Document: Math 226A (Fall 2011)
Professor: Freund

Latest Update: April 2, 2012

Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents
1 9-23-11

1.1 Announcements e e

1.2 General Remarks L e

1.3 Imtroduction to LU Factorization o
2 9-26-11

2.1 LU Factorization (Continued) e

2.2 Problems with LU Factorization without Pivoting
3 9-28-11

3.1 Continued from 9-26-11...

3.2 Pivoting oL
4 9-30-11

4.1 LU Factorization Recap e

4.2 Newton’s Method
5 10-3-11

5.1 Newton’s Method (Continued) L

5.2 Convergence of Newton’s Method o
6 10-5-11

6.1 Newton’s Method Convergence Theorem
7 10-7-11

7.1 Continued from 10-5-11... e

7.2 Use of Newton in Practice

7.3 Newton’s Method with Damping
8 10-10-11

8.1 Newton’s Method with Damping (Continued)

8.2 Conditioning L e
9 10-12-11

9.1 Conditioning (Continued) L

9.2 Floating-Point Numbers L

9.3 IEEE Floating-Point Standard
10 10-14-11

10.1 Quick Review of the IEEE Standard

10.2 Normalized IEEE Floating-Point Numbers

10.3 Machine Precision e

10.4 Floating-Point Representation L

10
10
10

15
15
15

19
19
20

22
22

25
25
26
27

28
28
29

30
30
31
32

http://www.math.ucdavis.edu/~jlirion

11 10-17-11
11.1 Representation of the

Exponent p.

11.2 Machine Representation Lo
11.3 Floating Point Arithmetic
11.4 Catastrophic Effects of Round-Off Errors

12 10-19-11

12.1 Loss of Significant Digits e

12.2 Stability

13 10-21-11
13.1 Backward Stability .

13.2 Accuracy of Backward Stable Algorithms L

14 10-24-11

14.1 Backward Stability (Continued) L

14.2 Norms
14.3 Matrix Norms

15 10-26-11
15.1 Conditioning of Ax =

b e

15.2 Stability of LU Factorization e
15.3 LU Factorization with Partial Pivoting 0oL

16 10-28-11
16.1 Backward Stability of
16.2 Interpolation

LU Factorization with Partial Pivoting (Continued)

16.2.1 Polynomial Interpolation

16.2.2 Splines

17 10-31-11
17.1 Working with Splines
17.1.1 Cubic Splines

18 11-2-11

18.1 Proof of Theorem 17.7 e
18.2 Construction of an Interpolating Cubic Spline

19 11-4-11
19.1 B-splines.
19.1.1 B-spline Basis

20 11-7-11
20.1 Homework Comments
20.2 B-Splines

(1) e e e e

20.3 Construction of B-Splines of Order k (>2)

21 11-9-11
21.1 B-Splines (Continued)

21.1.1 Efficient Evaluation for 71 <ax <77 o

21.1.2 Back to Spa

36
36
36
36
37

38
38
39

42
42
43

45
45
45
46

48
48
49
49

51
o1
52
52
93

54
54
95

57
o7
o7

59
99
99

61
61
61
62

22 11-14-11

22.1 Numerical Integration e
22.2 Examples of Quadrature Rules

23 11-16-11

23.1 Examples of Quadratures (Continued)

24 11-18-11

24.1 Gaussian Integration (Continued) Lo
24.1.1 Pros and Cons of Gaussian Integration
24.1.2 Gauss-Kronrod Rules
24.1.3 Practical Use e

25 11-21-11

25.1 Corrections to the Homework
25.2 Adaptive Quadrature

25.2.1 Basic Adaptive Procedure
25.3 Eigenvalue Problems

26 11-23-11

26.1 Eigenvalue Problems (Continued) Lo L
26.2 Computation of Eigenvalues
26.2.1 Bad Ideas
26.2.2 Better Ideas L
26.3 Unitary Similarity Transformations oo

27 11-28-11

27.1 Proof of Schur’s Theorem e
27.2 Two Simple Unitary Matrices: Householder Reflectors
27.2.1 Reduction of A to Hessenberg Form

28 11-30-11

28.1 Reduction of A to Hessenberg Form (Continued)
28.2 The QR Algorithm e
28.3 Two Simple Unitary Matrices: Givens Rotations
28.3.1 2X208S€ o
28.3.2 General Case e
28.3.3 Usein QR Algorithm

29 12-2-11

29.1 Comments on the Final
29.2 QR Factorization (Continued)
29.3 Convergence of the QR Algorithm
29.4 Strategy for Choosing g« . oL

29.4.1 3 Cases

A Algorithms

68
68
68

71
71

73
73
73
74
74

75
75
75
75
76

78
78
78
78
79
80

81
81
82
83

85
85
85
86
86
87
88

89
89
89
89
89
90

92

1 9-23-11

1.1 Announcements
e http://www.math.ucdavis.edu/~freund/226A
e Office Hours are Monday 12:30-2:30 at MSB 2140

5 homeworks

Grading scheme

— HW 50% (10% each)
— Final 50% (open book, open notes)
x 226B and 226C will have final projects

No textbook, several reference books are listed on the course webpage

1.2 General Remarks

Definition 1.1. Numerical Analysis

Numerical analysis is the study of algorithms for the problems of continuous mathematics
(Trefethen).

Problem:
Input — Output: Solution(s) or No Solution

Numerical Methods:

(Approximate) Input — (Approximate) Solution

Sources of Errors:

1. Approximate input errors (cannot represent the data exactly, e.g. irrational numbers) =
conditioning of the problem. These problems are inherent to the problem.

2. Rounding errors = stability of the algorithm

3. Approximation errors (i.e. terminating your algorithm when the result is “close enough”) =
convergence

http://www.math.ucdavis.edu/~freund/226A

1. Systems of linear equations
Ax = b, AeC™" beC" A nonsingular

Input: A,b — Solution: 2 = A~'b (obtained via LU factorization = modern Gaussian elimi-
nation)

2. Systems of nonlinear equations
where f(x) = Ax—b

Input: f: D - R", D CR"™
Solutions: x € D such that f(x) = 0.
Standard method for solving: Newton’s method

1.3

Introduction to LU Factorization

LU Factorization

Given: (nonsingular) A € C"*" b e C".
Goal: solve Az =b.

Gaussian elimination:

Ar=b+ Uz =c, where U =
i.e. U is upper-triangular. How do we do this?

Ln-1...Lol1A=U < A=L;'...0; ;MU

L

*
)
_o O O

i.e. L is lower-triangular.

General LU Factorization Example

n=4
x k% % % % % %
ol xox o2 x| | O H# O H# H# |
A= X ok ok K = 0 # # # =LA
¥ x k % | 0 # # #
[% % % %
L 0 * x %
=3 00 # % = 1511 A
| 0 0 # #
[% % % %
L 0 * *x x%
=3 00 « = = L3lo1A=U
00 0 #

xs represent unchanged nonzero entries, #s represent changed nonzero entries.

The L; are Frobenius matrices.

Definition 1.5. Frobenius matriz
http://en.wikipedia.org/wiki/Frobenius_matrix

A Frobenius matriz is a square matrix with the following properties:

e all entries on the main diagonal are ones

e the entries below the main diagonal of at most one column are arbitrary

e every other entry is zero

Frobenius matrices are invertible. The following is an example:

(1 0 0 --- 0] [1 0 0o --- 0
o 1 0 --- 0 0 1 0 --- 0
A= 0 azggz 1 --- 0 ’ Al = 0 —aszy 1 0
10 an2 O --- 1] 10 —ap2 0 --- 1

http://en.wikipedia.org/wiki/Frobenius_matrix

2 9-26-11

2.1 LU Factorization (Continued)

S o

— ™M

— ™

8 7.9 5

6 7 9 8

o

—

—

0 0 2 2
0 0 2 4

N O

0 3 55

S — 0 00

— = 10 O

— = ™ <

N O O O

U upper-triangular

S~ AN AN

— — O

— - O O

N O O O

-4 01 0

co o —

o O H O

unit lower-triangular

SO O

SO - -

S — N <A

— AN <f M

Convention (Matlab Notation)

12,.n € CP"

[ajk] ik

A=

Qj kn

@jn]

[%‘Je Qjk4+1 "

Algorithm: LU Factorization without pivoting

Input: A € C"*"
Output: L,U such that A = LU

Set U = A, L =1 (n x n identity matrix).

o fork=1,2,....n—1
—forj=k+1,k+2,...,n
* 1k = ujk/ukk (potential problem)
* Wjkin = Uj ki — Lj kUL ken
— end

e end

Output: L,U € C™"*"™ such that A = LU

Operation Count

n—1 n—1
Additions: Y (n—k)(n—k+1)= > l(l+1)~ %3 (where [=n — k)
k=1 =1

n?

Multiplications: ~ %
Divisions: ~ n? = ignore (because it is a lower order term)
Total Work: = % flops

Definition 2.5. Flop

A flop is a floating-point operation: addition, subtraction, multiplication, division, square root.

Solution of Ax =0

A x=0b

<~

=LU

LUz =b
=y
Ly=1b
Ur=y

Ly = b is easily solved via forward substitution. Uz = y is easily solved by backward substitution.

One triangular solve requires ~ n? flops.

2.2 Problems with LU Factorization without Pivoting

LU factorization without pivoting is unstable!

Error from LU Factorization without Pivoting

With exact arithmetic:

Now solve a system:

Ly=5

1
Yy = _1020
Ur=y

In a computer:
Floating point arithmetic does everything accurately up to ~ 16 digits.

- 1 0 - 1020 1
L_L_[lozﬂ 1]’ U‘[0 1020]
e 10720 1

-0 1 s

If you use this to compute the answer, you will get a bogus answer.

3 9-28-11

3.1 Continued from 9-26-11...

Continuing from last time...
Li=b
_ [1
Yy = _10—20
Ui =7
T = (1)] *x
The culprit is 10%0.
3.2 Pivoting
(10720 1
A= 1 J
[0 1 . .
P= 1 0] (permutation matrix)
! 1
PA= 20720 1}
[1 o]t 1
{107 1[0 1-107%
=1 =y
Floating point arithmetic:
L=1L
~ 1 1
o= 1
PAx = Pb
o
LUz = 1
Lj = Pb
_[0]
y - -1_
. (0]
Uz = 1]
z= __11 ~x=A"1b

Every time you use Gaussian elimination you need to use pivoting.

10

General Pivoting Example

n=4, k=2 (4 x 4 matrix)

* % k%
v—10®
0 % =x
0 x %
E * %
L 0 @ o exchange rows 2 & 4
0 * * ok
0 # # #
EREE
Lo |0 % % x%
- 0 0 # #
00 # #

In general:
Ly 1Py 1+ -L3loPo, L1 PLA=U

If you don’t need to pivot, then use P; = I (the identity).

11

Specific Pivoting Example

1

WOHN A
5NZ_ | —
— 5N742,_72,3
SO O - YaliSianl[a]
T T 1 [e2 I
O 10 0 10— O © [.
e =< SET NS
— M OO OO N —=H D 01007@3,41,2
— M D~ D~ D~ — D~ Lo M~ O O
11,21,43,4
Q1 < 00 © 0 F N O _ _____8000_ ===
Il I Il I I
< < Ll < =)
i
- — 1
oo o - Pl
~
===
g

o —H O O

S O = O

12

Pivoting in Matrix Form

L3P3 \I,/ LoPy Ly I PA=U

=P P; =P PIP;P,
L3 (PsLoPY) (P3PyL P Pl) (PsPoP) A=U
~—~— ——
=Lj =L} =L =P

LLLLLY (PA) =U

L} (# LT) has the same structure as L;, with nontrivial elements in column 1 reordered.

1 000 1000
1

-t 100 , _lx 100

L“‘—%Olo’ =1, 010

-2 00 1 * 0 0 1

PA= (L) "Ly NIy 'U

General case:
PA=LU

where P is the permutation matrix and L and U are lower and upper triangular matrices, respec-
tively.

13

Algorithm: LU factorization with partial pivoting

Input: A € C**"
St U=A L=1, P=1.

e fork=1,2,...,n—1
— choose i > k such that |u;;| = max |u|
k<i<n
— if up, = 0, stop: A is singular
— Uk kum <> Ui g (interchange rows ¢ and k)
= k=1 < li1k—1

— Dk, < Di:
—forj=k+1,k+2,...,n

* ljk = ujk/ukk
* Ujkin = Ujkin — ljkuk,k:n
— end (j)
e end (k)
Output: U, L, P such that
PA=LU

where L = [l;;] with |l;;] <1 for all j > k.

14

4 9-30-11

4.1 LU Factorization Recap

PA=LU
1 0 0

I lor 1 o gl <1
lnl ln,n—l 1

LU factorization with partial pivoting is stable in practice.

4.2 Newton’s Method

Newton’s method is not a finite method, meaning that you would have to run it infinitely many times in
order for it to arrive at the answer.

Newton’s Method Overview

Given: f: D - R", D CR"

bil

f2 |
f=1.1, fi:D=R, j=12,...,n

/.
I

2
r=|.|l€DcCR", z;eR, j=12,...,n

T

Goal: Find = € D such that
f(x) = 0.

Thus, we have n nonlinear equations for n unknowns.

Newton’s Method Example 1: Possible Scenarios

D=R", f:R" > R"

f(x) =b— Ax, beR", AecR"™"
f(x)=0 & Ax=b
There are 3 possibilities:

1. 1 solution

2. no solution

3. infinitely many solutions

15

Newton’s Method Example 2

f="fa:R=R, fo(z) = 22 + @, @ € R is a parameter. This is an upward facing parabola with
minimum value a.

1. f(x) has no solution if a > 0

2. f(z) has one solution if &« =0 (x = 0)

3. f(z) has two solutions if « < 0 (z = £/—a)

Newton’s Method Example 3

n=1 D=Rt={zeR ‘ x>0}, f(x)= sin%. Thus, f oscillates faster as z — 0.

1
flz)=0 < =—=jr j=12,...
X

16

Remark 4.5. Newton’s Method Algorithm for n =1

20 = initial guess

f(@*) =0

1. Linearize f(z) around z°:
f(@) = f(@°) + f'(2°)(z — 2°) + O((z — 2")?) = t(x)
2. Get new approximation x! by setting #(z') = 0 and solving for z':

1 0 f(ffo)

LT

(provided f'(z) # 0).
3. Repeat with z° replaced by z!. Iterative process:

b1 _ gk J(@) k=012, ...

z =" - =

f'(@h)’

Remark 4.6. Questions about Newton’s Method

1. Can we guarantee that lim z¥F = 2*?

k—oo
2. If yes, what is the speed of convergence?

17

Example 4.7. Failure of Newton’s Method

f:R=R, f(x)=tan"lz, f(z)= ﬁ

f has a single zero: z* = 0. We apply Newton’s method. Choose z° € R.
gt = gk — (1 + (mk)2> tan~(zF), k=0,1,2,...

Convergence?
Let T be the unique solution of

—Z=T—(1+7)tan"'Z, T>0
1

where T is computed by using Newton’s Method for
g(z) =22 — (1 + %) tan ' 2.

Thus, if 2° = 7, then 2¥ = (—-1)*z, k=0,1,...
Similarly, if 2° = —%, then z**! = (=1)k*'z, k=0,1,...
If |2°| < 7, then lim 2% =0 = z*

k—o00

If [2°| > 7, then lim 2% = oo
k—o0

18

5 10-3-11

5.1 Newton’s Method (Continued)

Newton’s Method for n > 1

fi x1

f2 Z2
f:DoRY, f=|""1, z=|"|eD

fn Tn

Initial guess: 2° € D.
f(a) = f(2°) + Df(a%)(x — 2°) + O(||lz — «°||?)

where

]l = \/:c% + 23+ + 22 = Euclidean norm.

gﬁ gﬁ gfl

L1 T2 Tn

Df@)=|: = =[§f]]
Ofn Ofn ... Ofa Tkl jk=12,.n
oz1 Oz 0zn

Obtain a new approximation z! by setting (5.1) to 0:

0= f(") + DF(a) (a* — ")
Az0
Df(z")Ax® = —f(2?)

2t =20 + Az,

This is a system of n linear equations for n unknowns.

= Jacobian of f

(5.1)

Newton’s Method Algorithm

Choose z° € D.

e for k=1,2,... (open-ended), do:
— if Df(2*) is singular, stop.
else, solve D f(z*)Azk = —f(2*) for Ak
— set oFt = 2k 4 Agk
— if ¥+l ¢ D, stop.
— check for convergence: if f(2**1) =~ 0, stop.
e end (k)

19

1. Need to solve a linear system at each k step = LU factorization of A = D f(z¥)

2. Newton’s method is affine-invariant:
Let M € R™ " be a fixed nonsingular matrix, and let g : D — R", g(z) := M f(z) for all
x € D. Thus, f(z) =0 & Mf(x) =0 < g(z) =0. Then Newton’s method applied to f
and ¢ results in the same iterates zF, k =0,1,2,.. ..

Proof. (That Newton’s method is affine-invariant)

5.2 Convergence of Newton’s Method

Proposition 5.4. Convergence

Let 2* denote a zero of f, i.e. f(z*) = 0. If Df(x*) is nonsingular and z° is “close” to x*, then

lim zF = 2*

k—o0

and the speed of convergence is quadratic, i.e.

25+ — 2¥|| < Cfla* - &

Definition 5.5. Quadratic Convergence

The number of correct digits roughly doubles in each iteration.

20

Theorem 5.6. Convergence of Newton’s Method, Affine-Invariant Version

Assumptions:

e D C R is convex
o f:D—R"is C!
e 20 ¢ D and Df(2") is nonsingular

e Df satisfies the affine-invariant Lipschitz condition:

I(Df(a")"' Df(y) = Df(@)]| < lly — =]
Here || - || : R™ — R is a vector norm and [|[M]|| := Hm”ax || M x| is the associated matrix norm,
z||=1
which satisfies:
L [Mx|) < [[M][]l]]
2 1) =1
3. [|MN| < [|M][|[N]

21

6 10-5-11

6.1 Newton’s Method Convergence Theorem

Theorem 6.1.

Given:

f:D—=R"

2% € D and Df(2°) is nonsingular

|Df (") (Df(y) — Df(z))|| < 7lly — || for all x,y € D (bigger v => more nonlinear)
|Df(2°) =1 f(2°)| < a for some o > 0

e h:=ay< %

Figure 1: S.(z°) := {x € R" ’ |z —2°| < r}, Sy(x0) :={z € R" ‘ |z —2°| <7}

e 5 (z0) C D, r=1=22=2 >0
Claims:

1. All Newton iterates z* satisfy ¥ € S,.(2°), Df(2*) is nonsingular

2. The iterates z* converge quadratically to a zero of f, x* := klim 2k, 2% € S,(x9)
— 00

3. z* is the only zero of f in DN Sp(aY), R .= 1&1=2h V,yl*%

Note: "
lzt =2 = || = Df(@") " f(2°)| S a = 5
Proof. (of parts 1 and 2 of the theorem)

We define two scalar sequences (hy) and () as

, { h k=0
k= h2_
%—(kol k>0

1—hg_1)?
— o
17’;%171 k>0

22

It is easy to verify that for all £ =0,1,... we have
1

lim hj:0<h1€+1 < hp < =
j—o00 2

= lim ~;

Ve < Vet1 < S —
TUVI=2h e
2 Properties:

1
T~ 2
h h hp_ 1 1 1—+v1-2h
704_71_‘_..._’_ k1:7_7<,r:7
Y M Ye-1 7 Y
Claim: For k =0,1,..., 2% € S,.(2°), Df(2*) is nonsingular, and
IDf (") "N (Df(y) = Df @) < wlly —2ll, =,yeD.
We will also prove that
h 1
||xk+1 _ka < i < —aq.
v~ 2F

Proof by induction on k:
k = 0 = satisfied (by our assumptions).
k> 1:

¥ — 2%l < [l — a7 |l = 2R 4 et -2
N——

hp_ hp_ h
<t e <k
h h hi—
< 0 + ot + k-1
YN Yk—1
<r
Thus, 2% € S,.(2).
Df(a*)=Df(z""") | I - Df(a""")""(Df(a"*"") — Df(a")) (6.1)
nons;rlrgular :;FA
|A] = IDf ("1 (Df (") = Df ()| < g |l2* — 21|
N——
<hk—1
~YE—1

1
< hp_1< 5 <1
Banach Lemma: If [|A|| < 1, then I — A is nonsingular and
1
I-AY < —F.
I -4 <
Thus, by (6.1), Df(2") is nonsingular and

IDf (")~ | Df (1)Df ()" | Df(y) = Df(2)]| < | Df(2")"'Df (") [|1DS (") (Df(y) — Df (@)

I (I—A)—1
< ! ly —]
——Y1lly— =

S 1—hk_1% LY

23

£ — 2k = —Df(a)! (f(ﬁ) —f(@") - Df(a*) (@ - x’“>)
-0
— D) / (Df(’

1 + (l’k o xk:—l)) o Df(xk_1)> (xk _ :L'k_l)dt

ah ! — || < / |Dr) (D + tah =) = D) | et — o at

<7,€/ Hx}/fﬂx R Il [PURPl P
— et~ [e
0

2
:%ka 2 2 < ’Yhhk; 1
2%,_/_ Q’yk 1

To be continued...

24

7 10-7-11

7.1 Continued from 10-5-11...

z* € S, (z9)
IDf(*)"(Df(y) = Df @)l < welly —=ll, z,yeD
h o
k+1 _ k) <« Dk o &
k1 - o) < 2E < 5

f:D =R, f(z*)=0.

Claim: (2¥) is a Cauchy sequence.

Let m > k.
2™ — 2| < [la™ — 2™ Y| + (]2 = 2™ 4 4 [l
<
2m71 2m72 2k
o 1 1 1
cof 1
— 2k 2 4
=2
e
— 9k—1
Thus, (2¥) is Cauchy and therefore convergent:
lim z¥ = 2%, x* € S, (D).
k—o00
Claim: z* is a zero of f.
Fla*) = ~DF)ah — k)
1 (=)l < IDf (")l 2" — ||
SmaxxemHDf(x)H::M <5
aM
< ok

Thus,
0= lim f(z*) = f(lim z%) = f(a*)

k—o0 k—o00

25

T

k
I

(7.1)

Claim: the convergence is quadratic.

2"t =% — Df ()T (2F) b (Y
karl P S $k S Df(xk)*l(f(gjk) _ f(x*))
=0

1
= /0 Df(a") " (Df(z") = Df(a" + t(a* — 2%)))(a" —2*) dt
1
2t — 2| < f|l2* — 2] - /0 IDf(a*) " (Df(a*) = Df(a* +t(z* —2*)))| dt

1
< ¥ — |l / o — o — t(a® — o) dt
0

=(1—t)||xF—z*||
1
= lz* — 2P / (1-t)dt
0
Yk %
= Bk)2
1 v k w112
< S—L |aF -z
oo v

Note: p
G t(xF — %)) = Df(x* + t(z* — %)) (z" — 2*)

Parameterizing in terms of ¢ is the reason why we need complexity.

7.2 Use of Newton in Practice

Monotonicity Test (Preliminary)

Newton iterates: zFt! = ¥ — Df(2F) 71 f(2F).
———

=Azk
If all goes well: 2¥ — 2*, f(z*) = 0.
Check for progress: ||f(z**1)|| < 6| f(z¥)|| for some 6§ < 1. Note that this check is not affine-

invariant!
Instead:
IDf(") " f@ D) < 0D f(") " f®)]]
=[|Azk]|
In addition to
Df(a*)Adk = —f(at) (7.2)

we also need to solve a second system:

Df(xk)Zka _ —f(a:kﬂ)

Additional cost: O(n?) flop if LU factorization is used to solve (7.2).

26

Monotonicity Test (Refined)

e Compute Az**! in addition to Az*.
e Check if [|[Az*1| < 6]|Az¥| for some § < 1. (Typical value is 6 = 3)

e If not satisfied, use Newton’s method with damping

7.3 Newton’s Method with Damping

Newton’s Method: Standard vs. Damped

Standard: zFt! = zF + Azk
Damped: 2*t1 = zF1(\,) = 2F + A\ AzF, where 0 < \;, < 1 for some damping factor.

What is a suitable strategy for selecting Ax?

27

8 10-10-11

8.1 Newton’s Method with Damping (Continued)

Goal of Damping

IDf (") f @ I < 01 Df ()7 (@) for some 6 < 1

This can always be satisfied if Ax is chosen small enough.

In the following,
|Iv|| :== VvTv = Euclidean norm.

Proposition 8.2.

If f(2*) # 0, then the Newton increment
z* = Df(a*) " f(a")

is a descent direction for the function

8(a) = S IDF(H) 7 F ()|

d
T o@" + M),y < 0.

Corollary 8.3.

If A > 0 is chosen small enough, then
2P = oF 4 A AL

satisfies (8.1). This implies that

¢(mk+l) < 02¢($k)

Proof. (of Proposition 8.2)
Note: f(z*) #0 = AzkF #£0.

d
a¢($k + /\Axk)‘/\zo = Dx¢(x)‘m:xk AzF

Dyg(a) = (Df (™)' f(2))" Df(=*)"' Df ()
= —(AzM)T AP
= —[|Az"|
<0

28

Practical Strategy for Selecting A

Determine 0 < Ap < 1 such that the monotonicity test is satisfied with § =1 —)‘2—’“ If possible, use
A, = 1 (which implies that 6 = 1).
Procedure
e for)\k = 1’%7ia%7--~7)\min
— Solve Df(z*)AzFt1(\y) = — f(2F + \yAx¥) and check if

B 0wl < (15) 1adk] (52

— If (8.2) is satisfied, use A\ and set 2%+ = 2¥ + N\ Azk
— In the next Newton step, use Ap+1 = min{1, 2\ } as the first value for checking (8.2).

8.2 Conditioning

Problem: Input — Output (or No Solution)

Abstract Formulation: X — Y, z € X is the input, y = F(z) € Y is the corresponding output.

General Problem We Are Considering

Solution of Ay = b, where A € C"*"™ is nonsingular, b € C".
X ={z=(A4,b) | A€ C™" is nonsingular, b € C"}
y=0Cc"
F(z)=F(Ab) :=Ab=yecC

Definition 8.6. Conditioning of a Problem

The impact of perturbation: © — x + dx, dz is small. In other words, we are solving a slightly
wrong problem and we want to know the effect on the output.

Perturbation of input: dz(=z + dz — x)
Perturbation of output: dF(z)(= F(z + dz) — F(x))

The condition number of a problem, k = k(x), is a measure of the sensitivity of the output to small

changes in the input:
oF
C .
]

[0 |
]

for small ||dz||

29

9 10-12-11

9.1 Conditioning (Continued)
We have F': X =Y, x4 dx — F(z) + 0F(x).

B]

F@l <
155 el
“o) < TF @) 6]

for small ||0x||

Here, || - || are suitably chosen norms in X and Y.

Definition 9.1. x(x)

: [0F ()] [l
k() : = limsup ——-—
50 IF (@) lloz]]
lloz(|<5
shorthand [0 (2)]| [

up
sz ozl [[F(z)]]

Definition 9.2. Ill-Conditioned, Well-Conditioned

A problem is said to be ill-conditioned if k(x) > 1 and well-conditioned otherwise.

How do we compute the condition number?

Conditioning Number for F Differentiable

X CR" Y CR"™and F: X —Y is differentiable, then

]

(@) = [DF@)

(Note: % is kind of like a difference quotient.)

30

Evaluation of y = F(x) = \/z, x > 0.

F’(x):;\}:E
TSRV L B N
O IRV
1
=3

So this is well-conditioned for all z > 0.

Computing y = F(z) = x1 — xy for z = [1:1 xQ]T € R2,
F :R?2 - R. F is differentiable:
DF =1 -1]

We compute:

k(z) = ||DF(x)||2 [E4IP _\/ﬁm

|F' ()| |21 — o

So this problem is ill-conditioned if x1 &~ x3, x1, 22 % 0.

The reason why F(z) = x1 — z2 is ill-conditioned is that small perturbations of z; and xs get amplified:

F(l‘ + 51’) = (331 + 5l’1) - (:132 + 5$2) =21 — T +0x1 — 0x9
~0
~ 51’1 — 51’2

This is called “loss of significant digits.”

Conditioning is only a property of the problem to be solved, not of a specific algorithm for obtaining
its solution.

To compute a condition number in Matlab, use cond (R).

9.2 Floating-Point Numbers

Problem: How do we represent x € R on a computer?

Finite Storage: irrational numbers like v/3 = 1.73205. .. or even very large integers cannot be represented
exactly!

31

Base of the representation: g > 2
e [3 = 2: binary representation
e 5 =10: decimal representation

If x > 0 is an integer,

T =0,B" + by 18"+ 1B+ b
= (bnbn—l t blbO),B

where the b;’s are integers such that 0 < b, < g — 1.

53 itn Base 10 and Base 2

Let = 53.

r=>5-10"4+3-10° = (53)19
=32+16+44+1=1-224+1-2*4+0-22+1-22+0-21+1-20
= (110101); = 6 bits

How many numbers can we store?

Suppose we use 52 bits to store x in a binary representation. How many numbers can we represent
exactly?

x = (bs1bs0 - - - b1bo)2

Answer: ¢ =0,1,2,...,2%%2 — 1.

In general we need to use floating-point representation, even for integers.

9.3 IEEE Floating-Point Standard

Base 8 = 2. Any x € R, x # 0, can be represented in the binary form
T = i(l.b1b2 e) x 2P

where by, bg,--- € {0,1} and p is an integer.

32

10 10-14-11

10.1 Quick Review of the IEEE Standard

8=2, xR, x#0
x:(l.bl bg ...)X2p

where by,be,... € {0,1} and p is an integer.

41.7 in the IEEFE standard

Thus,

41.7 = (101001.10110)s
= +(1.01001100110...) x 25

This is its normalized binary representation.

% = 20 remainder 1 2 x 0.7 = 0.4 remainder 1
? = 10 remainder 0 2 x 0.4 = 0.8 remainder 0
% = 5 remainder 0 2 x 0.8 = 0.6 remainder 1
g = 2 remainder 1 2 x 0.6 = 0.2 remainder 1
; = 1 remainder 0 2 x 0.2 = 0.4 remainder 0
% = 0 remainder 1

10.2 Normalized IEEE Floating-Point Numbers

exponent

+ (1.5 - p
(1 b2 bN) X 2
sign mantissa

where by, b, ... € {0,1} and p can be represented with M bits.

total bytes

Precision | sign | N (length of mantissa) | M (exponent) | total bits
Single 1 23 8 32
Double 1 52 11 64

Long Double 1 64 15 80

4
8
10

From now on we stick with double precision.

A double floating-point number looks like:
:t(l.bl bQ ce b52) x 2P

where p is an integer in [—1022, 1023].

33

Some numbers:

1:=4+1.00 ... 0x2°
——

52
1+27°2:=41.00...01x2°
51

10.3 Machine Precision

142752 is the smallest floating-point number that is still larger than 1. To check this, we loop for n=0,1,2, ...

?
1+27">1
It should stop for n = 53.

Definition 10.2. Machine Precision

Machine precision (or machine epsilon) is a measure of precision. Its value is
€mach =22 = (1+27°% —1)

(eps in Matlab)
Note:
€mach = 2.220...x 10716

which is why double precision has = 16 significant digits.

10.4 Floating-Point Representation

round to nearest

reR fl(x) = floating-point number closest to x

Chopping vs. Rounding to Nearest

Consider
$::|:1.b1 b2 b52 b53 coex 2P

Chopping;:
— l‘—):l:l.bl b2 b52 x 2P
Round down: same as chopping

Round up: 1 is added to bss

Rounding to Nearest:

— If b3 = 0, round down
— If bs3 = 1 and b; = 1 for at least one of j > 53, round up
— If bs3 =1 and b; = 0 for all j > 53:

* round up if bss = 1

x round down if bgs = 0

34

Definition 10.4. Relative Error

For x # 0, the relative error of fl(z) is

LCEETpS

< S €mach = 275 =1.11...x10°'

Representation of 41.7 with Rounding

11

41.7 = +1.010011 0110 0110 --- 0110 0_1 |10 0110 ...
—— =~

6 4 4 4 bs2
fl(41.7) = 4+1.010011 0110 0110 ... 0110 01 x 25

x 27

35

11 10-17-11

11.1 Representation of the Exponent p
Double precision uses 11 bits:
1020 + €92? + - + €128 + ¢92Y, €0, €1,---,6e10 € {0,1}
We can represent all integers from 0 to 2'' — 1 = 2047. BUT p is written in the shifted form:

p=—1023 —1—810210 + 6929 + -+ 6121 + 6020
fixed

Thus, p ranges from —1023 to 1024.

11.2 Machine Representation

’8\60 er - 610\b1 by -+ b5

x # £0, +oo: segel...elg|b1b2...b52
z=40: 500 ...0 |0 0...0
r=400: s 11 ...1 |0 0...0

Undefined Cases:

NaN: s11 ... 1|b1 by ... bs2, at least one b; =1

subnormal floating point numbers: s00 ... 0 | by by ... bsz, at least one b; =

<2—1022

2719%2: 110...0[00...0

11.3 Floating Point Arithmetic

41.7 ® 10.425

x = f1(41.7) = 1.010011 0110 0110 ... 0110 01 x 2°
)

y = f1(10.425) = 1.010011 0110 0110 ... 0110 01 x 23
—
=41.7/4

Addition of z and y in floating-point arithmetic:

z = +1.0100110110...011001 | x 2°
y = +0.010100110110...0110 | 01 x 2°
z +y = 1.101000010...00000 | 01 x 2°
fl(z +y) = 1.101000010....00000 | x 2°
N

=z@yFr+y

36

Exact Arithmetic floating-point arithmetic

r+y rTDy
T—y TOyY
T XYy T®Y
z/y TQY

For all floating-point numbers x, y:
r@y=(z+y)(l+e) where || < %emach =275
xoy=(r—y)(1+e) where || < %emach
r@y=(rxy)(l+e) where |e| < %emach

1
(y#0) zoy=(2/y)(1+¢) where |e[< Sémach

The relative error of the floating-point implementations of the four basic arithmetic operations is

bounded by

1
5 Emach = 279 — 111 ... x 10716,

11.4 Catastrophic Effects of Round-Off Errors

Loss of Significant Digits
Occurs in subtraction of nearly equal numbers, i.e.

T —v, where = ~ y.

Relative Error of x —y when x =~y

x=1+2772427% 427 =+1.0...01 | 110... x 2°
y=1+27" =+1.0...00 | 010... x 2°

Exact arithmetic:
x—y=2""242"=3x27

Floating-point arithmetic:
fl(z) =+1.0...010 | x2°

fl(y) = +1.0...000 | x 2°
fl(z) = fl(y) = 40.0...010 | x2°=+1.0...0x 27"

Relative error:

‘2—51 —3x 2—53

1
3 x 2-53 3

37

12 10-19-11

12.1 Loss of Significant Digits
xr—y, TRy

In practice, this problem can often be avoided easily.

Trouble Is Avoidable

Evaluation of

1—
f(m)z& forO<z <
sin“ x
Problem: cosz ~ 1 for z ~ 0.
1—cosx 1+4cosx 1—cos’zx 1
f(SC):) : =) :
sin® x 1+ cosx sin“ x 1+ cosx
1
1+ cosx

But cosz ~ —1 for z =~ 7.
= use 1
s
f(x):{ 1+cosz 0<$S§
l—cosx T

s
sin? z 2

38

Huge Intermediate Quantities

Suppose we want to evaluate this at 2 = 2754
In exact arithmetic:

_ p(o—54y _ o54 25 B
F25% =2 1
v= — 21
1
T 1—2

~1
In floating-point arithmetic:

g — 254 ® ((254 % (254 o 1)) o 1)
—_——

=2 ((254 2296 1)
————
=2"®(1o1)
——

:254®0
=0

y—y

-
Y

Relative Error = ‘

The problem is the huge intermediate quantity 2°4.

Remedy:

In floating-point arithmetic:

j=10(1c2 =101
=1
?j -y 1 - 1—21704 54
Relative Error = = T = 27" < €mach
y 1_2—54

12.2 Stability

Abstract formulation of a problem:

F .
Input x € X — F(x)=y €Y, yis the output
F:X—Y

An algorithm in floating-point arithmetic:
F:X->Y

39

F captures all errors:
oz — fl (1‘)
e round-off errors of floating-point arithmetic
e possible approximation error (e.g. stopping Newton’s method)

Exact solution of the problem: y = F(z)
Computed solution: § = F(x)

Relative error of the computed solution:

17 =yl _ [1F(z) — Fa)]

Iyl IF@

Ideally we would like to have

|F(z) — F(2)]

= O(€mach) for all z € X
|1 F ()|l

Recall: g(¢) = O(e) < there exists a constant C' such that ||g(e)|| < Cle| for € — 0.

(12.1)

If the condition number is 1, then (12.1) is possible. If the condition number is big, i.e. the problem is

ill-conditioned, then (12.1) is unrealistic.

Instead...

Definition 12.3. Stable

The “algorithm” F : X — Y for solving the problem is stable if for each & € X, there exists an

T € X such that

1F@) - F@I
(1)] HF(i_)H - O(mach)
(2) H:L'”;“mH = O(emach)

Meaning of Stable
A stable algorithm gives nearly the right solution to nearly the right problem.

40

Figure 2: § = F(z) is the computed solution.

This is a realistic goal.

41

13 10-21-11

13.1 Backward Stability

Definition 13.1. Backward Stability

A stronger form of stability:

each input there exists an £ € X such that

and

The “algorithm” F : X — Y for solving the problem F : X — Y is said to be backward stable if for

Meaning of Backward Stability:
A backward stable algorithm gives the right solution to nearly the right problem.

Example 13.2. Backward Stability of Floating-Point Subtraction

y=F(z) =z — x9, x = [m] € R?
T2
g =F(z) = fi(z) & fl(xz)
1
= [r1(1+€1) — 22(1 + €2)](1 + €3) where |e1], |e2], le3] < 5 Emach

=z1(14+€1)(1+e€3) —\1‘2(1 +e)(1+ 63)1

-~ -~

::il :352
— F(3)
T1—
1951 H= 1 +ea)l+e) —1 =le +e+ el
< ler| + les] + lerlles] = O(emach)
T2 = T2 (emact) by similar analysis
T2

The floating point algorithm for subtraction is backward stable.

42

Backward Stability of Floating-Point Addition, Multiplication, and Division

Similar to Example 13.2, we can show that addition, multiplication, and division are backward

stable.
Stable, but not Backward Stable
y=Flx)=z+1, zeR
~ 1
g=F(x)=fllz)®1=[z(1+e€)+1](1+ €2) where |€1], |e2| < 5 €mach
T—x z(l+e)l+e)te—=

=z(l+e)l+e)+eat+tl=7+1=F(I)

T x

=z

€ €
= |e1 + €2 + €169 + ;2 = O(€mach) + O < T;rh>

7& O(Emach) ifz~0
Thus, this algorithm is not backward stable. Is it stable?

Flz)=xz+1
z(l4+e€)(1+e)+e+l
—_———

F’(fc) —F(z)=(Z —:1)(1 +e)—(T+1)=(Z+1e
= F(Z)ey
|F(x) — F(Z)| = |[F(2)|le2] = [F()|O(macn)
I —x=zx€

| — x| = [2]O(€mach)

Thus, it is stable.

13.2 Accuracy of Backward Stable Algorithms

Theorem 13.5.

Let the problem F' : X — Y have condition number k = k(z), = € X, and let F:X > Y bea
backward stable algorithm for solving the problem. Then:

= O(K(2)€mach) for all z € X.

43

Thus, if the condition number is really high, then even a backward stable algorithm cannot save you.

44

14

10-24-11

14.1 Backward Stability (Continued)

Theorem 14.1.

F:X—=Y, &k
F:X =Y backward stable

|F(2) — F ()]

F@ - CW@)eman) Vo€ X

Proof. Let z € X and let F' be backward stable. Then

2 & — x| _

F(z)=F(z) for some z € X with T O(€mach)-
fecall I6F@)le]
x x
k(x) = sup .
)=S0 sl TR
Then
|F(z) - F(z)| |F(&) — F(a)]| 0
= backward stability
IF@I [F)] ()
[6F ()] N
_ dr:=—=x
17 ()] ()
:<WF®W'\WH>Hf—M
ozl [[F()) =l
<@+ o) =Tl
—~ |||
—0 as €pmach—0
:O(Emach)
= O(k(x)€mach)
14.2 Norms
Definition 14.2. Norm
A norm on C" is a function
|-I:C" =R

such that for all z,y € C"*, o € C:

1. ||z|| > 0, and ||z|| = 0 if and only if z =0
2. [l +yll < llzll + llyll

3. |laz| = |afl]]

45

Some Norms

n
el =3 |
=1
n
> lail?
=1

[#]loo = max |zl
1<i<n

]2 =

Veec Norm

Let A € C™". vec(A) := [a11 az1 -+ Gn1 a12 -+ ann)? € C™°. ||A|| == |vec(A)||, where || - || :
C” SR

Frobenius Norm

[AllF = [[vec(A)]l2 =

14.3 Matrix Norms

Definition 14.6. Matriz Norm

Any matriz norm satisfies:
1. ||A|| > 0, with |A|| =0 if and only if A=0
2. [[A+ Bl < [|A]l + 1B
3. [laAl = [of]A]

46

Definition 14.7. Induced Matriz Norm

Often more useful are induced matriz norms:

Let || - || : C* — R be a matrix norm on C". Set
A
lub(A) = lub(A) := max | Az] = max ||Az||
220zl =1

It is easy to see that lub(A) is indeed a matrix norm.

Note: [|Az[[luby.(A)[[z] for all A € C**", z € R™.
Norm on C" Induced Matrix Norm
|- [All1 := Tuby(A4) = max Z |ajk] (max column sum)
| lloo |Allco := hle-Iloo(A) = lr%a<x E |k (max row sum)
|- ll2 | All2 := Tuby (4) = max HAng = omax(A) = the largest singular value of A

llzll2=
Omax —)\max(AHA)

Theorem 14.8. lub Norms Are Submultiplicative

lub norms are submultiplicative:

lub(AB) < lub(A)lub(B) YV A, B € C™"

Proof.

| ABz]|

lub(AB) = X il

Forz #0,y:=Bx #0

|ABz|| _ |[ABz|| ||Bz|| _ Ayl ||Bx]|
]| 1Bzl lzl gl =]
< Tub(A)lub(B)

47

15 10-26-11

15.1 Conditioning of Az =1b

Let A € C™*™ be nonsingular.
Let b € C™ be fixed, and consider small perturbations J A of A.

Ar =b
(A4 0A)(z +6z)=b } = A(02) + (0A)z + (64)(6z) =0

~0
A(dx) = —(0A)z = br~ —A 0A)x
Let || - || be any vector norm on C™ and || - || be the associated lub norm on C™*".

162] ~ AT (0 A)z]| < [A (0 A) |||

< [|ATH oA |
LB SIAILAT = ()= ()
Recall our definition of k(z):
sup Lol L2 = k() = 4l
Theorem 15.1.
Let b € C™ be fixed. Let || - || be a vector norm on C™ and let || - | be the associated lub norm. Let

A be nonsingular. The conditioning number of solving Ax = b is given by

k(A) = [AlllATY.

Corollary 15.2.

k(A) > 1 for all A (since we are using lub norms).

Proof.

I=AA""1
1] = [|AA™Y|
< JAIA7Y
= r(A)

11| = max ||a]| = 1
[|lz]|=1

48

15.2 Stability of LU Factorization
Let A € C™*"™ be nonsingular. Assume that A has an LU factorization: A = LU.
Then: for all “sufficiently small” €mach, LU factorization without partial pivoting in floating-point arithmetic

encounters no zero pivots. The algorithm will run to completion, computing a lower-triangular matrix L
and an upper-triangular matrix U such that

. 1sA|
LU =A+0A and ———— = O(€mach)-
TEf-qoy ~ O Gmact)
It ||| - [T = O(AIl), then -
W = O(Emach)

and LU factorization without pivoting is backward stable.

However, for general nonsingular A € C**",
ILIl - U] # Ol All)

In fact, without pivoting ||L|| can be arbitrarily large (see the 2 x 2 example we did).

= LU factorization without pivoting is not backward stable (and not even stable).

15.3 LU Factorization with Partial Pivoting

Partial pivoting ensures that |l;;| <1 for all j, k& = ||L|| = O(1). But what can we say about ||U]|?

Define the so-called growth factor.

Definition 15.3. Growth Factor

max |ujkl

Jk=1.2, .m0
p=pld) =" —]
Gk=12,.m" 7

Theorem 15.4.

Let A € C™*™ be a nonsingular matrix. Then LU factorization with partial pivoting in floating-point
arithmetic generates matrices L, U, and P such that

LU = PA+46A

and % = O(pémach), where p = p(A) is the growth factor.

Consequence:

If p(A) is bounded by a constant for all nonsingular matrices A € C™*™, then
[0A]
“+—— = O(€mach)
[A] *

49

and thus, LU factorization with partial pivoting is backward stable.

This is indeed the case. It can be shown that
p(A) < 2ont for all nonsingular matrices A € C"*"

and the inequality is sharp. However, in practice, p(A) does not approach this bound.

50

16 10-28-11

16.1 Backward Stability of LU Factorization with Partial Pivoting (Continued)

Large p(A)

M1 0 0 17
-1 1 0 0 1
-1 -1 1 . 0 1
A= . .) .| eR™?
-1 -1 -1 --- —1 1]
M1 0 0 17
1 0 0
0 —1 1
A—
0 2
0 -1 -1 . 1 2
o -1 -1 --- —1 2]
T 0 0 0 1 7
01 0 0 2
00 1
U:
0 23
00 0 1 on—2
0 0 O 0 271
1T 0 0 0 0]
-1 1 0 0 0
-1 -1 1
L:
0 0
-1 -1 =1 . 1 0
-1 -1 -1 -~ —1 1]
p(A) =21

o1

Example 16.2. Large p(A) (Continued)

For nonsingular matrices A € C"*"™ of all sizes n > 1, LU factorization with partial pivoting is not
backward stable!

Reason: % = O(p(A)émach) # Ol€macn), since p(A) = 2771 — 0o as n — oo.

Good News: In practice, matrices with large p(A) have never occurred!

Remark 16.3. Backward Stability of LU Factorization

LU factorization with partial pivoting is backward stable in practice!

16.2 Interpolation

Problem: Given n + 1 data points
(xj,y5), 7=0,1,....n (16.1)

where z;,y; € R and 29 < 21 <22 < -+ < Ty,.

Find a “simple” function p that interpolates the data.

16.2.1 Polynomial Interpolation

Remark 16.4. Polynomzial Notation

PnEH::{P(a:):co—l—clx-l—---+cnx” | co,cl,...,cneR}

n

= set of all (real) polynomials of degree < n

52

Theorem 16.5.

There is a unique P, € [],, that interpolates the data (16.1):

T — Tk
Z::y]kl_loxj—xk
k]

(Lagrange interpolation formula)

Proof.

T — Tk
Z%H
= o T — Tk

#J
n .
Hxl—xk:{O [# 3
kzowj—l‘k 1 l:j
k#j

Pn(:l"l) =Y Vi
P, is unique: Let @ € [[,, be another interpolating polynomial. Then

D(z) = Py(z) - Q(z) € []

n
D(xj) = Po(zj) = Q) =yj —y; =0, j=0,1,....n
Thus, D has at least n+1 zeros. Since D is a polynomial of degree n, this impliesthat D =0 = P, =¢. 0O

But...
Polynomials are usually not flexible enough.

Remedy: piecewise polynomials = splines

16.2.2 Splines

Given: data points (xo,v0), (21,91), (x2,92), ..., (Tn,yn), where a := 29 < 1 < 23 < -+ < 2, =: b and
n > 1.

Definition 16.6. Spline

A function S : [a,b] — R is called a spline of degree k — 1 (order k) if

(a) S € CF2[a,b]
(b) On each interval [z;_1,z;], 7=1,2,...,n, S(z) € [[,_;

53

17

10-31-11

a=z0<xr1<T2<...<xTp=2>
S e C*2[a, b]

S(:L') S H, Tj—1 < €T
k—1

k > 2, k order, k — 1 degree

17.1 Working with Splines

Example 17.1. Linear € Cubic Splines

k =2 = linear spline
k =4, = cubic spline

Figure 3: Linear spline (pen) and cubic spline (pencil).

Remark 17.2. Counting Degrees of Freedom

On each [z;_1,zj]: S=5; €[], = Fk coefficients.
= The total number of parameters = nk coefficients.

S € Ch 2 Foreach aj, j = 1,2,...,n— 1, S (2;) = SO (z; — 0) = 5@ (z; + 0) = 8\), (2;), i =
0,1,...,k —2. = This is a total of (n — 1)(k — 1) conditions.
Use a spline of degree k — 1 to interpolate the data (zo,y0), (x1,¥1), -y (Tn,Yn):
S(xj):yj, j:O,l,...,n
= Another n + 1 conditions.

coefficients — # conditions =nk — (n —1)(k—1) — (n — 1)
— k2

Thus, we need to impose k — 2 more conditions in order to get a unique spline.

54

Example 17.3.

For k = 2, there is a unique linear spline that interpolates the data.
For k = 4, we need 2 additional conditions to have a unique cubic spline that interpolates the data.

17.1.1 Cubic Splines

k=4, € C2a,b],
S(x)=S;@) e [[onlzj—1,2], j=1.2,....n.
3

Remark 17.4. Additional 2 Conditions

1. Natural spline: S”(a) = S7(a) =0, S”(b) = S//(b) = 0.
2. Not-a-knot condition: we need that n > 3. S{"(z1) = S5 (x1), SV 1 (xn—1) = S} (xp_1).

Recall: S1,5 € [[s, 1,9 € C2, S\ (x)) = Si(xy) for i = 0,1,2,3. Thus, Sy = Sy for all
xo9 < x < 19, i.e. x1 is not really a knot. Similarly, x,,—1 is not really a knot.
= This condition is the default for Matlab’s spline function.

3. Periodic spline: Assume that the data is periodic, i.e. yo = yn (S1(a) = Sn(b)).

4. Clamped spline: S7(a) = vo, S}, (b) = vy, where vy, v, € R are given.

Theorem 17.5.

For each of the 4 cases in Remark 17.4, there exists a unique cubic spline that interpolates the data.

Remark 17.6.

Cubic splines are the “smoothest” interpolants among all interpolating functions f € C?[a, b].

i1 = (b) de) -

55

Theorem 17.7.

Let S be a cubic spline that interpolates the data. Let f € C2[a,b] be any function that also
interpolates the data: f(x;) =y;, j =0,1,...,n. Assume that

S"(@)[f'(x) — §'(x)]|°2" = 0.

r=a

Then [|S"l2 < [|f"]l2-

Comment on Theorem 17.7

Theorem 17.7 does not apply for the not-a-knot condition because the assumption does not hold,
but it does apply for the other 3.

56

18 11-2-11

18.1 Proof of Theorem 17.7

Proof.
/ S"(z — §"(x)] da'= S"(f' —) / S"(x — ()] dz
=— ch/ ’ f'(z) = S'(z) dx S"(z) = ¢; = constant on [z;_1, ;]
— " Ja
== cilf@) = S@I;
j=1
== iyl — ¥ — Y-t + Y1)
j=1
=0
Next,

f@) = 8"(@) + [f"(z) — 8" (x)]
2
]

@ = 18" @ + 25" @) @) — 8"(0)] + (@) - 8"
b
1718 = 15 @r a2 [S @@ - @l 1 - ek
=[15"1l2 =0 >0
£ 15" e

18.2 Construction of an Interpolating Cubic Spline

Constructing splines boils down to solving a tridiagonal linear system (= you never have to pivot). We will
only cover the natural cubic spline; the other endpoint conditions are similar.

Recall:

a=r0<x1<Ta< - <xp=>
S(xj):yj, j:O,l,...,n

S(x) = Sj(x) = o+ Bj(x —xj—1) + 75z — xj,1)2 +6j(x — :L‘j,l)?’

on [zj_1,z;], j=1,2,...,n
Conditions:
Si(xj—1) = yj—1, Sj(xj) =y; for j=1,2,...,n
2. Si(xy) =85 (7), 5=1,2,...,n—1
3. 8j(xj) =S} (x5), 7=1,2,...,n—1
4. S{(x0) =0, S)(xn) =0 (natural spline condition)

From these conditions, we get:

57

1. aj =y;j—1 and
yj — yj—1 = Bixj — wj1) + (x5 — 2j-1)* + (x5 — wj-1)
Aj =Y —Yi-1, fj =T — Tj—-1 (Notation) (181)
2. B+ 27 + 30,67 = Bjy1, j=1,2,...,n—1
3. 2’}/j + 65j§j = Z’YjJrl, 17=12....n

4. 21 =0, 2y, + 66,n&, =0 &
v =0, Yhe1 = 0 where vp,11 = v + 30,60

3. . y
5. — J+1 =V
1. A ¢ A ¢
B = ?j — &5 — gj(%ﬂ —4) = ?j - gj(%ﬂ + 27;)
Insert the newest (3) and (1) into (2):
A A)
&+ 208 + &) + &2 =3 < L J) s J=L12...,n-1
§j+1 5]
(where 41 =0, Y41 =0).
2(&1 + &2) &2 i
) 206+ &) &
- - Y2 ty
3 to
. . Tn tn—l
5n—2 2(677,—2 + gn—l) gn—l
L gnfl 2(§n71 + gn)_
where

tl;:3<Aj+1Aj> j=1,2,....,n—1.
! i &) R

The coefficient matrix of this system is tridiagonal, symmetric, and strictly diagonally dominant:

2(§j + §j+1) > &+ & for all j.

= There exists a unique solution 2,73, ..., V.
Furthermore, no pivoting is needed. The system can be solved in O(n) flops.

58

19 11-4-11

19.1 B-splines

Given: A = {zg,x1,...,2n}, where a = xp < x1 < --- < x, =band n > 1 (so that a < b). Recall that for
the spline S of degree k — 1 (order k): S € C*2[a,b] and S € [[,_, on [zj_1,7,], j=1,2,...,n.

Definition 19.1. §; A

Sk,a = the set of all splines of order k, k£ > 2.
It is easy to see that S A is a real vector space:

S,gGSkA, aceR = S+§€Sk7A, aSGSkVA.

AlSO, Hk‘—l C Sk;7A

Proposition 19.2. Dimension of S; A

e On [zg,x1]: k coefficients
e On [x1,x9]: k coefficients and k — 1 conditions = i.e. only 1 coefficient
e Similarly for [x;_1,2;], j =1,2,3,...,n.

So dim(Sga) =k+n—1.

19.1.1 B-spline Basis (1)

We consider this kind of basis composed of monomials — that is, p(z) = zt, 1=0,1,2,... — and truncated

powers of degree k — 1:

_ k-1 k1 (x —2)F1 z>a;
fo; () = (x —2j-1) " = (max{z — x;,0})"" = { / 0 x< $j
d 1 k—1-1
@(xij)_[=k-1)Fk=-2)...(k=1=0)(x—x;)
So (x - xj)]fl—_l € Ck_Z[a’? b]? (l‘ - xj)’j-_l < Sk:A7 and
dk_l k—1 0 =z < x]
dpk—1 (_wj)‘*‘ o { (k=1 =>ua;
Theorem 19.3.
The set
B={l,z,2% ..., 2" (z — xl)]_fl, (x — 372)]_1_1, N xn—l)ﬁ__l}
is a basis for S A.

59

Proof. We only need to show that the £ +n — 1 functions in B are linearly independent. Let
k—1 n—1
S(z) = Zalacl + Zﬁz(ac — mi)i_l =0
1=0 i=1

foralla <z <b. Foreach j=1,2,...,n—1,

0=8%"1(z; +0) - SED(z; —0)

dk’—l ko1 dk—l b1
= B]' (dl‘kl(x o xj)-i— |z:x]~+0 B W(l‘ o ‘Tj)‘i‘ }x:ij)

= Bk =L

Thus, 3; =0 for j =1,2,...,n —1, and

k—1
S(z) = Zalasl =0
=0

foralla <x <b. Soaq;=0forl=0,1,...,k—1, and thus the functions in B are linearly independent. []
However, the basis B is useless in practice:
e [ll-conditioned

e Global support. suppz! = [a,b], supp(z—=;)% —1 = [x;,b]. It is more efficient to have a basis function
with local support only.

60

20 11-7-11

20.1 Homework Comments

Problem 3:

Ax =0b,b#0.

20.2 B-Splines

B-splines are basis functions for Sj A with desirable properties.

Example 20.1. k =2 (Linear Splines)

B-splines for Sy A are the hat functions.

n+1

S(x) = Z Yi—1Nio ()

S(xi—l):yi—]n 7’:15257n+1

Note: the end points xy and z,, are special: for k = 2, we count x¢ and z,, “twice.”

For general k > 2:

k times k times
o < xp < X2 <o < xTpq < T o

~~ ~ ~~ N~ ~~
T1=T2=...=Tk Thk+1 Tk+2 Thkdn—1 Thk4n=Tk4+n4+1=--=T2k+4+n—1

61

20.3 Construction of B-Splines of Order k£ (> 2)

n<n<...<7, T, T, ...,77 €R (20.1)
l=2k+n-1
l—k=k+n-1
= dim S;; A

62

Definition 20.2.

The B-splines Ny of order k (> 2) (associated with (20.1)),7 = 1,2 ...,l—k, are defined recursively
as follows:

1 < <mp
0 otherwise

Nil(m)::{ , 1=1,2,...,01—1

For j=2,3,... k:

Tr —T; Ti+j—.’L‘

Nii(z) = ——N;._1(z) + Nitiiq(z), i=1,2,....01—j 20.2
ij(z) FoPp—— ij—1(2) e i+1,j-1(2) J ()
Conventions:
1. % =0if Ti+j — Ty = 0 or Ti+j — Ti+1 = 0. For example, if Ty = Tit+l = -« = Titk-
Nz‘yj_l(fl,’) =0
Nit1,j-1(z) =0
Nij(z) =0

2. Nix(m) :== lim Ny (x)

T=T

Note:

(1) = Nig(r;) =0
Niy(Tita) = Nig(Tiza) =0

Properties

(a) supp N C [74, Titk]

(b) Ni(x) >0 for all z € [r,, 7]

I—k
(¢) >. Nip(z) =1 for all z € [r1, 7], i.e. the N’s form a partition of unity on [ry, 7]
i=1

(d) N;, € Ck_2[7'1,7'l]

(€) Ni € [[4_q on [r5,7j41], j=1,2,...,1—-1

64

21 11-9-11

21.1 B-Splines (Continued)

T STp< - <7

For j=2,3,...,k: Nij(I):"'Ni7»y_1(ﬂf)+"-Ni+17j_1($), 1=1,2,...
Ni1 N\
Nia N\
a
No1 ™\ Niz N\
Noy
N3i ; Nig
Ni_kk
Ni_zo ™\
Ni—aq N\ N33 /
Ni_22
Ni_iqg

21.1.1 Efficient Evaluation for r <z <7
Determine j such that 7; <o < 741 (1 < j <[, j is unique).

Nj (1}) =1
Nji(z) =0 ifi#j

Ny j(x) (column j)

Nj_23(z)
Nj—12(z)\
/‘
L= Nj(z)\, Nj_13(x)
Nija2(2)\
Njs(z)
Nj;—j(x) (column [— j)
21.1.2 Back to S;a
Choose the 7;’s (21.1) as follows:
a =20< 1 < Tg << Tyl < Tp= b
— NG AN g
=T1I=T2=""=Tg =Tri1 =Trio =T _ =Tk+n=Tk+n+1="""=Tn42k—1
k times - + ketn—1 k times

Setl:=n+2k—1(=l-k=n+k—-1=dimSya).

Corresponding B-splines of order k:
Nig, Nogy ooy N1,k

Theorem 21.1.

The B-splines Ny, i = 1,2,...,n+ k — 1 form a basis of Sy a.

Figure 4: supp Nis C [ri, Tia]. Also, 3, Nus(z) = 1.

Notes:

1. The representation
n+k—1

S(x)= Y %li(x)
i=1
of any S € S A is well-conditioned.

2. The coefficients v;, i =1,2,...,n+ k — 1 are called the de Boor points of S.

n+k—1 ntk—1
3. Since Nji(z) > 0 and >, Ni(z) = 1 for all a < x < b, the S(z) = > ~ilNu(z) is a convex
i=1 i=1

combination of the de Boor points 71,72, . ..,Vi—x for any fixed x € [a, b].

66

Cubic Spline with Not-A-Knot Condition

k=4, n>3.
fy) <1< 9 << Tp—9 <Tp—1 < Tn
~~~ ~~~ N~~~ ~~~
=T1=T2=T3=T4 =75 =Tn+1 =Tn+4+2=Tn+3=Tn4+4=Tn+5

I =n + 5. Corresponding B-splines N14, Nog, ..., Npi1.4.

n+1

S(x) =Y vilNu(w)
=1

Interpolating Conditions:

Al Yo
72 Y1

M ) =
Tn+1 Yn

where M = [mj;]ji=12,. ny1 With mj; = Nig(z;-1).

67




22 11-14-11

22.1 Numerical Integration

Problem:
Evaluate

I:/abf(x)dw

where f : (a,b) — R is integrable on [a, b].

Quadrature Rules

I~ Z w; f(;)
=1

where a <z <9 < -+ <z <band w; € R.

R, = Z w; f(x;) — I = (remainder or error)
i=1

22.2 Examples of Quadrature Rules
1. Trapezoidal Rule

fla)+ f(b) b—a b—a

12 (p-a) P = 2 )+ 2 )
n=2 x1=a, Ta=2>, wlzwgzb_T“.
Ry = (b—a)31—12 7€) for some € € (a,b)

Thus, the trapezoid rule is exact for polynomials of degree < 1.

2. Simpson’s Rule

68



Figure 5: Interpolate the 3 points with a quadratic function.

1= (s s (50) +50)
n=3, r1 =a, xo= %t

2
_ _ b— _ 2
57, T3 =0b, w1 = w3 = 5%, wy = 5(b—a).

Ry = (b - a)° oo F0(6)

5880 for some £ € (a,b)

Thus, Simpson’s rule is exact for polynomials of degree < 3. Where does this extra degree of accuracy
come from?

Figure 6: Simpson’s rule for y = 2® on [—1, 1] is exact.
g

3. Compound trapezoidal rule. Let s > 1 be an integer. Set t; = a +ih, i = 0,1,

..., 8, where h := b;“.




s—1

Z/tiH f(z)dx

i=0 /ti

I:/abf(a;)dx:

»
|
—_

[f(ti) + f(tiv1)]

X
g
| >

[fa)+2f(a+h)+2f(a+2h)+---+2f(b—h)+ f(b)]

SN

[;f(a)Jrf(aJrh)+f(a+2h)+---+f(b—h)+;f(b)

=ids41

where s + 1 is the number of points used. Error:

1
Roy1=Top1 — I = sh?’ﬁ F2(¢) for some & € (a,b)
1
—(b—a)—h2f®
(b a)7h £ (©)
Tsy1 involves s+ 1 points (b = *22).
T5s+1 involves 2s 4+ 1 points (ﬁ = b‘—sa = g)
N . . . ]
Tosy1=_h_ |5f(a)+ fla+h)+ fla+2h)+---+ f(b—2h) +f(b—h) + 5 f(b)
\h// 2 —— —_— 2
2 f(a+h) f(b—h)
1

= - 8+1+fz[f(aJrﬁ)+f(a+3ﬁ)+~-f(b—3ﬁ)+f(b—ﬁ)

[\)

Consequence: Once we have Ty, the approximation T, 1 can be obtained with s additional function
evaluations! We can also estimate the error of Ths41:

1
Rep1=Tp1 —1=(b— a)ﬁth@)(f)
1 h?

Rosi1 =Tosy1 — 1 = (b— a)ﬁzf@)(é)
Assume that f@ (&) ~ f®(£). Then
1
Rosi1 ~ 1R3+1-

But:
|Tos41 — Tsq1| = [Rasy1 — Ret1]
3
= Z|Rs+1|
So an error estimate for Ts11 =~ |Rst1| ~ %‘T25+1 — Ts+1|. Approximate integral:
I ~Toq.

Conservative error estimate:

4
§|T23+1 — Tt

70



23 11-16-11

23.1 Examples of Quadratures (Continued)

. 5 _ b—
4. Compound Simpson’s Rule. s > 1, h = >5*

+2ih

b s—1  q49(i+1)h
I:/ f(m)dm:Z/ f(z)dx
h
3

[f(a) +4f(a+h)+ fla+2h)+ fla+2h) +4f(a+3h) + fla+4h)+---+ f(b—2h)

N~ N~

+f(b—2h) +4f(b— D) + f(bz]

-~

w|

Q

[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+2f(a+4h)+---+2f(b—2h)+4f(b—h)+ f(D)]
:Ss+1

This uses 2s + 1 points. Remainder:

Rosi1 = Sos41 — 1 = (b— a)@f )(€) for some ¢ € (a,b)

If we double s: )
Rys11 ~ 1_6R2S+1

Approximate integral: I =~ Sys11
Conservative error estimate: %]S4s+1 — Sos+1]

Efficient Implementation

h b—
Susr1 =73 |/ +4Zfa—|— (25 — 1)h +222fa+2kh h = 28“
L ] 1
h 2s—1
=3 |/ (@) +2> fla+ih) + f(b —i-QchH— 2j — 1)h)
N i=1 L J=1
L ::X;s+l =:Bs

h
S4s+1 = E [A4s+1 + BZS]

4s—1

where  Ags11 = f(a) +2 Z f (a + z%) + f(b)
i=1

2s
and Bgs:22f(a+(2j—1)g)

j=1

71



We get Ays41 for free because

25—1 2s h
Assi1 = f(a) +2 ) | fla+kh) + f(b) +2 Ejf<ww%—n>

- 2
k=1 7=1
(2k=1) (2j—1=4)
=Azs11
= Agsy1 + Bas

Consequence: To obtain Sysy1 from Sosi1 = %(A25+1 + By), we only need to compute

2s
. N ~ h
BQS:2Zf(a+(2]—1)h), h=35
7=1
and set
Agsr1 = Aog1 + Bog
b—a
S4s+1 = E(A%—H + BQS)

. Gaussian Integration. So far all the formulas we’ve seen have been of the form
b n
I= / f(z)dx =~ Zwif(xi) (23.1)
a i=1

This expression has 2n degrees of freedom, so we hope to be able to integrate exactly polynomials of
degree < 2n — 1. For Gaussian integration, we choose a < z1 < 9 < --+ < x,, < b to be the zeros of
the nth orthogonal polynomial py(x) = a™ + --- € [],, defined by

b
/ p(z)pn(z)dx =0 for all p € H

(a=—-1, b=1, pp(z) =7, - (nth Legendre polynomial).)
The w;’s are chosen such that (23.1) is exact for all f € [, _;, i.e.

b n
[ t@yde =Y wisw), £
@ i=1

n

(For example: f(z) =27, j=0,1,...,n—1.)
In this case, we get a linear system:

. . . w1 b—a
1 2 n 112 2
22 22 . g2 w2 Q(b —a®)
1 2 n = .
-1 n:—l ne1| Lwn—1 L™ —am)
1 ) Ty

72



24 11-18-11

24.1 Gaussian Integration (Continued)
b n
I- / Fa)de =S wif () (24.1)
e i=1
Choose the x; as the zeros of f(x). a < 1 < x3 <--+ <z, < b. The w;’s are chosen so that
b n
[ f@)de =Y wirw
a i=1

for all f e[, ;-

Theorem 24.1.

(24.1) is exact for all p € [],,,_;-

b
Proof. Let p € [[y,_1- 0= [ pn(z)q(z) dz for all g € [],,_,. Polynomial division:

p(z) = pn(x)q(z) + r(2) where ¢, € H

n—1

/abp(a:) dr = /abpn(x)q(a:) dx —i—/abr(:c) da

=0Db/c
pn=nth orthogonal polynomial

= Zwir(a:i)
i=1

~~

=0
= Z W; [pn(ﬂfz) q(xz) + T(fEZ)]
=1

=p(x;)

= Z w;p(z;)
i=1

O
24.1.1 Pros and Cons of Gaussian Integration
Pros Cons
e Optimal Accuracy e When n is increased, old values
f(z1), f(x2), ..., f(zyn) cannot be reused

e Can be used for functions with singularities
at z=aorx=>(sincea<z <z <<
Ty < b)

73



24.1.2 Gauss-Kronrod Rules

Given: Gaussian rule with n points,
n
Gn=> wif(x).
i=1

Gauss-Kronrod:

n n+1
Kony1 =Y aif (@) + > b f(y))
=1 7=1
where the y;’s are chosen as the zeros of the polynomial g,41(x) = "t e [1,.41 satisfying

b
[ @)@y de =0 foranpe .

b
Thus, gn+1 is the (n+1)st orthogonal polynomial with respect to the “inner product” (p, ¢) := [ p(x)q(z)pn(z) dx.

a

The remaining parameters a;, ¢ = 1,2,...,n and b;, j =1,2,...,n+ 1 are determined such that
b n n+1
/ p(x)de = Z a;ip(z;) + Z bip(y;) for all p € H
a i=1 j=1 2n

Theorem 24.2.

Kony1 is exact for all p € [5,4;-

Proof. For p € ],
p=ngns)t+r,  re][ te]]

2n n

/abp(x) dr = /abpn(x)qn+1($)t($) dz + /abr(x) de

~~

=0
n+1

= Z a;r(x;) + Z bir(x;)
i=1 j=1

n+1

= aip(zi) + > bjp(y;)
i=1 J=1

24.1.3 Practical Use

Pair (G, Ko,+1). Approximate the integral:

b
K2n+1%/ f(x)dx.

Heuristic error estimate:

(200|Gp, — Koni1])¥/?.

If we start with n reasonably large (e.g. n = 10), then K, 1 will probably be accurate enough. However,
if we need to double n then we have to start from scratch.

74



25 11-21-11

25.1 Corrections to the Homework

e 2(d) is trimmed down.

e use underscores for function names, not hyphens

25.2 Adaptive Quadrature

Idea: Use more function values f(x;) where f “varies more.”

Ingredients

e Quadrature rule ) with error estimate E.

e Tolerance € > 0.

Goal: Approximate the integral @[, such that

b <
'Q[a,b] —/a f(z)dz| =

NE[a,b} < €.

25.2.1 Basic Adaptive Procedure
At every state:

[a,b] =LULU---UI
where I; = [a;,b;], hj =bj — a;. There is no overlap = hy + hy +

Q= [ rwn

ity =b—a.

RN

‘Qj -/ f(x) dz| =E;

Initialization

e =1, I =[a,b], hy =b— a. Apply your quadrature rule Q to Iy — Q1, Ej.
General Step:

o If F; < bh_—jae for all j =1,2,...,1, stop. Qg = Q1+ Q2+ -+ + Q, with error estimate

l

€

E[a,b]:E1+E2+---—{—El<b_a hjZE
j=1

75



e Otherwise, for all I; = [a;, b;] with E; > b}i—jae, set

Ij:= [aj’a]+ j]7 Iy = [a]—i— Jabj]

2 2
be — a
hyi=hin =2, =141

and apply Q to I and [; — Qj,E; and Qy, E.
Note: For an actual algorithm, various safeguards are needed, e.g. h; > hmin > 0.

25.3 Eigenvalue Problems

Definition 25.1. Eigenvalue, Eigenvector

Let A € C™™™. A number A € C is called an eigenvalue of A if there exists a nonzero x € C"™, x # 0,
such that

Ax = \z.

Such an z is called an eigenvector of A.

Definition 25.2. Spectrum

The set

A(A) :={X € C| Xis an cigenvalue of A}
is called the spectrum of A.

Az = Az, r#0
= (M —-Az=0, x#0
= the matrix Al — A is singular
= det(A\] —A) =0

Definition 25.3. Characterisitic Polynomial

The polynomial

p(2) = pa(z) :=det(zI — A) =z, + Ap12""1 4+ aiz+ap

is called the characterisitic polynomial of A.

Notes:

1. The eigenvalues of A are the zeros of the characterisitic polynomial, p4. In particular, A € C**" has
n eigenvalues, but they are not necessarily distinct.

76



2. For n > 5, any algorithm for computing eigenvalues of general A € C"*™ has to be iterative!

e Even if this was not true, working with polynomials is not great.

77



26 11-23-11

26.1 Eigenvalue Problems (Continued)

3. Any polynomial p(z) = 2" + ap_12p-1 + Q22" 2 4 -+ a1z + ag is the characteristic polynomial of
a matrix A € C"*". For example,

[0 0 0 —ao
1 : —Q
A= o 0
0 —ap—2
0 0 1 —ap-1]
has the characteristic polynomial
[ 2 0 ag |
-1 =z Qaq
det(zI — A) = det -1 . : =2"+a" 14+ a1z + ap.
S Op—2
L 0 -1 z+ Qp—1

For some classes of matrices, the eigenvalues can be found trivially. For example, an upper triangular

matrix:
a1 k ‘e %

A= P AA) = {an,am, )

26.2 Computation of Eigenvalues
26.2.1 Bad Ideas
1. Forming p4 and computing A\ € A(A) as zeros of p4.

2. Attempting to compute the Jordan canonical form of A:

J1 0
Ja
XtAX = ‘ ,
0 Jp
where each
A 1 07
Y|
J; = , 1=1,2,...,1
1
1 0 Al

are Jordan blocks.
[J,X] = jordan (A)

78



26.2.2 Better Ideas
1. Use the Schur factorization of A.

2. Use unitary similarity transformations to first transform A to a “simpler form.

Definition 26.1. Similarity Transformations

Let A € C™". Let U € C™*" be nonsingular. The map
A UAU

is called a similarity transformation of A.

Lemma 26.2.

Proof.

Use matrices U that are easy to invert and that are numerically well-behaved:

Definition 26.3. Unitary

U € C™™ is said to be unitary if
Ul =1

(U = lugr), UM = [ugg] = (O)T")

Notes:
1. U unitary = U is nonsingular and U~ = U#.
2. U unitary = U is unitary and (U")~! = (UHF)? = U.

3. U unitary = ||Ux||2 = ||z||2 for all # € C™". This is because ||Ux||3 = (Uz)f Uz = 27UHUz =

H, _ 2 _ Uzl _
zx = [lz]|3 and [|U]]2 = max Gl = b

79



4. Unitary matrices U have the best possible Euclidean condition numbers:

=UH

26.3 Unitary Similarity Transformations
A UTTAU =U"AU = T

where U is unitary.

Question: What is the “simplest” T we can achieve?

Theorem 26.4. Schur

For any A € C™*™ there exists a unitary U € C™*" such that

t % - %
UHAU = T = t22
. *
0 '

is upper-triangular. In particular, A(A) = A(T) = {t11,t22, ..., tnn}-

We will prove this by induction on n. Forn =1: A=a], U =[1], T = [a].

80



27 11-28-11

Office hours Wednesday 12:30-2:30.

27.1 Proof of Schur’s Theorem
Recall:

UY AU = T = upper-triangular

Proof. By induction. For n = 1, it is trivial. Assume it is true for 1,...,n—1. Let A € A(A) with eigenvector

z, ||z|]2 = 1. Choose a unitary matrix

Ulz[x ok e *}EC”X”
with 2 as the first column. Then:
AUlz[)\x X ke *]
A * o« o . *
Ul Au, = | . N . where A e cntxn-1
: A
0
Induction hypothesis:
*
URAU =T = 1, U e C" 171 is unitary
0 *
Set
10 0
0
U:=U; |. - e Ccren
0
Then U is unitary and
1 0 10 0
0
Ul AU = | . . UB AU |
: UH : U
10 0
B *
0
= 1. . =:T' = upper-triangular
: UH AU
0

81



27.2 Two Simple Unitary Matrices: Householder Reflectors

Definition 27.1. Householder Reflectors

Q € C™ " of the form Q = I —2vv! where v € C" with ||v||2 = 1, is a Householder reflector matrix.
Q is Hermitian:
QY =1 - 20w = Q.
@ is unitary:
QTQ=0Q*=1— 4" +40 vy T =1

=[vl3=1

For any z € C™:

Qx = reflection of x w.r.t. the (n — 1)-dimensional plane {w € C" ‘ wfv =0}

Proof.

T =av+w, where a € C, wv =0
Qz = (I — 2vv)(av 4+ w)

=av+w—wv vlav —2vvfw
N—— ~—~—~

H

=avH H=a =0

=—av+w

Given: z € C".
We can construct a Householder reflector Q = I — 2vv! such that

Qx = yep for some v € C with |y| = ||z||2

T = av+ w, wfo =0
Qr =—av+w = ye;
T —ver =av+w—ye; = 2av
Set
Ty —7

x2
Vi=x —yep = . and v :=

s3]

[\

Ln

82



Numerically best choice of ~:
v = —(sgnz1)||z]2

where .
T
sgnxy = [E t 7é 0
1 Tr1 = 0
Summary:
Q=1-20", where v = NU
[[0[]2
0=+ (sgnz)||zl2e1
o1+ (sgnon)l|o]la
Z2
T,
Qz = ey, where v = —(sgnx1)||z2

27.2.1 Reduction of A to Hessenberg Form

Definition 27.2. Hessenberg Matrix
http://en.wikipedia.org/wiki/Hessenberg_matrix

An upper Hessenberg matriz has zero entries below the first subdiagonal, and a lower Hessenberg
matriz has zero entries above the first superdiagonal. For example:

1 4 2 3 1 2 00
3 417 5 2 30
0 2 3 4 3 4 37
0 01 3 5 6 1 1
is upper Hessenberg. is lower Hessenberg.
Schur factorization:
* *
UMAU =T =
0 *
Next “best” thing:
ERE: * |
x
UHAU=H=|
*
10 % %

Can be achieved with n — 2 Householder reflections

L 0

U=UUs...Up_2, where U; = [0 O
n—j

] , Qn-j € Cn—7*n=J  Householder reflector

83


http://en.wikipedia.org/wiki/Hessenberg_matrix

n =

where z € C*, Q1 € C¥4, Qix = vie1, U = [

t

U AU, = U1 AU, = (

Us' U3 U AU U Us =

1 0
! QJ:U{I.
U1 A)U; = [
[a11 # # # #
mo#H#HH
0 # # # #
0 # # # #
L0 # # # #
(% % % % %
0 * * * x
0 0 *x x =x*
0 0 0 *x =

ail
v1€e1

*
Jo

84




28 11-30-11

28.1 Reduction of A to Hessenberg Form (Continued)
UTAU = H, U=UUy...Uypy, AecC™"

1. A(A) = A(H). Eigenvectors transform as follows:

Az =Xz, 240 & UHAUU 2z = \U" 2
H
y:UHx S Hy=My, y#0

Here y = Uz and o = Uy = U1Us ... Up_ay,

I .
0 n—j

2. Reduction of A € C™*" to upper-Hessenberg form requires ~ 13—0713 flops.

Left to do: Compute the eigenvalues of H.

28.2 The QR Algorithm

Definition 28.1. QR Factorization

QR factorization of M € C™*":
M = QR, where Q € C™" is unitary and R is upper-triangular

This is done via Gram-Schmidt.

QR Algorithm (for eigenvalue computations)

Input: upper-Hessenberg matrix H € C"*"
o Set AO) .=
e Fork=1,2,...
— Choose a suitable “shift” up € C
— Compute a QR factorization:

AR _ T = QW R®)

— Set A®) .= RWQW) 4 1,1
e end (k)

85



Lemma 28.3.

1. A®) = (QUNHAR-DQK) =12, ...
2. A(H) =AAW), k=0,1,2,...

Proof.
2. By (1), AFR) A=) Ak=2) 4D AO) = [ are all similar.

1.
AW = RBQW 4 .1 = (Q")H(QWR™ + 1y QW)
—

=A(k=1)

Note: All the matrices A®) are upper-Hessenberg!

28.3 Two Simple Unitary Matrices: Givens Rotations
28.3.1 2 x 2 Case

Q= [ ¢ Z] € C*2 where |c|* +|s]* =1

Q is unitary:

A e =sl[ec s]  [le]*+]s]? 0 1o
QQ—[E cH—§ E]_[ 0 2+ s]?] [0 1
Householder: _
k k
* 0
Q.=
* | 0
Givens: )
* %
N

Use of Q: to “zero out” the entry xo of any given x = [21] cC?, z#0.
2

Indeed: Set

[7eY T s = eia
[[z]]2”

c=e¢e where a € C

T2
[EdPY

86



Then

o o = el
)13
0 | _ 1 eiaﬁ ei‘f‘fg Ta| _ e'%||x||2
To |z|l2 [—e "“z2 e "1 |w2 0
28.3.2 General Case
F 0
1
c s
1
Q:
1
—S c
1
_0 1 -

Notes:

1. Left-multiplication with @) only changes the jth and kth rows.

2. Right-multiplication with @ only changes the jth and kth columns.

B

3. Q is a Givens rotation = Q' is a Givens rotation:

o

wl ol

87



28.3.3

Use in QR Algorithm

n=2>5
A(k_l) — il =
C1 S1
—51 €1
Choose Q1 = 1 such that QI (A1 — ;T =
1
1
1
C1 S1
Choose Q2 = —-51 ¢ such that QY QI (A*=1D — 1) =
1

QY QY QY QI (A*Y — 1) =

coocooFH coocoocoFH OO x ¥

O O O O ¥

S O ¥ % %

oo % I oo % I I

O O O *x ¥

O ¥ ¥ % %

S O % % %

O ¥ * IrIk o % *x Ik I
* % ¥ Y F ox x x Ik Ik
* % ¥ I Ik ox x x Ik Ik

* Kk X X X

O Ik * % %

EE S S SR

F Ik * x *

88




29 12-2-11

29.1 Comments on the Final

Friday 6-8 p.m.
e Office hours: Monday 12:30-2:30 p.m. and Wednesday 2-4 p.m.

e Open book & notes

29.2 QR Factorization (Continued)

For general n > 2
Convert A to a Hessenberg matrix and feed this to the QR algorithm: A — H = A©),

A=Y 7 = QW RK) where Q™ = Q1Q2...Qpn1
——

n — 1 Givens rotations

AR = R(k)Q(k) + ppd is upper-Hessenberg

29.3 Convergence of the QR Algorithm

Let A(A) = {A1, A2, ..., \n} and assume that [A;| > [Ag| > --- > |\,|. (Special case: p =0 for all k.) Then

ES * * T11 *k . e “e %
PG *
21 0 7o
L 0 Apn—1 * | L 0 0 T'nn
where A(R) = {r11,722, ..., "nn}t = A(A).
Speed of convergence: If |\,| > 0, then
k
M (]2 =23 k=12

= slow convergence if |/\j\é\)\j_1]. Shifts ux are used to speed up convergence. Suppose pp = g = constant
and [N\ — p| > [Ada —p| > -+ > |\ — p| > 0. Speed of convergence:

k
k) _ Aj _ _
a]’]1—0<)\]_1_,u/ ), ]—2,3,...,’[’1,, k—1,2,
= a§?_1 £220 0 fast if R A
29.4 Strategy for Choosing /i
At the beginning of the kth iteration of the QR algorithm,
i * O, .o *_
al?
AFD = @BV = g 1|, 7=23,...,n, checkifal "} ~0.
0 0 all




’j
(k—1) (k)
Jig—1 JJ
| < (0 a5Y]) . where = 0t
(k=1) _
Set a; ;= 0

29.4.1 3 Cases

1. Case 1: j=n

ko %k * *
*
. . . . . A(k—1)
Ak=1) _ e e : _ A - (k*_l) : Alk=1) ¢ on—1xn—1
. . : Ann
*
(0 - - 0 0 aqgj;l)

= o) € A(AF-D = A(A).
Accept a,(ﬁz as an eigenvalue of A and continue the QR algorithm on A®~1) . Typical choice: py =
(k—1)

CLnfl,nfl’

2. Case 2: j =2

[, (=)
all * cee %k

Ak=1)

k—1) . .
a§1 ) is an eigenvalue of A.

3. Case 3: 2< j<n

A(k—l): k *k * e “e “ e *

Agkil) ‘ *
oA

0 *

A(4) = AAED) = AAFD) U AAEY). Continue QR on AFTY e €i1xi-1 and AfY €
(Cn—j+1><n—j+1.

90



Typical flop count for such a practical QR algorithm:
e ~ 10n? if only the eigenvalues are computed

o ~ 27n? if eigenvalues and eigenvectors are computed

91



A Algorithms

A € C™"*"™ — upper-Hessenberg

10n3
3

Algorithm Operation Count Page
Triangular Solve n?
LU Factorization without pivoting % 8
LU Factorization with partial pivoting 14
Newton’s Method (n = 1) 17
Newton’s Method 19
QR Algorithm 10n3 (27n3 with eigenvectors) | 85

92




Index

affine-invariant, 20
affine-invariant Lipschitz condition, 21

backward stable, 42

characterisitic polynomial, 76
chopping, 34

condition number, 29
conditioning, 4

convergence, 4

cubic spline types, 55

damping, 27
de Boor points, 66

eigenvalue, 76
eigenvector, 76
error sources/types, 4

floating-point arithmetic error, 37
floating-point representation, 32
flop, 8

Frobenius matrix, 6

Frobenius norm, 46

growth factor, 49

Hermitian, 82
Hessenberg, 83
Householder reflector, 82

ill-conditioned, 30
induced matrix norm, 47

Jacobian matrix, 19
Jordan blocks, 78
Jordan canonical form, 78

Lagrange interpolation formula, 53

machine epsilon, 34
machine precision, 34
matrix norm, 46
monotonicity test, 26, 27

Newton’s method, 17

norm, 45

normalized binary representation, 33
numerical analysis, 4

orthogonal polynomial, 72

permutation matrix, 10

pivoting, 10

QR factorization, 85
quadratic convergence, 20

relative error, 35
rounding, 34

Schur factorization, 79
Schur’s Theorem, 80
similarity transformation, 79
spectrum, 76

spline, 53

stability, 4

stable, 40

submultiplicative, 47

unitary, 79

well-conditioned, 30

93



	9-23-11
	Announcements
	General Remarks
	Introduction to LU Factorization

	9-26-11
	LU Factorization (Continued)
	Problems with LU Factorization without Pivoting

	9-28-11
	Continued from 9-26-11...
	Pivoting

	9-30-11
	LU Factorization Recap
	Newton's Method

	10-3-11
	Newton's Method (Continued)
	Convergence of Newton's Method

	10-5-11
	Newton's Method Convergence Theorem

	10-7-11
	Continued from 10-5-11...
	Use of Newton in Practice
	Newton's Method with Damping

	10-10-11
	Newton's Method with Damping (Continued)
	Conditioning

	10-12-11
	Conditioning (Continued)
	Floating-Point Numbers
	IEEE Floating-Point Standard

	10-14-11
	Quick Review of the IEEE Standard
	Normalized IEEE Floating-Point Numbers
	Machine Precision
	Floating-Point Representation

	10-17-11
	Representation of the Exponent p
	Machine Representation
	Floating Point Arithmetic
	Catastrophic Effects of Round-Off Errors

	10-19-11
	Loss of Significant Digits
	Stability

	10-21-11
	Backward Stability
	Accuracy of Backward Stable Algorithms

	10-24-11
	Backward Stability (Continued)
	Norms
	Matrix Norms

	10-26-11
	Conditioning of Ax=b
	Stability of LU Factorization
	LU Factorization with Partial Pivoting

	10-28-11
	Backward Stability of LU Factorization with Partial Pivoting (Continued)
	Interpolation
	Polynomial Interpolation
	Splines


	10-31-11
	Working with Splines
	Cubic Splines


	11-2-11
	Proof of Theorem 17.7
	Construction of an Interpolating Cubic Spline

	11-4-11
	B-splines
	B-spline Basis (1)


	11-7-11
	Homework Comments
	B-Splines
	Construction of B-Splines of Order k  (2)

	11-9-11
	B-Splines (Continued)
	Efficient Evaluation for 1 x < l
	Back to Sk,


	11-14-11
	Numerical Integration
	Examples of Quadrature Rules

	11-16-11
	Examples of Quadratures (Continued)

	11-18-11
	Gaussian Integration (Continued)
	Pros and Cons of Gaussian Integration
	Gauss-Kronrod Rules
	Practical Use


	11-21-11
	Corrections to the Homework
	Adaptive Quadrature
	Basic Adaptive Procedure

	Eigenvalue Problems

	11-23-11
	Eigenvalue Problems (Continued)
	Computation of Eigenvalues
	Bad Ideas
	Better Ideas

	Unitary Similarity Transformations

	11-28-11
	Proof of Schur's Theorem
	Two Simple Unitary Matrices: Householder Reflectors
	Reduction of A to Hessenberg Form


	11-30-11
	Reduction of A to Hessenberg Form (Continued)
	The QR Algorithm
	Two Simple Unitary Matrices: Givens Rotations
	2 2 Case
	General Case
	Use in QR Algorithm


	12-2-11
	Comments on the Final
	QR Factorization (Continued)
	Convergence of the QR Algorithm
	Strategy for Choosing k
	3 Cases


	Algorithms

