋ︸ ︷︷ ︸
=−ẏ

+x = 0

Small mass/large damping: 0 < ε� 1
Negative damping/excitability: |x| < 1
Positive damping: |x| > 1

Lienard variables:

y = x− 1

3
ẋ3 − εẋ

εẋ = x− 1

3
x3 − y

ẏ = x

Slow manifold: y = x− 1
3x

3

Figure 6:

Slow system

y = x− 1

3
x3

ẏ = x

Fast system

x′ = x− 1

3
x3 − y

y′ = 0

35



12 4-27-12

12.1 Heat Flow in a Slowly-Varying Rod

Figure 7: u(x, t) = temperature

ut = νuxx, 0 < x < L(t), t > 0

u(0, t) = 0

u(L(t), t) = g(t)

u(x, 0) = f(x)
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Nondimensionalization

L0 = L(0)

T0 = time-scale of variations in L(t)

θ = typical temperature

L(t) = L0L
∗
(
t

T0

)
g(t) = θ0g

∗
(
t

T0

)
f(x) = θ0f

∗
(
x

L0

)
x∗ =

x

L0

t∗ =
t

T0

u∗ =
u

θ0

∂x =
1

L0
∂x∗

∂t =
1

T0
∂t∗

ut =
θ0
T0
u∗t∗

uxx =
θ0
L2
0

u∗x∗x∗

ut = νuxx

θ0
T0
u∗t∗ =

νθ0
L2
0

u∗x∗x∗

εu∗t∗ = u∗x∗x∗

ε =
L2
0

νT0

So we have

εu∗t∗ = u∗x∗x∗ , 0 < x∗ < L∗(t∗), t∗ > 0

u∗(0, t∗) = 0

u∗(L∗(t∗), t∗) = g∗(t∗)

u∗(x∗, 0)− f∗(x∗)

Interpretation of ε:

• Td = diffusion-timescale, i.e. time, for heat to diffuse from one end of the rod to the other. L ∼√
νT ⇔ T ∼ L2/ν.

• Td =
L2
0
ν

• ε = Td
T0

Assume ε� 1. This means that heat diffuses rapidly over the rod relative to the timescale of variations in
the length/boundary data.
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Drop the *’s.

εut = uxx, 0 < x < L(t), t > 0

u(0, t) = 0

u(L(t), t) = g(t)

u(x, 0) = f(x), 0 < x < 1, L(0) = 1

Outer expansion:

u = u0(x, t) + εu1(x, t) +O(ε2)

u0,xx = 0, 0 < x < L

u0(0, t) = 0

u0(L, t) = g

We have to drop the initial condition (because we wouldn’t be able to satisfy it with the outer solution).

u0(x, t) = A(t)x+B(t)

=
g(t)

L(t)
x

Inner expansion:

T =
t

ε
u(x, t; ε) = U(x, T ; ε)

∂t =
1

ε
∂T

Ut = Uxx, 0 < x < L(εT ), T > 0

U(0, T ) = 0

U(L(εT ), εT ) = g(εT )

U(x, 0) = f(x), 0 < x < 1

U = U0(x, T ) + εU1(x, T ) +O(ε2)

U0,T = U0,xx, 0 < x < 1, T > 0

U0(0, T ) = 0

U0(1, T ) = g(0)

U0(x, 0) = f(x), 0 < x < 1
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Solve by separating variables.

U(x, T ) = g(0)X + V (x, T )

Vt = Vxx

V (0, T ) = 0

V (1, T ) = 0

V (x, 0) = f(x)− g(0)x

V (x, T ) =

∞∑
n=1

cne
−n2π2T sin(nπx)

cn = 2

ˆ 1

0
[f(x)− g(0)x] sin(nπx) dx

U0(x, T ) = g(0)x+ V (x, T )

So we have

Outer solution: u0(x, t) =
g(t)

L(t)
x

Inner solution: U0(x, T ) = g(0)x+ V (x, T )

Do they match?

lim
T→∞

U0(x, T ) = g(0)x

lim
t→0+

u0(x, t) = g(0)x

Uniform solution:

u ∼ uinner + uouter − umatching

∼ g(t)

L(t)
x+ V

(
x,
t

ε

)
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13 4-30-12

13.1 Boundary Layer Problems

Navier-Stokes equation for incompressible fluid:

~ut~u · ∇~u+∇p = ε∆~u, ε =
1

Re
∇ · ~u = 0 (“no slip” condition)

~u(~x, 0) = ~u0(~x)

~u(~x, t) = 0 on ∂Ω

Setting ε = 0 (no viscosity), we get the Euler equation:

~ut + ~u · ∇~u+∇p = 0

The Euler equation with no-slip boundary condition is overdetermined. So we impose the “no-flow” condi-
tion:

~u · ~n = 0

Prandtl (1905) introduced boundary layer theory.

The velocity goes quickly from zero to something large, so the derivative is very large.

13.2 Model Boundary Layer Problem

εy′′ + 2y′ + y = 0, 0 < x < 1

y(0) = 0

y(1) = 1

We want to find an asymptotic approximation of the solution for 0 < ε� 1.

Straightforward (outer) expansion:

y = y0(x) + εy1(x) + ε2y2(x) +O(ε3)

2y′0 + y0 = 0

2y′1 + y1 + y′′0 = 0

2y′n + yn + y′′n−1 = 0
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Problem: can’t satisfy both BC’s because the order of the ODE drops from 2 to 1 at ε = 0. It turns out
that the correct BC to impose is the BC at x = 1.

y0(1) = 1

y1(1) = 0

yn(1) = 0

y0(x) = ce−x/2

= e1/2e−x/2

So we get a boundary layer near x = 0 where the solution adjusts rapidly from ≈ e1/2 to 0 at x = 0.

Inner expansion (near x = 0):

X =
x

δ
y(x; ε) = Y (X; ε)

y′(x; ε) =
1

δ

dY

dX
=

1

δ
Y ′

ε

δ2︸︷︷︸
1

+
2

δ
Y ′︸︷︷︸
2

+ Y︸︷︷︸
3

= 0

Dominant balances:

• 1 ∼ 2 : ε
δ2

= 1
δ ⇒ δ = ε, 3 � 1 ∼ 2

• 2 ∼ 3 : δ = 1 ⇒ 1 � 2 ∼ 3

• 1 ∼ 3 : ε
δ2

= 1 ⇒ δ = ε1/2, 2 � 1 ∼ 3

Take δ = ε.

Y ′′ + 2Y ′ + εY = 0

Y = Y0(X) + εY1(X) + · · ·
Y ′′0 + 2Y ′0 = 0

Y ′′1 + 2Y ′1 + Y0 = 0

Y0(0) = 0

Y ′0 = ce−2X

Y0(X) = c1 + c2e
−2X = c(1− e−2X)

Matching condition:

lim
x→0+

y0(x) = lim
X→∞

Y0(X)

e1/2 = c

Y0(X) = e1/2(1− e−2X)

Leading-order asymptotic solution:

y(x; ε) ∼
{

e1/2e−x/2 as ε→ 0+, 0 < x ≤ 1

e1/2(1− e−2x/ε) 0 ≤ x
ε <∞
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Uniform solution:

yinner + youter − yoverlap
y(x; ε) ∼ e1/2(e−x/2 − e−2x/ε)

Let’s compare this to the exact solution. The characteristic equation is

εr2 + 2r + 1 = 0

r =
−1±

√
1− ε

ε

r = −α(ε), −β(ε)

ε
β(ε) = 2 + · · ·

−1 +
√

1− ε = −1 +

(
1− 1

2
ε

)
= −1

2
ε

y(x; ε) =
e−αx − e−βx/ε

e−α − e−β/ε

∼ e−x/2 − e−2x/ε

e−1/2 − e−2/ε

This agrees with the uniform solution (to leading order in ε).
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14 5-2-12

14.1 Follow-Up: Why is the boundary layer at 0?

εy′′ + 2y′ + y = 0, 0 < x < 1

y(0) = 0

y(1) = 1

Try to find the solution with the boundary layer at x = 1.

(a) Outer solution.

y = y0 + εy1(x) + · · ·

2y′0 + y0 = 0, 0 < x < 1

y0(0) = 0

y0 = ce−x/2 ⇒ y0 = 0

(b) Inner solution near x = 1.

X =
1− x
ε

y(x; ε) = Y (X; ε)

d

dx
= −1

ε

d

dX

Y ′′ − 2Y ′ + εY = 0, 0 < X <∞
(
Y ′ =

dY

dX

)
Y (0) = 1

Y = Y0 + εY1 + · · ·
Y ′′0 − 2Y ′0 = 0

Y0(0) = 1

Y0(X) = c1 + c2e
2X

= 1 + c(1− e2x)

(c) Matching. We want y0(x) as x→ 1− to match with Y0(X) as X →∞.

y0(x)→ 0 as x→ 1−

Y0(x)→


∞ c > 0
1 c = 0

−∞ c < 0

So after going through all of this analysis, we find that it won’t work.

14.2 General Linear 2nd Order BVP’s

εy′′ + a(x)y′ + b(x)y = 0, 0 < x < 1

y(0) = α

y(1) = β
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Find an asymptotic solution as ε→ 0+. Suppose a(x) ≥ δ > 0 on 0 ≤ x ≤ 1.

Claim: we get a boundary layer at x = 0.

1. X = x
ε . The leading order inner equation for Y0 is

Y ′′0 + a(0)Y ′0 = 0

Y0(X) = c1 + c2e
−a(0)X

→ c1 as X →∞ if a(0) > 0

2. X = 1−x
ε for a boundary layer at x = 1.

Y ′′0 − a(1)Y ′0 = 0

Y0(X) = c1 + c2e
a(1)X

We need a(1) < 0 in order to permit matching.

So

1. If a(x) ≥ δ > 0 we get a boundary layer at x = 0.

2. If a(x) ≤ −δ < 0 we get a boundary layer at x = 1

If a(x) changes sign (turning points), we get more complicated behavior.

3. If a(0) < 0, a(1) > 0, we get no boundary layers (maybe interior/corner layer).

4. If a(0) > 0, a(1) < 0, we can have boundary layers at both endpoints.

14.2.1 Boundary Layer Example 1

εy′′ + xy′ − y = 0, −1 < x < 1

y(−1) = 1

y(1) = 2

{
a(−1) = −1 < 0
a(1) = 1 > 0

⇒ no BL possible at either endpoint

(a) Outer solution.

y = y0(x) + εy1(x) + · · ·
xy′0 − y0 = 0

y0(x) = Cx

Impose left and right boundary conditions to get left and right outer solutions.

yL0 (x) = −x
yR0 (x) = 2x

Try

y0(x) =

{
−x −1 ≤ x < 0
2x 0 < x ≤ 1
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(b) Inner solution. Introduce scaled variable

X =
x

δ
y(x) = δY (X)

d

dx
=

1

δ

d

dX
x = δX

ε

δ2
Y ′′ + δX · 1

δ
Y ′ − Y = 0

ε

δ2
Y ′′ +XY ′ − Y = 0

We have a dominant three-term balance for δ = ε1/2.

Y ′′ +XY ′ − Y = 0, −∞ < X <∞

Matching.

yL0 (x) = −δ
(x
δ

)
= −δX

yR0 (x) = δ

(
2x

δ

)
= δ2X

Y (X) ∼ −X as X → −∞
Y (x) ∼ 2X as X →∞
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15 5-4-12

15.1 Boundary Layers (Continued)

εy′′ + a(x)y′ + b(x)y = 0

y(0) = α

y(1) = β

A boundary layer at x = 0 is possible if a(0) > 0, and a boundary layer at x = 1 is possible if a(1) < 0. If
a(x) changes signs, more complications may occur.

15.1.1 Boundary Layer Example 1 (From Last Time)

εy′′ + xy′ − y = 0, −1 < x < 1

y(−1) = 1

y(1) = 2

There was no way to put in a boundary layer at either endpoint because as x changes signs you change from
growing to decaying solutions.

Outer solution:

y = y0(x) + εy1(x) + · · ·
xy′0 − y0 = 0

y0(x) = Cx

yL0 (x) = −x
yR0 (x) = 2x

The simplest, where we have a corner layer at x = 0, is the right solution because it can be matched.

Inner solution: (for the corner layer)

y = ε1/2Y
( x

ε1/2

)
X =

x

ε1/2

Here we have a 3-term dominant balance, and we get

Y ′′0 + xY ′0 − Y0 = 0

46



and then we have to subject this to the matching conditions.

Matching conditions:

inner limit of outer solution = outer limit of inner solution

yL0 (x) = −x

= −ε1/2 x

ε1/2

= −ε1/2X

yR0 (x) = 2x

= 2ε1/2X

The solution

Y0(X) = c1X + c2

[
e−

1
2
X +X

ˆ x

−∞
e−t

2/2 dt

]
as X → −∞, and this looks like c1X, so let c1 = −1. As X →∞,

Y0(X) ∼
[
c1 + c2

ˆ ∞
−∞

e−t
2/2 dt

]
x

c2 =
3√
2π

Question: what is the uniform solution? It would look like

y ∼ yinner + yLouter + yRouter − yLoverlap − yRoverlap

y ∼ −x+
3ε1/2√

2π
e−x

2/2ε +
3√
2π
x

ˆ x/ε1/2

−∞
e−t

2/2 dt

More important than using the inner solution is that it matches with respect to the boundaries and outer
solution.

15.1.2 Boundary Layer Example 2

εy′′ − xy′ + y = 0, −1 < x < 1

y(−1) = 1

y(1) = 2

So here a(x) = −x, a(−1) = 1, and a(1) = −1 (so boundary layers are possible at both x = −1 and x = 1).

Outer solution: (away from any boundary layers)

y = y0(x) + εy1(x) + · · ·
−xy′0 + y0 = 0

y0(x) = cx

We’ll leave c arbitrary since it is not clear which BC to impose.

47



Inner solution at x = −1:

X =
x+ 1

ε
y(x; ε) = Y (X; ε)

d

dx
=

1

ε

d

dX
x = −1 + εX

1

ε
Y ′′ − (−1 + εX)

1

ε
Y ′ + Y = 0

Y (0; ε) = 1

Y = Y0(X) + εY1(X) + · · ·
Y ′′0 + Y ′0 = 0

Y0(0) = 1

Y0(X) = 1 +A(1− e−X)

Matching condition at x = 1:

lim
X→∞

Y (X) = lim
x→−1

y0(x)

1 +A = −c
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16 5-7-12

16.1 Boundary Layer Example 2

εy′′ − xy′ + y = 0, −1 < x < 1

y(−1) = 1

y(1) = 2

Boundary layers are possible at both endpoints.

Outer expansion:

y = y0(x) + εy1(x) + · · ·
−xy′0 + y0 = 0

y0(x) = Cx

Inner expansion (x = −1):

X =
x+ 1

ε

(
=
x− 1

δ

)
Y (X; ε) = y(x; ε)

Y = Y0(X) + εY1(X) + · · ·
Y ′′0 + Y ′0 = 0

Y0(X) = 1 +A(1− e−X)
(
Y0(0) = 1

)
Matching at x = −1:

lim
x→−1+

y0(x) = lim
X→∞

Y0(X)

−C = 1 +A
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Inner expansion (x = 1):

X =
1− x
ε

Y (X; ε) = y(x; ε)

d

dx
= −1

ε

d

dX
1

ε
Y ′′ +

1

ε
(1 + εX)Y ′ + Y = 0, Y (0; ε) = 2

Y = Y0(X) + εY1(X) + · · ·
Y ′′0 + Y ′0 = 0, Y0(0) = 2

Y0(X) = 2 +B(1− e−X)

Matching:

lim
x→1

y0(x) = lim
X→∞

Y0(X)

C = 2 +B

So the solution is

y ∼


−1 +A

[
1− e−(1+x)/ε

]
Cx

2 +B
[
1− e−(1−x)/ε

]
−C = 1 +A

C = 2 +B

The problem is that C is undetermined. It remains undetermined to all orders in ε.

We can find C here by using symmetry of the problem.

y(x) =
1

2
x+ z(x)

εz′′ − x
(

1

2
+ z′

)
+

1

2
x+ z = 0

εz′′ − xz′ + z = 0

z(−1) =
3

2

z(1) =
3

2

This is invariant under x → −x, z → z. So for a solution y = 1
2x + z (assuming it’s unique), z is an even

function of x.

y ∼


−C −Ae−(1+x)/ε

Cx

C −Be−(1−x)/ε

−C = 1 +A

C = 2 +B

C =
1

2

A = B = −3

2
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This holds in the leading order solution if C = 1
2 , which implies that A = B = −3

2 .

y(x) ∼


1
2 + 3

2e
−(1+x)/ε 1 + x = O(ε)

1
2x −1 < x < 1

1
2 + 3

2e
−(1−x)/ε 1− x = O(ε)

The uniform solution would be

yuniform ∼ −
1

2
+

3

2
e−(1+x)/ε +

1

2
x+

1

2
+

3

2
e−(1−x)/ε −

(
−1

2

)
− 1

2

=
1

2
x+

3

2

[
e−(1+x)/ε + e−(1−x)/ε

]
16.2 Boundary Layer Example 3

εy′′ − yy′ + y = 0, 0 < x < 1

y(0) = 1

y(1) = −1

A comparison with the linear equation suggests no boundary layer at x = 0 or x = 1.
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17 5-9-12

17.1 Boundary Layer Example 3

εy′′ − yy′ + y = 0, 0 < x < 1

y(0) = 1

y(1) = −1

Look for a solution with no boundary layers at x = 0 or x = 1.

Outer solution:

y = y0(x) + εy1(x) + · · ·
−y0y′0 + y0 = 0

y0(−y′0 + 1) = 0

Either

y0 = 0

y′0 = 1, y0 = x+ c

The left outer solution is

yL0 (x) = x+ 1

yL0 (0) = 1

The right outer solution is

yR0 (x) = x− 2

yR0 (1) = −1

Look for an interior layer of width O(ε) where, at x0 (0 < x0 < 1), the solution jumps from the left outer
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solution to the right outer solution.

X =
x− x0
ε

Y (X; ε) = y(x; ε)

d

dx
=

1

ε

d

dX
Y ′′ − Y Y ′ + εY = 0

Y = Y0(X) + εY1(X) + · · ·
Y ′′0 − Y0Y ′0 = 0

Y ′0 −
1

2
Y 2
0 = k

Y ′0 = k +
1

2
Y 2
0

Matching:

k = −1

2
a2 < 0 (a > 0)

Y ′0 = −1

2
a2 +

1

2
Y 2
0

Y0(X)→ a as X → −∞
Y0(X)→ −a as X →∞

This requires that x0 = 1
2 in order to jump from −a to a.

Matching condition:

lim
X→∞

Y0(X) = lim
x→x+0

yR0 (x) − a = −3

2

lim
X→−∞

Y0(X) = lim
x→x−0

yL0 (x) a =
3

2

So a = 3
2 . The solution is

Y0(x) = −3

2
tanh

[
3

4
(X − c)

]
This constant c is left undetermined (to all orders in ε). Note that the system is invariant under x→ 1− x,
y → −y (and the boundary conditions also remain unchanged). So the solution (if unique) must be odd
about x = 1

2 . So y
(
1
2

)
= 0 and therefore c = 0.

Summary:

y ∼


x+ 1 0 ≤ x < 1

2

−3
2 tan

[
3(x− 1

2)
4ε

]
x− 1

2 = O(ε)

x− 2 1
2 < x ≤ 1
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The uniform (composite) solution is

y(x) ∼ x− 1

2
− 3

2
tan

[
3
(
x− 1

2

)
4ε

]
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18 5-11-12

18.1 Method of Multiple Scales (MMS) and Oscillations

Pendulum

ẍ+ sinx = 0

Linearized equation at x = 0:

ẍ+ x = 0 (simple harmonic oscillator)

x(t) = a cos t+ b sin t

= Aeit +A∗e−it,

A =
a− ib

2

Look for small-amplitude solutions of the nonlinear equation (weakly nonlinear). Introduce a small parameter
ε > 0 and look for solutions

x(t, ε) = εx1(t) + ε3x2(t) + ε5x3(t) +O(ε7)

For example, we could have

x(0, ε) = ε

ẋ(0, ε) = 0

sinx = x− 1

6
x3 +O(x5)

= εx1 + ε3x2 −
1

6
ε3x31 +O(ε5)

εẍ1 + ε3ẍ2 + εx1 + ε3
(
x2 −

1

6
x31

)
+O(ε5) = 0

O(ε) : ẍ1 + x1 = 0

O(ε3) : ẍ2 + x2 =
1

6
x31

x1(t) = Aeit +A∗e−it

= Aeit + c.c.︸︷︷︸
complex conjugate

ẍ2 + x2 =
1

6

[
Aeit +A∗e−it

]3
=

1

6

[
A3e3it + 3|A|2Aeit + 3|A|2A∗e−it + (A∗)3e−3it

]
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Side calculation: the solution of

ÿ + y = Ce3it

y(t) = De3it

ÿ + y = (−9 + 1)De3it

= −8De3it

D = −1

8
C

Another side calculation: consider

ÿ + y = Ceit

eit is a solution of the homogeneous equation, so try

y(t) = Dteit

ẏ = D(it+ 1)eit

ÿ = D(−t+ i)eit + iDeit

= D(−t+ 2i)eit

ÿ + y = 2iDeit

D =
C

2i

Back to our problem, we have

x2(t) = −A
3

48
e3it +

|A|2A
4i

teit − |A|
2A∗

4i
teit − (A∗)3

48
e−3it +Beit +B∗e−it

Note: terms like teit appear in x2(t). The actual solution is a periodic function of time! Terms like teit are
called secular terms.

The perturbation expansion becomes invalid when t = O
(
1/ε2

)
and ε2x2 = O(εx1).

18.1.1 Example

The origin of secular terms is the change in period/frequency of nonlinear oscillations with amplitude:

ε cos((1 + ε2)t) = ε cos(t+ ε2t)

= ε cos t− (sin t)ε3t+O(ε4)

There is a nonuniformity in the expansion as ε→ 0 for large t. In a sense, the largeness of t overcomes the
smallness of ε.

18.2 Poincaré-Lindstedt Method

Introduce a rescaled time,

τ = ω(ε)t.

Expand the frequency as

ω(ε) = 1 + ε2ω2 + · · · .

Choose ω2 to ensure that no secular terms appear.

56



19 5-14-12

19.1 Poincaré-Lindstedt Method

Pendulum:

ẍ+ sinx = 0

We want to obtain an asymptotic solution for small-amplitude periodic solutions. Straightforward expansion
fails due to secular terms (from dependence of the period on amplitude).

Idea: introduce a “strained” time

τ = ωt

x(t) = y(ωt) = y(τ)

Recall that y(τ) is 2π-periodic in τ . The 2π is for convenience. The important point is that the period of
y(τ) is fixed.

d

dt
= ω

d

dτ

ẋ = ωẏ, ẏ =
dy

dτ
ω2ÿ + sin y = 0

Expand:

y = εy1(τ) + ε3y2(τ) + · · ·
ω = ω0 + ε2ω1 + · · ·

y(τ + 2π) = y(τ)

sin y = y − 1

6
y3 +O(y5)

= εy1 + ε3y2 −
1

6
ε3y31 +O(ε5)

2ε2ω0ω1 ← εω2
0 ÿ1 + ε3

[
ω2
0 ÿ2 + 2ω0ω1ÿ1

]
+ · · ·

(ω2
0 + 2ε2ω0ω1 + · · · )(εÿ1 + ε3ÿ2 + · · · ) + εy1 + ε3

(
y2 −

1

6
y31

)
= O(ε5)

O(ε) : ω2
0 ÿ1 + y1 = 0

y1(τ + 2π) = y1(τ)

O(ε3) : ω2
0 ÿ2 + y2 =

1

6
y31 − 2ω0ω1ÿ1

y2(τ + 2π) = y2(τ)

From the leading order equation, we need ω2
0 = 1 (ω0 = 1). Then

y1(τ) = Aeiτ +A∗e−iτ

Next order:

ÿ2 + y2 =
1

6
y31 − 2ω1ÿ1

y2(τ + 2π) = y2(τ)

ÿ2 + y2 =
1

6

(
A3e3iτ + 3A2A∗eiτ + 3a(A∗)2e−iτ + (A∗)3e−3iτ

)
+ 2ω1(Ae

iτ +A∗e−iτ )

=
1

6
A3e3iτ +

[
1

2
A|A|2 + 2ω1A

]
eit +

[
1

2
A∗|A|2 + 2ω1A

∗
]
e−iτ +

1

6
(A∗)3e−3iτ
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The solution has the form

y2(τ) = Be3iτ + Cτeiτ + complex conjugates

Cτeiτ is a secular term (non-periodic), from the resonant term ∝ eiτ that solution of the homogeneous
equation. We only get a periodic solution for y2(τ) if the coefficient of eiτ on the RHS is zero. So

1

2
|A|2 + 2ω1 = 0

ω1 = −1

4
|A|2

ÿ2 + y2 =
1

6
A3e3iτ + complex conjugates

y2(τ) = Be3iτ + complex conjugates

−9B +B =
1

6
A3

B = − 1

48
A3

y(τ) = Aeiτ + complex conjugate − 1

48
ε3A3e3iτ + complex conjugate +O(ε3)

ω = 1− 1

4
ε2|A|2 +O(ε4)

x(t; ε) = y(ωt; ε)

= εAeiωt − 1

48
ε3A3e3iωt + complex conjugate +O(ε5)

ω(ε) = 1− 1

4
ε2|A|2 +O(ε4)

For example, consider the solution with

x = a
ẋ = 0

}
at t = 0

ε(A+A∗)− 1

48
ε3[A3 + (A∗)3] = a+ · · ·

iωε(A−A∗) +
1

48
· 3iωε3[A3 − (A∗)3] = 0 + · · ·

A = A∗ is real

2εA− 1

24
ε3A3 = a

εA =
1

2
a+O(ε3)

=
1

2
a+

1

384
a3 +O(a5)

So we are solving

ẍ+ sinx = 0

x(0) = a

ẋ(0) = 0

x(t) =
1

2
aeiωt +

1

2
ae−iωt +

1

384
a3(eiωt + e−iωt)− 1

384
a3(e3iωt + e−3iωt) +O(a5)

x(t) = a cos(ωt) +
1

192
a3[cos(ωt)− cos(3ωt)] +O(a5)

ω = 1− 1

16
a2 +O(a4)
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The period of the solution is

T =
2π

ω
= 2π

(
1

1− 1
16a

2 + · · ·

)

= 2π

(
1 +

1

16
a2 +O(a4)

)
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20 5-16-12

20.1 Poincaré-Lindstedt Method

ẍ+ x = εF (t, x, ẋ)

Look for periodic solutions.

τ = ωt

ω2d
2x

dτ2
+ x = εF

(
t, x, ω

dx

dτ

)
x(τ + 2π; ε) = x(τ ; ε)

x(τ ; ε) = x0(τ) + εx1(τ) + · · ·
ω = ω0 + εω1 + · · ·

ω2
0

d2x0
dτ2

+ x0 = 0

ω0 = 1 to get 2π-periodic solutions

x0 = Aeiτ +A∗e−iτ

d2xn
dτ2

+ xn = fn, fn depends on x0, . . . , xn−1 and ω1, . . . , ωn−1

This has the form

Lxn = fn

L =
d2

dτ2
+ 1 acting on 2π-periodic functions xn ∈ L2(T)

L is a self-adjoint (Sturm-Liouville) operator with periodic BC’s.

〈f, g〉 =

ˆ 2π

0
f(τ)g(τ) dτ

〈f, Lg〉 = 〈Lf, g〉

The eigenvalues are
Lφ = λφ

λ0 = 1

λn = −n2 + 1

φ0 = 1

φn = eint, e−int

For f ∈ L2(T), when is Lu = f solvable? If Lφ = 0,

〈φ,Lu〉 = 〈φ, f〉
〈Lφ, u〉 = 〈φ, f〉
〈φ, f〉 = 0

Fredholm alternative: Lu = f, L∗ = L is solvable only if

〈φ, f〉 = 0 ∀ φ such that Lφ = 0.

(The eigenfunction expansion shows it is sufficient also.)
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For L = d2

dτ2
+ 1,

Lφ = 0

φ = c1e
iτ + c2e

−iτ

The solvability condition is 〈
eiτ , f

〉
=
〈
e−iτ , f

〉
= 0

which says that the Fourier coefficients f̂1 and f̂−1 vanish.

Lx0 = 0

x0 = Aeiτ +A∗e−iτ

Lxn = fn(x0, . . . , xn−1, ω1, . . . , ωn−1)

xn = x(p)n +Ane
iτ +A∗ne

−iτ

Determine ωn−1 and (possibly) |An−1| from the solvability conditions for xn.

20.2 Weakly Damped Simple Harmonic Oscillator

ẍ+ εẋ+ x = 0, 0 < ε� 1

Straightforward expansion:

x = x0(t) + εx1(t) + · · ·
ẍ0 + x0 = 0

x0 = Aeit +A∗e−it

ẍ1 + x1 = −ẋ0
ẍ1 + x1 = −iAeit + iA∗e−it

Get te−it terms in x1 (secular). Here, introducing a variable τ = ωt and looking for periodic solutions in τ
doesn’t help!

The solutions look like ert.

r2 + εr + 1 = 0

r = −ε±
√
ε2 − 4

2

= − ε
2
± i
√

1− ε2

4

Basic idea: we have two time-scales
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1. The period of oscillations, O(1) ⇒ t = t

2. The time-scale of the damping, O
(
1
ε

)
⇒ T = εt

Introduce two “multiple-scale” variables simultaneously. Look for solutions of the form

x = x(t, T ; ε)

and treat t and T as independent variables. (Evaluate T = εt at the end.) This seems crazy because we
have replaced an ODE with a PDE.
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21 5-18-12

21.1 Weakly Damped Oscillator

(ODE) ẍ+ εẋ+ x = 0

We want to obtain an asymptotic solution that is valid for long times, t = O
(
1
ε

)
. Straightforward expansion

for x(t; ε) leads to secular terms. For the method of multiple scales, we will introduce two time variables:
t, T = εt. Look for a solution of the form

x(t; ε) = y(t, εt; ε).

Then

ẋ(t; ε) = yt(t, εt; ε) + εyT (t, εt; ε)

ẍ = ytt + 2εytT + ε2yTT

d

dt
→ ∂

∂t
+ ε

∂

∂T
(derivative expansion)

(PDE) ytt + 2εytT + ε2yTT + ε(yt + εyT ) + y = 0

x(t; ε) satisfies the ODE if and only if y(t, T ; ε) satisfies the PDE on T = εt. The idea of the method of
multiple scales is to require that y(t, T ; ε) satisfies the PDE for all (t, T ). So we start by introducing a lot of
freedom, requiring that x(t; ε) = y(t, εt; ε), and then we take it away by saying that it must satisfy the PDE
for all (t, T ).

Expand:

y(t, T ; ε) = y0(t, T ) + εy1(t, T ) +O(ε2)

O(1) : y0,tt + y0 = 0

O(ε) : y1,tt + y1 + 2y0,tT + y0,t = 0

y0(t, T ) = A(T )eit +A∗(T )e−it

y1,tt + y1 + 2iAT e
it + complex conjugate + iAeit + complex conjugate = 0

y1,tt + y1 + i(2AT +A)eit − i(2A∗T +A∗)e−it = 0

y1(t, T ) = Cteit

y1,tt + y1 = C(−teit + 2eit) + Cteit = 2iCeit

C = −
(
AT +

1

2
A

)
y1(t, T ) = −

(
AT +

1

2
A

)
teit + complex conjugate

+Beit + complex conjugate

We require that the yn(t, T ) don’t grow too fast in t (e.g. bounded functions of t or sublinear). We get that
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y1(t, T ) is a bounded (periodic) function of t only if the coefficient of eit vanishes:

2AT +A = 0

A(T ) = A0e
−T/2

y0(t, T ) = A0e
−T/2eit +A∗0e

−T/2e−it

x(t; ε) = A0e
−εt/2eit + complex conjugate +O(ε) for t = O

(
1

ε

)
r2 + εr + 1 = 0

r = − ε
2
± i
√

1− 1

4
ε2

21.2 van der Pol Oscillator

We already looked at strong damping:

εẍ+ (x2 − 1)ẋ+ x = 0.

Weak damping:

ẍ+ ε(x2 − 1)ẋ+ x = 0.

Strong damping:

ẋ = y

εẏ = x− (x2 − 1)y

Slow manifold: y =
x

1− x2

Figure 8: There is a limit cycle in here somewhere. This is why we use the Lienard variables... (See Figure 6.)

Weak damping:

Figure 9: We spiral into the limit cycle from the outside, and we spiral away from the limit cycle on the inside.
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22 5-21-12

22.1 van der Pol Equation

ẍ+ ε(x2 − 1)ẋ+ x = 0 (weak damping)

Multiple scale variables: t, T = εt. Look for a solution of the form

x(t; ε) = y(t, εt; ε)

d

dt
→ ∂

∂t

∣∣∣∣
T

+ ε
∂

∂T

∣∣∣∣
t

ytt + 2εytT + ε2yTT + ε(y2 − 1)(yt + εyT ) + y = 0

ytt + ε
[
2ytT + (y2 − 1)yt

]
+ ε2

[
yTT + (y2 − 1)yT

]
+ y = 0

y = y0(t, T ) + εy1(t, T ) +O(ε2)

y0,tt + y0 = 0

y1,tt + y1 + 2y0,tT + (y20 − 1)y0,t = 0

y0(t, T ) = A(T )eit +A∗(T )e−it

y1,tt + y1 + 2
[
iAT e

it − iA∗T e−it
]

+
[
A2e2it + 2|A|2 + (A∗)2e−2it − 1

] [
iAeit − iA∗e−it

]
= 0

y1,tt + y1 + iA3e3it +
[
2iAT + i|A|2A− iA

]
eit + complex conjugate = 0

We require that y1(t, T ) is a periodic function of “fast” time t. So we must have

AT +
1

2
(|A|2 − a)A = 0

A(T ) = r(T )eiφ(T )

AT = [rT + irφT ] eiφ

rT + irφT +
1

2
(r2 − 1)r = 0

rT +
1

2
r(r2 − 1) = 0

φT = 0

φ = φ0

x(t; ε) = A(εt)eit + complex conjugate +O(ε)

= r(εt)ei(t+φ0) + complex conjugate +O(ε) for times t = O

(
1

ε

)
r = 0 ⇒ x = 0 (equilibrium)

r = 1 ⇒ x = 2 cos(t+ φ0)

65



Let’s try to formulate an energy argument for this system. Energy equation:

ẋẍ+ ẋx+ ε(x2 − 1)ẋ2 = 0

d

dt

(
1

2
ẋ2 +

1

2
x2
)

= −ε(x2 − 1)ẋ2
{
> 0 |x| < 1 (negative damping)
< 0 |x| > 1 (positive damping)

For a periodic solution,

˛
(x2 − 1)ẋ2 dt = 0

For weak damping:

x(t) = a cos tˆ 2π

0
(a2 cos2 t− 1) · a2 sin2 t dt = 0

a2

2π

ˆ 2π

0
cos2 t · sin2 t dt =

1

2π

ˆ 2π

0
sin2 t dt

1

2π

ˆ 2π

0
sin2 t dt =

1

2

1

2π

ˆ 2π

0
(cos2 t sin2 t) dt =

1

2π

ˆ 2π

0
(sin2 t− sin4 t) dt

=
1

2
− 3

8

=
1

8
a2

8
=

1

2
a = 2
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23 5-23-12

23.1 Method of Averaging

xt = εf(x, t)

x(0) = c

x =


x1
x2
...
xn


f(x, t+ 2π) = f(x, t)

f : Rn × R→ Rn, f is periodic in time.

We introduce multiple scale variables t, T = εt. Then

x(t; ε) = y(t, T ; ε)|T=εt
d

dt
→ ∂

∂t
+ ε

∂

∂T
yt + εyT = εf(y, t)

We look for solutions that are periodic in t (i.e. no secular terms):

y(t+ 2π, T ; ε) = y(t, T ; ε)

y = y0(t, T ) + εy1(t, T ) +O(ε2)

y0,t + εy1,t + εy0,T = εf(y0, t) +O(ε2)

O(1) : y0,t = 0

y0 = y0(T )

O(ε) : y1,t + y0,T = f(y0, t)

y1(t+ 2π, T ) = y1(t, T )

0 =

ˆ 2π

0
yt dt =

ˆ 2π

0
g(t) dt

Need: g =
1

2π

ˆ 2π

0
g(t) dt = 0

We have
y1,t = −y0,T + f(y0, t)
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The solvability condition is that

1

2π

ˆ 2π

0
(−y0,T + f(y0, t)) dt = 0

y0,T = f(y0)

f(y0) =
1

2π

ˆ 2π

0
f(y0, t) dt

y(t) = y0(εt)

∂T =
1

ε
∂t

yt = εf(y)

f(y) =
1

2π

ˆ 2π

0
f(y, t) dt

xt = εf(x, t)

Theorem 23.1.

For smooth t-periodic vector fields f(x, t) there exist constants ε0, c, k > 0 such that for all ε with
|ε| < ε0 we have

|x(t; ε)− y(t)| < kε

for |t| < c
ε .

23.2 Geometrical Interpretation

xt = εf(x, t)

pε : Rn → Rn (Poincaré map)

x(0) 7→ x(2π)

pε(x0)− x0 = O(ε)
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Figure 10: Poincaré map.

The flow of the averaged equation approximates the Poincaré map of the full equation (on times t = O
(
1
ε

)
). Hyperbolic fixed points of the averaged equation correspond to 2π-periodic solutions of the full equation
(for ε sufficiently small) with the same stability.

23.3 Periodic Standard Form

ÿ + y = εg(y, ẏ, t) (2π-periodic)

y(t) = x1(t) cos t+ x2(t) sin t

ẏ(t) = −x1(t) sin t+ x2(t) cos t (23.1)(
y
ẏ

)
=

(
cos t sin t
− sin t cos t

)(
x1
x2

)
ÿ = −x1 cos t− x2 sin t− ẋ1 sin t+ ẋ2 cos t

= −y − ẋ1 sin t+ ẋ2 cos t

−ẋ1 sin t+ ẋ2 cos t = εg(x1 cos t+ x2 sin t,−x1 sin t+ x2 cos t, t) = εf(x, t)

ẋ1 cos t+ ẋ2 sin t = 0 (so 23.1 holds)

ẋ1 = −ε(sin t)f(x, t)

ẋ2 = ε(cos t)f(x, t)

ẋ = εf(x, t)
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24 5-25-12

24.1 WKB Method

Simple harmonic oscillator with slowly varying frequency:

xtt + ω2(εt)x = 0

Figure 11: A pendulum system where the length of the pendulum can change.

T = εt

d

dt
= ε

d

dT
ε2xTT + ω2(T )X = 0

Slow vs. small variations in frequency. Here, we use the fact that the variations are slow.

We want to find an approximate solution that is valid for t = O
(
1
ε

)
. Try a multiple scale expansion:

t, T = εt.

x(t; ε) = y(t, T ; ε)|T=εt
d

dt
→ ∂

∂t
+ ε

∂

∂T
d2

dt2
→ ∂2

∂t2
+ 2ε

∂2

∂t∂T
+ ε2

∂2

∂T 2

ytt + 2εytT + ε2yTT + ω2(T )y = 0

y = y0(t, T ) + εy1(t, T ) + · · ·
y0,tt + ω2(T )y0 = 0

y1,tt + ω2(T )y1 + 2y0,tT = 0

y0(t, T ) = A(T )eiω(T )t +A∗(T )e−iω(T )t

y0,t = iωAeiωt + complex conjugate

y0,tT = i(ωA)T e
iωt − ωωTAteiωt + complex conjugate

y1,tt + ω2y1 = 2ωωTAte
iωt − i(ωA)T e

iωt + complex conjugate

We get secular terms, and the solutions is not valid for long times t = O
(
1
ε

)
.
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Problem: the period is changing on a slow time-scale.

We’ve got oscillations with phase ω(T )t = ω(εt)t. The right way to do this is to use a “fast” phase

θ =
φ(εt)

ε
φT (T ) = ω(T ).

WKB expansion:

x(t; ε) = y(θ, T ; ε)|
θ=

φ(εt)
ε
, T=εt

x(t; ε) = y

(
φ(εt)

ε
, εt; ε

)
dx

dt
= φT

∂y

∂θ
+ ε

∂y

∂T
d2x

dt2
= φT

[
φT

∂2y

∂θ2
+ ε

∂2y

∂T∂θ

]
+ εφTT

∂y

∂θ
+ ε

[
φT

∂2y

∂θ∂T
+ ε

∂2y

∂T 2

]
= φ2T yθθ + ε [φTT yθ + 2φT yθT ] + ε2yTT

φ2T yθθ + ε [φTT yθ + 2φT yθT ] + ε2yTT + ω2(T )y = 0

Expand:

y = y0(θ, T ) + εy1(θ, T ) + · · ·

Require: y(θ, T ; ε) is a 2π-periodic function of θ.

φ2T y0,θθ + ω2y0 = 0

φ2T y1,θθ + ω2y1 + φTT y0,θ + 2φT y0,θT = 0

...

y0(θ, T ) is 2π-periodic in θ if and only if φ2T = ω2, or φT = ±ω.

y0 = A(T )eiφ +A∗(T )e−iθ

ω2(y1,θθ + y1) + φTT (iAeiφ + c.c. ) + 2φT (iAT e
iφ + c.c. ) = 0

ω2(y1,θθ + y1) + i(2φTAT + φTTA)︸ ︷︷ ︸
=0so y is 2π-periodic

eiφ + c.c. = 0

2φTAT + φTTA = 0

φT = ω

(ω|A|2)T = 0
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25 5-30-12

25.1 WKB Method

ẍ+ ω2(εt)x = 0

x(t; ε) = A(εt)eiφ(εt)/ε

T = εt

θ =
φ(εt)

ε

ẋ = (iφ′A+ εA′)eiφ/ε

primes denote
d

dT

ẍ = iφ′(iφ′A+ εA′)eiφ/ε + (εiφ′′A+ εiφ′A′ + ε2A′′)eiφ/ε

=
[
−(φ′)2A+ iε(2φ′ + φ′′A) + ε2A′′

]
eiφ/ε

0 = −(φ′)2A+ iε(2φ′A′ + φ′′A) + ε2A′′ + ω2A

Choose (φ′)2 = ω2 to eliminate leading-order terms.

2φ′A′ + φ′′A = iεA′′

(Liouville-Green)

So far we haven’t made any approximations. Let’s look for an expansion

A = A0 + εA1 + ε2A2 + · · ·
2φ′A′0 + φ′′A0 = 0
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Let’s say we choose φ′ = ω.

A0(T ) =
1

2
a(T )eiδ

2ωa′ + ω′a = 0

a′

a
= − ω

′

2ω

log a = −1

2
log(ω) + c

a =
a0√
ω

x = A0(T )eiφ/ε + complex conjugate +O(ε)

=
1

2
aeiδeiφ/ε + complex conjugate +O(ε)

x = a cos

(
φ

ε
+ δ

)
+O(ε)

φ(T ) =

ˆ T

0
ω(T̂ ) dT̂

ωa2 = constant

x = a(εt) cos

[
φ(εt)

ε

]
= a(εt0 + εs) cos

[
φ(εt0 + εs)

ε

]
= a(εt0) cos

[
1

ε

[
φ(εt0) + εφ′(εt0)s+O(ε2)

]]
∼ a(εt0) cos

[
φ(εt0)

ε
+ ω(εt0)s

]

t0 = O

(
1

ε

)
s = O(1)

t = t0 + s

ωa2 is conserved under slow variations in ω. For this reason, we say that ωa2 is adiabatic invariant, and we
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call it the action.

Energy =
1

2
ẋ2 +

1

2
ω2x2 = E

ẋ = −aφ′ sin
(
φ

ε
+ δ

)
+O(ε)

= −aω sin

(
φ

ε
+ δ

)
+O(ε)

x = a cos

(
φ

ε
+ δ

)
+O(ε)

Energy =
1

2
a2ω2 +O(ε)

Action =
1

2
ωa2 =

E

ω

There’s an interesting quantum mechanical interpretation of the action involving energy levels.

25.2 Schrödinger Equation

i~Ψt = − ~
2m

Ψxx + V (x)Ψ

Ψ(x, t) = φ(x)e−iEt/~

− ~2

2m
φxx + V (x)φ = Eφ

~2

2m
φxx + [E − V (x)]φ = 0

~→ 0 corresponds to the WKB approximation, and this is called the semiclassical limit.
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26 6-1-12

26.1 WKB Method and Turning Points

ε2y′′ + q(x)y = 0

y ∼ a(x)eφ(x)/ε

(φ′)2 + q = 0

φ′ = ±
√
−q

q > 0 ⇒ φ′ = ±i√q, φ = ±iS
y ∼ ae±iS(x)/ε

q < 0 ⇒ φ′ = ±
√
−q, φ = ±S

y ∼ ae±S(x)/ε

A turning point is where q(x) = 0, x ∈ R. At a simple zero (x = 0 is a turning point):

q(x) = cx+O(x2).

the behavior changes from oscillatory to exponential. Airy equation:

y′′ + xy = 0

The solutions are Airy functions: Ai(x) and Bi(x). Note: the A stands for area, and B follows A.

Let’s say

q(x) > 0 when x < x0

q(x) < 0 when x > x0

ε2y′′ + q(x)y = 0

Schrödinger equation:

i~Ψt = − ~2

2m
Ψxx + V (x)Ψ

Ψ(x, t) = φ(x)e−iEt/~

− 1

2m
φ′′ + V (x)φ = Eφ

φ′′ + 2m[E − V (x)]φ = 0

φ(x) = 2m[E − V (x)]
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26.2 A Model Bifurcation Problem for PDEs

u(x, t) satisfies the following:

ut = uxx + µ sinu, 0 < x < 1, t > 0

u(0, t) = 0

u(1, t) = 0

u(x, 0) = f(x)

This is a heat equation with a nonlinear heat source, µ sinu. µ ≥ 0 is a (dimensionless) parameter that
measures the strength of the nonlinear heat sources.

Consider the equilibrium solution u = 0. Is it stable?

1. We start by linearizing the PDE around u = 0.

ut = uxx + µu, 0 < x < 1

u(0, t) = u(1, t) = 0

Separate variables.

u(x, t) = eσnt sin(nπx), n = 1, 2, 3, . . .

σn = −n2π2 + µ

σn < 0 for all n if µ < π2 (u = 0 is linearly stable). σ1 > 0 if µ > π2 (u = 0 is linearly unstable).

2. How does the nonlinearity affect instability?
Assume µ is close to π2. Linear growth rate: σ = µ− π2 is small.

ut︸︷︷︸
εσ

= uxx + µ

u− 1

6
u3︸︷︷︸
ε3

+ · · ·

 , u = O(ε)

For a dominant balance between linear growth and nonlinearity, we expect

εσ = ε3

σ = O(ε2)
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This suggests the following expansion:

u = εu1(x, T ) + ε3u3(x, T ) +O(ε5)

µ = π2 + ε2µ2 +O(ε4)

T = ε2t
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27 6-4-12

27.1 Model PDE Bifurcation Problem

ut = uxx + µ sinu, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0

u(x, 0) = f(x)

• u(x, t) = temperature

• µ = strength of the source

u = 0 is

• linearly stable for µ < π2

• linearly unstable for µ > π2

Look at the effect of nonlinearity near the point of marginal stability, µ = π2. The dominant blance suggested

µ− π2 = O(ε2)

u = O(ε)

time-scales t = O

(
1

ε2

)
Expand:

µ = π2 + ε2µ2 +O(ε4)

u = εu1(x, T ) + ε3u2(x, T ) +O(ε5)

T = ε2t

∂t = ε2∂T

ε2uT = uxx + (π2 + ε2µ2) sinu, 0 < x < 1, T > 0

u(0, t) = u(1, t) = 0

sinu = u− 1

6
u3 +O(u5)

= εu1 + ε3u3 −
1

6
ε3u31 +O(ε5)

ε3u1,T + · · · = εu1,xx + ε3u3,xx + (π2 + ε2u2)

(
εu1 + ε3

[
u3 −

1

6
u31

]
+ · · ·

)
O(ε) : u1,xx + π2u1 = 0

u1(0, t) = u1(1, t) = 0

O(ε3) : u3,xx + π2u3 = u1,T +
π2

6
u31 − µ2u1

u3(0, t) = u3(1, t) = 0
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We get

u1 = a(T ) sin(πx)

u3,xx + π2u3 = a1,T sin(πx) +
π2

6
a3 sin3(πx)− µ2a sin(πx)

u3(0, t) = u3(1, t) = 0

Lu3 = f(x)

L =
d2

dx2
+ π2

This is solvable if for φ such that Lφ = 0, we have that

〈φ,Lu3〉 = 〈φ, f〉
〈Lφ, u3〉 = 〈φ, f〉

0 = 〈φ, f〉

Thus, we must have that

〈sinx, f〉 = 0

aT

[ˆ 1

0
sin2(πx) dx

]
︸ ︷︷ ︸

= 1
2

+
π2

6
a3
[ˆ 1

0
sin4(πx) dx

]
︸ ︷︷ ︸

= 3
8

−µ2a
[ˆ 1

0
sin2(πx) dx

]
︸ ︷︷ ︸

= 1
2

= 0

1

2
aT +

π2

16
a3 − 1

2
µ2a = 0

aT − µ2a+
π2

8
a3 = 0

This is typically called an amplitude equation (Laundau-Stuart). The equilibria are:

a = 0 OR a2 =
8µ2
π2

Figure 12: This is a (supercritical) pitchfork bifurcation.
A rigorous analysis of the equilibrium states is obtained using Liapunov-Schmidt reduction.
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Initial layer: take

t = O(1)

µ = π2 + ε2µ2

u = εu1(x, t) + ε3u3(x, t) + · · ·
u1,t = u1,xx + π2u1

u1(0, t) = u1(1, t) = 0

u1(x, 0) = f(x)

u1(x, t) =
∞∑
n=1

cne
−(n2−1)π2t sin(nπx)

= c1 sin(πx) +

∞∑
n=2

cne
−(n2−1)π2t sin(nπx)

cn = 2

ˆ 1

0
f(x) sin(nπx) dx

As t→∞,

u1 ∼ c1 sin(πx).

So we require

a(T )→ c1 as T → 0

a(0) = 2

ˆ 1

0
f(x) sin(πx) dx
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28 6-6-12

Final: Tuesday June 12 from 1:30-3:30
Office Hours: Monday 2:30-4:00

28.1 Outline of Topics

1. Dimensional analysis and scaling

• Buckingham-Pi Theorem

• Self-similarity

2. Asymptotic expansions

• o, O notation

• Asymptotic vs. convergent series

• Expansion of integrals

• (Did NOT cover the method of stationary phase or steepest descent)

3. Regular vs. singular perturbation problems

• Algebraic equations (e.g. polynomials)

• Dominant balance (distinguished limits)

4. Method of matched asymptotics

• Construct inner & outer solutions and match them

• Uniform solutions

• Initial layer problems (e.g. enzyme dynamics)

• Slow-fast dynamics in systems of ODE’s

• Boundary layer problems

5. Method of multiple scales

• Poincaré-Lindstedt method (periodic solutions)

• Multiple scales (t, T ) and applications to oscillations

• Method of averaging

• WKB method

• Fredholm alternative & solvability conditions ⇒ these were a unifying theme

The final will probably be 5 questions (roughly one from each topic).

1. Multiple scales

2. Boundary layers

3. Nondimensionalization

4. Asymptotics

For example:

• Nondimensionalize this equation
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• Here’s a polynomial involving ε, find the roots

Most of this is discussed in chapters 1 and 2 of Applied Mathematics.

Things to know:

• Taylor expansion for tan

28.2 Sample Problems

Example 28.1. Logan 2.1.4

f(y, ε) =
1

(1 + εy)3/2

y = y0 + εy1 +O(ε2)

Expand f(y, ε) in ε up to O(ε2).

f(y, ε) = (1 + εy)−3/2

= 1− 3

2
εy +

1

2

(
−3

2

)(
−5

2

)
(εy)2 +O(ε3)

= 1− 3

2
εy +

15

8
ε2y2 +O(ε3)

= 1− 3

2
εy0 + ε2

[
15

8
y20 −

3

2
y1

]
+O(ε3)

Example 28.2. Logan 2.1.5h

How does exp(tan ε) behave as ε→ 0? We are supposed to show that exp(tan ε) = O(1).

f(ε) = O(g(ε)) ⇒ |f(ε)| ≤ C|g(ε)| for |ε| < δ

f(ε) = o(g(ε)) ⇒
∣∣∣∣f(ε)

g(ε)

∣∣∣∣→ 0 as ε→ 0 (if g(ε) 6= 0)

f(ε) ∼ g(ε) ⇒
∣∣∣∣f(e)

g(ε)

∣∣∣∣→ 1

∼ and o each imply O

f(ε) = sin

(
1

ε

)
g(ε) = 1

f = o(g) as ε→ 0 (c = 1)
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exp(tan ε) ∼ 1 as ε→ 0

exp(tan ε)− 1 ∼ ε as ε→ 0

exp(tan ε) = exp(ε+O(ε3))

= 1 + (ε+O(ε3)) +O(ε2)

= 1 +O(ε)

lim
ε→0

exp(tan ε) = 1

∃ δ > 0 such that | exp(tan ε)− 1| ≤ 1 for |ε| < δ

| exp(tan ε)| ≤ 2 · 1 for |ε| < δ

Example 28.3. Logan 1.2.3

m′ = ax2 − bx3

• m = biomass

• x = linear dimension

• ax2 is the growth term (proportional to the surface area)

• bx3 is the eating term (proportional to the volume)

Assume m = ρx3.

3ρx2x′ = ax2 − bx3

x(0) = x0

Nondimensionalize.

The dimensions are

• M = biomass

• L = length

• T = time

The parameters are

• a, [a] = M
TL2

• b, [b] = M
TL3

• ρ, [ρ] = M
L3

• x0, [x0] = L

The variables are
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• t, [t] = T

• x, [x] = L

We have 3 dimensions and 4 parameters, so we should have 1 dimensionless parameter. Let’s leave x0 alone
and use a, b, ρ to nondimensionalize mass, length, and time.[a

b

]
= L[

ρ
a3

b3

]
= M[ρ

b

]
= T

x∗ =
x

a/b

t∗ =
t

ρ/b

(think) 3(x∗)2(x∗)′ = (x∗)2 − (x∗)3

x∗(0) =
bx0
a
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Index

amplitude equation, 79

Fredholm alternative, 60

regular, 17

secular terms, 56
singular, 17, 19

turning point, 44, 75

85


	4-2-12
	Dimensional Analysis
	Fluids Flows, Reynold's Number

	4-4-12
	Navier-Stokes Equation
	Low Reynolds Number Flows (Re 0)
	High Reynolds Number Limit (Re )
	Similarity Solutions

	4-6-12
	Heat Equation

	4-9-12
	Heat Equation
	Fourier Transform

	Back to the Heat Equation
	A Porous Medium Problem

	4-11-12
	Porous Medium Equation
	Perturbation Theory

	4-13-12
	Regular vs. Singular Perturbations
	Example #2


	4-16-12
	Asymptotic and Convergent Series
	Optimal Truncation

	Notation for Asymptotic Behavior

	4-18-12
	Perturbation Theory for ODE's
	Overdamped Simple Harmonic Oscillator (Logan 2.4)

	4-20-12
	Strongly Damped Oscillator
	Phase Plane
	Michaelis Menton Enzyme Kinetics

	4-23-12
	Enzyme Kinetics (Continued)

	4-25-12
	Geometric Singular Perturbation Theory
	Van der Pol Oscillator

	4-27-12
	Heat Flow in a Slowly-Varying Rod

	4-30-12
	Boundary Layer Problems
	Model Boundary Layer Problem

	5-2-12
	Follow-Up: Why is the boundary layer at 0?
	General Linear 2nd Order BVP's
	Boundary Layer Example 1


	5-4-12
	Boundary Layers (Continued)
	Boundary Layer Example 1 (From Last Time)
	Boundary Layer Example 2


	5-7-12
	Boundary Layer Example 2
	Boundary Layer Example 3

	5-9-12
	Boundary Layer Example 3

	5-11-12
	Method of Multiple Scales (MMS) and Oscillations
	Example

	Poincaré-Lindstedt Method

	5-14-12
	Poincaré-Lindstedt Method

	5-16-12
	Poincaré-Lindstedt Method
	Weakly Damped Simple Harmonic Oscillator

	5-18-12
	Weakly Damped Oscillator
	van der Pol Oscillator

	5-21-12
	van der Pol Equation

	5-23-12
	Method of Averaging
	Geometrical Interpretation
	Periodic Standard Form

	5-25-12
	WKB Method

	5-30-12
	WKB Method
	Schrödinger Equation

	6-1-12
	WKB Method and Turning Points
	A Model Bifurcation Problem for PDEs

	6-4-12
	Model PDE Bifurcation Problem

	6-6-12
	Outline of Topics
	Sample Problems


