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1 1-9-12
http://www.math.ucdavis.edu/~freund/226B

Office Hours: MW 12:30-1:30 MSB 2140

1.1 Large Scale Matrix Computations
Typical matrix computations:

e Linear systems: Az =b, Aisn xn

e Kigenvalue problem: Ax = Az, Aisn xn

e Linear programs: minc’

x: Ax =b, Aisnxn, x>0

Large scale case: n is “large” or n,m are “large.”

T =C1T1 + C2T2 + - - - + CpTp,

For all problems that arise in practice, the large matrices exhibit special structures.

Definition 1.1. Large-Scale

its special structures.

special structures \

A matrix computation problem is called large-scale if it can be solved only by methods that exploit

sparsity

structured dense matrices

1.2 Sparsity

Definition 1.2. Sparse

A matrix A = [aj;] € C™*" is said to be sparse if only a small function of its entries a;j are nonzero.



http://www.math.ucdavis.edu/~freund/226B

Sparse Matrices

e Discretization of (elliptic) partial differential equations.

Lu=f — Axz=0»

e.g. —Au =
(e.g f)
—Ugg—Uyy in 2-D
k 3k ok *
* * %k ok %

e Network problems

e Web search (e.g. the “Google matrix”)

Graph of a (Square) Matriz

Let A = [aj;] € C"*". We can associate with A a directed graph G(A):
Nodes: N ={1,2,...,n}
Edges: E={(j,k) | j € N, k€ N, aj, # 0}

For example:

0 x 0 x x 0
x 0 x 0 % O
o000 o0 « 66
A=10 0000 0| €C
0 0 = x 0 =
10 0 « 0 x 0]
G(A):

N ={1,2,3,4,5,6}
E={(1,2), (1,4), (1,5), (2,1), (2,3), (2,5), (3,6), (5,3), (5,4), (5,6), (6,3), (6,5)}

ORNOENEO
A
@« ® & ©
The graph is directed because the matrix is not symmetric.
= If the matrix is symmetric, there is no need for the graph to be directed.

If a;; # 0 then the edge is a loop.




2 1-11-12

2.1 The Google Matrix

View the web as a graph G:
N =1{1,2,3,...,n}, n = number of websites that are visible to the world.

From Example 1.4, we have

di=3 da=3 dz3=1 dy=0 dsy=3 dg=2
E={(j,k) | j € N, k € N, and there is a link from website j to website k}

Corresponding sparse matrix @ = [g;1] € R™*" such that ¢ #0 < (j,k) € E.
Sparsity structure of () = connectivity of the web.
Values of g # 07

For each j € N, the out degree d; of j is the number of edges (j, k).

out lihles

gi} Eé‘ﬁzﬁﬁ

Google’s “contribution:”

= z (k) eE
ik 0 otherwise

rn 1 1 1 A7
IR
3 3 3
00 000 1
Q_OOOOOO
00k 4o}
00 53 0 3 0]

The values in row j are dij and their positions are the k corresponding to links.
All rows except row 4 sum up to 1 = a visitor of website 4 will be stuck there!

To fix this:



A is the “Google matrix:”

O ool O Ow

o

Il
O ool oOw= O
O w—oI— O O Wi
QwrFoIR = O O

N W=D~ O Wik O
NI= O ol O Wil

The Google matrix A is row stochastic:

e a;, >0forall j,k=1,2,...,n

°
k

n
ajp=1forall j=1,2,...,n
=1

Random walk — pages that you are most likely to end up on are ranked higher.
Ae = e, e= e R"”

A =1 is an eigenvalue of A with eigenvalue e.
= A = 1 is an eigenvalue of AT (since the eigenvalue of A and AT are the same).

One can show that there is an eigenvector x such that

ATy =z, x#0
x1
Z2
r=|. >0 and 1 +290+--+ax,=1

Ln

The entries of x determine the page rank.

2.2 A Class of Dense Structured Matrices

Definition 2.1. Toeplitz Matrix

A matrix T € C™**" of the form

to t-1 t2 -0 to(noy)
t to t.q
T=11t
[ ln—1 -+ t2 4 o |

is called a Toeplitz matriz.

Notes



1. A=[aj) € C™" is a Toeplitz matrix < aj, =t for all j,k=1,2,...,n
2. An n x n Toeplitz matrix is dense in general, but we only need to store the 2n — 1 numbers:
t—(n—l)a t—(n—2)a sy logs T, o, T, t2, oo, tn

instead of n2 numbers.



3 1-13-12

3.1 Toeplitz Matrix Example

Let &; be a discrete-time stochastic process.
Time: 7 =1,2,3,...,n

FE = expectation of the stochastic process
mj = E[¢;] = mean at time t = j
Covariance: o, = E[(§ —mj) (& — my)]
Covariance Matrix: A = [oj;] € C**"

The stochastic process is said to be weakly stationary if
ojk =tjk forall j,k=1,2,...,n

(i.e., 10 and 5 is the same as 11 and 6.)

< A is a Toeplitz matrix.

3.2 Solution of Linear Systems

Problem: Solve Ax = b where A € C™*"™ is nonsingular and b € C".

3.2.1 Cholesky Factorization

Special case of LU factorization for the case that A is Hermitian positive definite (HPD).

Definition 3.2. Hermitian Positve Definite (HPD)

A € C"*™ is Hermitian positive definite (A > 0) if

1. A= A"
2. Az >0forallz €C?, 2 #0

Notes:

1. 2l Ax = (2P Az) = 20 Az = 2P Az € R
The number is the same as the complex conjugate = real.

2. A=laj] =0 = aj; = ejTAej > 0 (choose = = e; above) for all j
= HPD matrices have positive diagonal entries.



Theorem 3.3.

Let A = [aj;] € C™*". Then

1. For any nonsingular X € C"™", A~ 0 < X7AX - 0.
2. If A= 0, then A = lajk)jeer > 0 for all I C {1,2,3,...,n} (any subset).

3. A> 0 < there exists a unique lower triangular matrix

lii 0 0
I_ lo1 oo
0
lnl lnn
with [;; >0, 7 =1,2,...,n such that
A=rLL" (3.1)

Notes:
1. (3.1) is called the Cholesky factorization of A.

2. No pivoting is needed.

Proof.
1.

A=Al o XHAX = XHAHX = (XPAX)H

0< XHAX =X HXHAX X1 (z #0)
S——
=5#0

0 <zt Az =78 (X7 AX)z
2. There is a permutation matrix P such that
(by part 1)

PTAP = {f j ~ 0

z = m eC", i+#0

= 0<zPPTAPx = 77 AF

3. Induction on n
n=1:
A:[a11]>-0 = a1 =0

lll = /a1 > 0, L:= [lll]

ai1 =13, =il = LL*

10



n-1l=m

Ae@nxn, A0

a1, ——— wl ——— a1
| asi
A= w Aoy , where a11 >0, w:=
| | .
Agg = [ajk]2§j,k<n
A= \/ZT 0 [1 0 ] Jan \7;%
e 110 An]| 0 1
where AQQ = A22 — % c (CTL—IXTL—I'
1 0
Part 1 = [0 1422:| -0
Part 2 = Agy = 0
Agy = LLM
where
lpa 0 0
I: = l?"2 l33 c (Cn—1><n—1, l” <0
: 0
ln2 lnn
l = Van
l21
. w
’ Vai
lnl
21 1 0
e |
_lnl
(117 0 0
= ZQ.I 2 "=t
: 0
_lnl lnn
=L

11



4 1-18-12

4.1 Cholesky Factorization

From last time: for A > 0, Cholesky factorization gives us

A=rLL"
We proved this as:
fan1 @21 -+ Gm1
a1
A= | |
: Ao
[ Anl
1,1 0 0
l21
L= . -
: L
_lnl
li1 = +/an
ly; = @21
l11
asi
131 = T
11
an1
lpg = —
nl lll
l21
<~ . l31 .
LL7 = Ay = Ap — | . [lor It -+ lna)
lnl
We can translate this proof into an algorithm.
ail * cee * lll 0
A |0 ax - lor 22
*
anl PR PR ann lnl
After k — 1 steps: ) )
lii O . 0
lor 22
L= lk—1,k—1
Lk
0
_lnl oot ln,k—l lnk to lrm_

(The values in black are final values.)

12



Notation:

For L = [l]k] e Ccnxn,

ljl,k
lj1+17k

ljlijz,k =

ljz,k’

Algorithm: Cholesky Factorization

Input: The elements aj;, j > k, of A = [a;;] € C"*", A > 0.

Set ljp = aji forall j >k, j,k=1,2,...,n.
For k=1,2,...,n, do:

e Set iy = Viek

%lkz-i-l:n k
kk ’

e For j=k+1,k+2,...,n, do:

e Set lk+l:n,k =

= Set ljinj = ljn,j — lj:n,klj:
e End(j)

End(k)

Output: The Cholesky factor L = [l;;] € C**™ of A.

4.2 Cholesky Factorization of Sparse Matrices

Let A > 0 be sparse. How can we ensure that the Cholesky factor L is also sparse?

13



“Arrow” Matrices

i % * 0 0
* 0 * %
0 *
A= . =0 () = L=
O . .

i.e., all sparsity is lost!

Remedy: turn this into a downward-pointing arrow = reorder the rows and columns.
1,2,....n. — 2,3,...,n,1

Permuation matrix:

PR 0 x|
0 =
PTAP:A: : . . . . . >—O,
. <. <. 0 .
0
_* PR * ]
where _ _
0 O 0 1
1
.00
_0 0 0 1 0_
Then: PTAP = A = LH, where
[« 0 0]
0 =
L=
0
B %

= All sparsity is preserved!

But in general, you cannot always expect to find a sparse Cholesky factorization for a sparse matrix.

14



Algorithm: Sparse Cholesky Factorization

Input: sparse matrix A > 0

1. (Symbolic factorization) Determine a permutation matrix P such that the Cholesky factor L
of
pPTAP =LL"

is sparse, and determine the sparsity structure of L.

2. (Numerical factorization) Compute the entries of L.

Output: A permutation matrix P and a lower triangular matrix L such that

PTAP =LLH"

Question: How to find P?

15




5 1-20-12
5.1 Cholesky Factorization for Sparse Matrices (Continued)

Suppose we have A > 0. We want to find P such that
PTAP =LL"
where L is sparse.

Notation:
For a matrix A = [aj;] € C"™*", nnz(A) = number of nonzero entries a;, # 0 in A.

Optimal choice of P: the Cholesky factor L of PT AP is such that nnz(L) is minimal.

Theorem 5.1.

The problem of determining an optimal P is NP-complete.

Consequence: In practice, only heuristics for finding a “good” P are feasible.

The problem of finding P can be viewed as a graph.
Let A= AH 0.

Conventions:
e For A= A" we view G(A) as an undirected graph.

e For A >~ 0, omit edges (j,j) corresponding to a;; > 0.

16



Example 5.2.

c (CGXG

* ¥ * O % | O

O x x O O *

S % O O % | ¥
* O ¥ % X | %

G(A):

@_@ * OO % ¥|O
@_@ * o ¥* % % O.
@)

First step of Cholesky factorization:

Ago =

* K X K X
* O O % %
* % ¥ O *
S ¥ *x O %
* O % * ¥

where the *’s indicate fill-in elements.

Let A = [aji] € C"*", A~ 0. The first step of Cholesky factorization is:

A — A = [ajk)jr=23..n

Gj1—0Qk1

where aj, = ajr — o

ajk 20 < aj, #0or (aj1 #0 and ag # 0).
aj, 7 0 is called a fill-in element if aj, = 0 but a;1 # 0 and ag; # 0.

Interpretation in terms of the graphs G(A) and G(Ag):

Figure 1: A fill-in element is created because the eliminated node, 1, is connected to both j and k.

17




Minimal Degree Algorithm

Notation: d; = (out) degree of node j = number of edges of the form (j, k), k # j.

Order the nodes such that the node corresponding to the kth step of Cholesky factorization has
minimal degree.

Example 5.2 Continued

@@@
@@@

The lowest degree is 2, which occurs at nodes 1, 3, and 5.
Tie-breaker: If more than one node has minimal degree, pick the node with the lowest node
number.

G := G(a)

Thus, we choose node 1 and eliminate it:

P

- ©®

—

G': /

G* /

P

@
Eliminate node 3:

P

@

Eliminate node 5:

G? . |

Eliminate node 2:
Eliminate node 4:

1 0 0 0 0 O]

00 0100

01 0 00O

P= 00 O0O0T1TFPO

001 000

0 0 0 0 0 1]

PTAP=LL"

New ordering: 1,3,5,2,4,6.
nnz(LL7) = nnz(A) + 2.

18




6 1-23-12
6.1 Minimal Degree Algorithm (Continued)

General Case:
Let G = (N, E) be an undirected graph and i € N.

Gi = (NZ, El), where Nz =N \ {’L}

and
E:={(,k)eE|j#iand k#i}U{(j,k) ¢ E|j#1i, (ji) € E, k#1, (k,i) € E}

Minimal Degree Algorithm

Input: The undirected graph G° = (N, EY) associated with A € C*™", A = 0.

For k=1,2,...,n:

1. Determine a node i, € N¥~! of minimal degree in G¥~1 = (N*=1 EF=1). (Possible tie-breaker:
smallest i)

2. Set GF = (N*,E*) .= GI!
End &k

Output: a reordering of the n rows and columns of A,

1,2,3,...,7’L — ’il,ig,ig,...,in
S—— S—

A=LLH PTAP=LLH

Notes:

1. In general, the minimal degree ordering does not minimize the sparsity of the Cholesky factor L, i.e.
it is not optimal.

2. There are many other heuristics for reordering the rows and columns of A.

6.2 LU Factorization

Let A € C™*™ A nonsingular.

19



Special case: no pivoting needed.

A=LU
1 0
L= l?l
_lnl e ln,n—l 1
(w1 w1z Uln
U— U22
Un—1,n
L 0 Unn
LU Algorithm (No Pivoting)
AeCv™ A—U, I— L.
After k — 1 steps:
[ 1
l21
1
L= lg k-1
: 0
_lnl ln,k—l 0 0
w1y
0
Uk—1,k—1
U= 0 Ukk
Uk+1,k
L 0 0 Unk

where the values in black are final values.

20

Uln

Uk—1,n
Ukn

Uk+1,n

Unn




Algorithm: LU Factorization Without Pivoting

Input: A € C**"
Set U= A L=1.

For k=1,2,...,n—1, do

o If uy, = 0: stop, pivoting is needed, or A is singular (and thus pivoting will not help)
e For j=k+1,k+2,...,n,do
ws
- Set ljk = ﬁ
— Set Uj km = Ujkin — ljkuk,k:n
e End j

End k&

Output: L and U such that

General case:
1. ugr = 0 can occur even if A is nonsingular

2. Numerical instability if up, # 0, but |ugk| < |ujk| (= we create a very large quotient of these numbers)

Remedies:
To be done in each k-th step.

1. Partial pivoting: find an r € {k,k+ 1,...,n} such that

lurk| = pax |wik|

and interchange rows r and k. Thus, the final factorization is
PA=LU
where P is a permutation matrix. This is all that people ever use for dense matrices.
2. Complete pivoting: find r,c € {k,k+ 1,...,n} such that

[urel = zl:kI%?—}fn il

and interchange rows r and k£ and columns ¢ and k.
Result:

PAQ = LU,

where P and () are permutation matrices.

21



7 1-25-12

Remarks about the Homework:

e Problem 3 has been clarified

Don’t store A. Q) you can store.

X - ~ ~
Pk [Z]e =1, ;=1
7| = [|#]l
x =
=z
1]

You need to write a routine that figures out what x; is = find the largest element of x and its index.

Ty = =+1
7.1 Sparse LU Factorization
Let A € C™*" be sparse.
Goal: LU factorization
PAQ = LU,

where L and U are sparse.

Difficulty: In general, P and () cannot be determined by symbolic factorization alone, since we also need to
pivot for stability!

Instead: P and @ are determined during the actual (numerical) factorization.

Note: Symbolic factorization (minimal degree, ...) can be used as a preprocessing step:

A,G(A) — permutation matrices Py and @y (not final)

Run sparse LU factorization on the reordered version of A: PyAQ).
Step k of sparse LU factorization:

Ukk uk,k—l—l Ukn,
Uk+1,k Uk+1,k+1 " e Tt Uk+1n
k
UM = [uglijmp k1, =
uyg #0
_unk un,k-i-l unn_

Swap rows k and [ and columns k and 3.

22



Any entry u; # 0 of the submatrix is a candidate for the kth pivot element.

((*) 0 % 0 0 «
* * 0 % 0 =
0 @ * 000 5 fill-in elements (red)
* 0 0 0 % O
* 0 0 0 % 0
| * 0 = *x 0 * |
swap rows 1 and 3 and swap columns 1 and 2
() 0 « 0 0 0
* % 0 % 0 =
0 = = 0 0 « only 1 fill-in element
0 = 0 0 x O
0 = 0 0 % 0
0 * *x *x 0 =
7.2 Markowitz Criterion
r; = rgk) = # of nonzero entries in the ith row wu; j., of U®)
= cl(k) = # of nonzero entries in the /th column uy.,; of U®)

If w;; is used as the pivot element, then in the worst case the number of fill-in elements we're creating in
step k is
r® —1)(® —1). (7.1)

]

Basic Idea: Choose 4,! to minimize (7.1).

General Case: To guarantee numerical stability, we need to make sure that u; is not “too” small.

Practical Markowitz Criterion

Among all uy #0, 4,1 € {k,k+1,...,n}, with

lui| > Oér;lzalz( luij) (row)
or
lui| > amax |uj|  (column),
Jjzk

choose u;; such that
(’f‘i — 1)(6[ — 1)

is minimal. Tie-breaker: choose the smallest i, then (if necessary) choose the smallest .

Here, o is a parameter, 0 < o < 1. Typical choice is o = 0.1.

23



8 1-27-12

8.1 Storage of Sparse Matrices

Let A = [aj;] € C™*™ (€ R™*") be sparse, with nnz := nnz(A) nonzero entries a;j # 0.

Definition 8.1. Coordinate (COO) Format

(used in Matlab)

Three arrays:

1. VA: complex (or real) array of length nnz that contains the values aj; # 0 in any order
2. JA: integer array of length nnz that contains the (row) indices j in the same order as in VA
3. KA: integer array of length nnz that contains the (column) indices k in the same order as in

VA

Then aJA(Z-)jKA(Z-) = VA(Z), 1= 1, 2, ..., NN7Z.

0 127 —-15 0 3
23 0 0 -5 0 s
A=10 71 o o 2o <R
33 -2 0 12 0
nnz = 10
VA |23 -5 127 12 33 -71 —15 2 -2 3
JA | 2 2 1 4 4 3 1 3 4 1
KAl 1 4 2 4 1 2 3 5 2 &5

One thing that is convenient about this format is that if we have new nonzero entries, we can simply tack
them on.

A downside is that working with the matrix is not straightforward.

In practice, people don’t use this format. What we want is a format where we can easily find elements in
the same row (or column).

24



Definition 8.3. Compressed Sparse Row (CSR) Format

Using Example (8.2):

VA | 127 -15 3|-5 23|-71 2|12 -2 3.3
KA| 2 3 5| 4 1 2 5| 4 2 1
IA 1 4 6 8 11 = nnz+1

(If we have a row of all zeros, then that row’s number is repeated in KA.)

General case
3 Arrays:

1. VA: complex (or real) array of length nnz that contains the values a;;, # 0 stored row by row;
within each row, the order is arbitrary
2. KA: integer array that contains the corresponding column indices k in the same order as in VA

3. TA: integer array of length m + 1 (A € R™*™) that contains pointers to the beginning of each
row in VA and KA

e IA(j) = index of first entry of row j, j =1,2,...,m
e TA(m+1) :=IA(1) + nnz

Note:

e nonzero = “potentially” nonzero = sometimes we store a zero in VA, e.g. subtract two sparse matrices
with the same structure and with a matching entry

Properties:
o TA(j + 1)-IA(j) = # of nonzero entries in the jth row, aj1., of A, j =1,2,...,m
e For all j =1,2,...,m, the nonzero entries in row j are given by

8.2 Fast Elliptic Solvers

Large sparse systems,
Av = b,

often exhibit special structures that can be exploited in their solution.

Standard example: Poisson’s equation (on simple domains).

_Ou %
Ox? 0y?
u=20 r=0,1lory=0,1
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9 1-30-12

9.1 Poisson Equation: 1D

2’U T
—dd$(2) =f(z), O0<z<l1 (9.1)
v(0) =v(1)=0

1
M
zj = jh = #ﬂ j=0,1,2,...,m+1
vj & v(z;)
— di;;(; ) - ~ 2v(zj) — U(w;;l) —v(@1) = centered-difference approrimation

We get an approximate version of (9.1):

ZUJ' —Vj—1 — Vj41 = hzfj (fj = f(mj))
vy = 0

Um+1 =0

We have m linear equations for m unknowns. We can write this in the compact form:

2 1 0 - - 0
1 92 1

0 O U1 bil

0 -1 2 -1 . . () :h2 f2

0 : :

1 Um fm

—_—— ——

_O 0 -1 2_ =w =:f

—T,

T, is real and symmetric positive definite, so we can use banded Cholesky and solve it easily. The solution

v of the system is:
v = v(xj), i=1,2,...,m.

This scheme is second order accurate:

v; —v(z;) = O(h?).
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This accuracy comes from our discretization scheme. We could use a higher order approximation, but we

would not have such an easy matrix to work with.

Lemma 9.1.

The eigenvalues \; and the eigenvectors z; of T, are given by

+1
>0
l
sin @11
™
; 2 sin mtl
! m—+1 :
l
sin 77:_+7r1
The z;’s are orthonormal: lezj = 0.
Proof. Verify that T,z = A\ 2.
Compact formulation:
TimZ = ZA,

where Z7Z2 =2Z" =1, Z =[x 2 Zm| € R™™ A = diag(A1, A2, ..., Ap) € R™X™,

Corollary 9.2.

27,7 = A

9.2 Poisson Equation: 2D

0%v(x,y 0%v(x,y
- 8(5(32 )_ 8(y2 )Zf(.’l,’,y), 0<33=y<1
v = 0 on the boundary
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h=——
+1
, J
pu— h —_— —
Ti=J m+1
k
=kh=—
Yk m+1
vjk = V(T4 Yr)
fik = f(xj, ur)
Centered-difference approximation:
Avjk — Vj_1k — Vjt1k — Vjk+1 — Vjk—1 = h* fik, Jk=1,2,....m (9.2)
where v, = Vpmi1,6 = Vjo = Vjm+1 = 0.
Compact formulation of (9.2):
T,V + VT, = h*F (9.3)

Rmxm

where F':= [fjr]je=12,..m € R™™ is given, and V := [vjr]jk=12,..m €

a system of linear equations:

is unknown. (9.3) represents

v11 n
V21 Ja1
: T + 21, —In 0
v=|""] ¢ R", where n = m?, f= Fm1 e R", —lm T+ 2
V21 J21 I,
v22 Fa2 0 — Iy T+ 21,
: : ::me’meRan
| Umm | L Umm |

28



10 2-1-12

10.1 Poisson Equation (Continued)

T,,V + VT,, = h*F (10.1)
ZTT,,Z = A = diag(\1, ..., )
27T =1
1
h=—
m+1

Rewrite (10.1) as

2T, 272"V Z2+ 2"z 2T, Z = hr ZTFZ
—_—— N Y N — S——
A V/ V/ A F/
AV +V'A = h2F'
ANV + Ve = W2 fj forall jk=1,2,....m
vh = h2f7{k
(LD VNIV

forall j,k=1,2,...,m

Algorithm (for solving the two-dimensional Poisson equation)

Input: F h
1. Set F' = ZTFZ
h2f] .
2. Set vl = /\j+3)\'“k forall j,k=1,2,...,m

3. Set V=2v'z"
Flop count (naive implementation):

1. 2 matrix-matrix multiplications in R™*™ ~ 4m? flops
2. 3m? flops

3. ~ 4m? flops (same as 1)

Total = O(m?) = O(n?/?) flops, where n = m?

Totally naive solution: solve
memv - h2f,

where Ty xm € R"LQXW?, n =m?. This is O(n?®) flops.

We can do better than O(n3/2)!

Recall: Z = [zj;] € R™*™, where zj;, := miﬂ sin %
Notes:
1. Z=2"
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2. Z is related to the 2m + 2 x 2m + 2 DFT (discrete Fourier transform) matrix:

In fact:

where Z = [éjk]j,k:I,Q,...,ma ijk = COS

® = [pjuljrm01,2,.. 2ms1 € CHH2XIMA2
o eI/ mdD) o IRT g Tk
Pjr =€ cos E —isin

—

*1x1 *1xm F1xm41
*mx1 mem *mxm+1
b =
*m4+1x1 *m4+1xm *m41xm+1
] Jkm ik _

m—+1

Z:—M—szZ
m+ 1

. - )
isin ;. Thus,

Proposition 10.2.

T = Tmx1

For any z € R™, the matrix-vector product y = Zz = ZTz can be computed as follows:

O1x1
c R2m+2

Om+1x1

2. Compute § = 2, where @ is the 2m + 2 x 2m + 2 DFT matrix.

3.
*1x1
Q: gmxl
*m—4+1x1
Q:Zx
4. Set
2 T
= —4/—Im
y m—+1 4

Corollary 10.3.

The product y = Zz = Z7x can be computed with O(mlogm) flops using DFT.

Notes:

1. In Matlab, § = &z < gy = ££t(2)
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2. For any F' € R™*™ we can compute F' = ZT'FZ = ZT(ZTFT)T with O(m?logm) = O(nlogn) flops
using DFT’s.
3. With these fast DFT computations, the above algorithm requires O(nlogn) flops!
e This is almost optimal!l An optimal algorithm (multi-grid) requires O(n) flops. (n = m? =
number of grid points)
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11 2-3-12

11.1 TIterative Methods for the Solution of Linear Systems

Az = b, A € C"", nonsingular, b € C"
There are two types of methods:
1. Direct (e.g. LU factorization, Cholesky, fast elliptic solvers, etc.)

2. Iterative (e.g. Krylov subspace methods, multigrid, etc.)
11.2 Krylov Subspace Methods
If A is sparse with nnz potentially nonzero entries, then computing
y = Ax
for any x € C™ is cheap: at most nnz multiplications and at most nnz additions.

Krylov subspace methods exploit this fact!

11.2.1 The conjugate gradient (CG) method
Assumption: A =0 (A =0 < A= A" and p? Ap > 0 for all p € C*, p #0)
CG is the classical Krylov subspace method. It is an iterative method:
20 EC” = 21 — 29 — = 2L, €C* = -

Notation

e 1} is the k-th iterate.

e tp :=b— Axy is the corresponding residual vector

— Note: t, =0 < z, = A~'b =: 2* is the solution of Az =b

Goal: Construct x such that ||tg|| is small, where || - || is some appropriate norm in C™.

A= 0= |z]|a:=VazH" Az is a norm on C".
A7t =0 = ||r)|a-r := VrHA-1r is a norm on C™.

Note: ||z||a = ||Az|[4-1 for all z € C™.
The CG method is based on the error norm

[z — x4 = [[Az” — Ax|[ 41 = [|b— Az 41
Suppose we have z; € C™, and we want to construct
Tk+1 = Tk + QP

where pr € C", pi. # 0 is a search direction and o € R, aj > 0.
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Figure 2: This is an ellipsoid (see below).

2% — xpfla = [l —z]la
& qler) = qlx),
where q(z): = %(m* — )7 A(z* — z)
Vg(z) =0 =—(A(z" —x))
Steepest descent:

pe = —Vq(rg) = A(x" —x) = b — Az =1,

We can do better. Instead of the negative gradient, use the conjugate gradient.

Po=To (= b—Aa}o)

For £k =0,1,...,
Pr41 = Tk+1 + Br1Pk;
where Bk11 = %
End (k)

One can show p}quk =0 for all j # k.
Note: The choice of By < pkHHAp/.C =0.
The iterates are

Tp41 = Tk + QD
’I’E’I"k
7 .
Py Apk

where ap =

Remark 11.1.

In n dimensions, this algorithm will converge in n iterations.
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12 2-6-12

12.1 Conjugate Gradient (Continued)

Inputs:

e be(C"

o 1f lrelz

Iroll2

e Set

end (k)

Algorithm: Conjugate Gradient Method

e A routine to compute z = Ap for any p € C" (A € C"*", A > 0)

o 1o € C" (arbitrary)

e convergence tolerance tol, typically 1076 or 10~

Set rg = b — Axg, po = ro.
for k=0,1,2,..., do:

< tol, stop: z ~ A~1b

z = Apg
o = i T <: I > 0)
pHz pH Apy,

Th+1 = Tk + QDK
Thy1 = b— Az = b— Az —ay Apy,
—— ~—~

Tk z
=1k — oz (= b— Azpyr)

H
Te+1Tk+1 (: 7k ”%)

Bry1 =
rir, e 13

Pett = Tht1 + Beppe (Recall: ply Ap; =0, j=0,1,...

k)

Notes:

1. In exact arithmetic, r, = b — Axy,

2. Each k-th iteration involves the following operations:

e 1 matrix-vector product: z = Ap

e 2 inner products in C": pkHz and rfﬂrkﬂ
e 3 SAXPY’s (Single-precision real Alpha X Plus Y):

Thyl = Tk + Qppk
Tkl = Tk — Q2

Dk+1 = Th+1 — BrPk
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3. Conjugate Gradient is a Krylov subspace method:

r1=x9+ay po € xo+span{rg}
~—
x9 =x1+a1p1 = o+ agro + a1 (71 +50 po ) € xo + span {ro, Arg}
~— ~—
=ro—agArg =rQ

= (zo + apro + Y1 A4r0)

T € To + span {ro, Arg, Ar, . .. ,Ak_lro}

=:Kj(Aro)

Ky (A, ro) = k-th Krylov subspace (induced by A and rq)

12.1.1 The Dimension of K(A,r)
Ky (A, ro) is defined for any A € C"*" and ro € C".

Recall:

Definition 12.2. Minimal Polynomial (1)

The minimal polynomial ¥ of A is a monic polynomial:
U(z)=ap+ a1z 4 ag2® 4+ -+ ag_1 27+ 24
of smallest degree d such that
W(A) =yl + 1A+ A%+ 4y AT 4 Ad = 0.

¥ is unique.

ro, Arg, ..., A¥71ry are linearly independent < Yoro+y1 Arg+- - -+7k_1Ak_1r0+7kAkro =0, notally =0

Definition 12.3. Minimal Polynomial (2), Grade

1. The minimal polynomial ® of A with respect to rq is the unique monic polynomial of smallest
possible degree d for which ®(A)ro = 0. (The degree of ® is < the degree of V.)

2. The grade of A with respect to rq is given by
d(A,rg) = degree ®.

e Note: d(A,rg) < n.

e In general, the number of steps needed for conjugate gradient is equal to the grade.
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13 2-8-12

13.1 Lemma about the Grade of a Matrix

AeC™™ ryeC" Ki(A,r9) = span {ro,Am, A2rg, ... ,Akilm} = {U(A)ro } ¥ is any polynomial of degree <
k—1}.

Lemma 13.1.

1.
| - k k<d(A o)
dim K (A, ro) = { d(A,ro) k> d(A,r)
2.
d(A, TO) — rank |:7a0 AT‘O A2T0 e An*]-’l“()]
E(Cnxn

3. d(A,rp) is the number of eigenvectors in an eigendecomposition of r¢:

A,ro

d(A,ro)
ro= Y piz, P €C, pj #0
j=1

AZj = )\ij, Zj 75 0
N AN forall jl=1,2,...,d(A ), j#1
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13.2 Back to the Case A > 0

Theorem 13.2.

1. In exact arithmetic, CG terminates after finitely many steps:

ap#a"=A"0  forallk=0,1,2,....d(4,r) -1
xp = * for k = d(A,rg)

2. For all k = 1,2,...,d(A,ro), v € xo + Kir(A,ro) is optimal in the following sense: (Recall:

lzla = Vatl Az)

[z" —zplla=  min  [z" -4
xExo-‘rKk(A,To)

And z;, is the unique minimizer.

3. Forall k =1,2,...,d(A,r),

2" — x|

k
— <2
[ = zolla <\/E+ 1>

where
_ )\max(A)
N )\min (A)

and Amax(A) is the largest eigenvalue of A and 0 < A\pin(A) is the smallest.

Note: k > 1, k is the condition number of A with respect to the norm || - ||2.

In some applications, one would like to minimize ||b — Ax||2 instead of ||x* — x|| 4.

——

|z* — xol|la = \/(x* —z0)H A(z" —x0) = £/ (" — z0)Hro
—b

the conjugate residual method (CR) is a variant of conjugate gradient that generates iterates xp € xg +
Kk(A,T()), k= 1, 2, ce ,d(A, 7’0),

|b — Axgll2 = min |b — Ax||2
x€w0+Kk(A,m)

CR Algorithm

In CG, replace rfrk by r,fArk, and pkH Apy, = pkHz by pkHA2pk = 212, where z = Ap,.
~—~

=z
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13.3 Preconditioning

* _ k
| x’“”A<2<ﬁ 1) for CG

[z* —xolla = \VE+1

k
1o — Azill2 <2 Vi1 for CR
b= Axollz = \Vr+1

= Fast convergence of CG (or CR) if k is small (Recall: k > 1).

Basic idea of preconditioning:
Find an equivalent system,

Az =b & A=V (A" =0),
such that (1 <) k(4') < Kk(A).
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14 2-10-12
14.1 Preconditioning (Continued)
Ar=b & A=V
K(A) > k(A
A A €Cn A A - 0.

Suppose M € C™ " M = 0, M “approximates” A. Write M = LL where L € C"™" (e.g. Cholesky,
although L doesn’t have to be lower triangular).

Az =b < L'ALHLH, =11
| S — R S
=:A’>0 =z =0/
s A =0
(Sox =L~ Ha)

Note:

& r(A)RK(I) =1

Preconditioned Conjugate Gradient

e Set b/ = L~1b, x) = Lz
e Apply CG to A'z’ =V with initial guess z(; stops with =},

e Set xp, = IfHavf,C

In order to be more efficient than non-preconditioned CG, we need:
e faster convergence (guaranteed if K(A’) < k(A))
e computing matrix-vector products 2/ = A’p’ is cheap

— forming A’ would not be efficient because, in general, A’ is not sparse (even when A is sparse)

Computation of

e solve L g =/ for q
e compute t = Agq
e solve Lz =t for 2/

= Solution of linear systems with coefficient matrices L¥ and L needs to be cheap.
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14.2 Some Preconditioners

14.2.1 Diagonal preconditioning

ail * *
* a .
A= 22 >0 (:> ajj>0,j:1,2, ,n)
*
* ¥ App

M = diag(A) > 0
/a1l 0

L H_ V@22

14.2.2 Incomplete Cholesky factorization

Instead of computing L with A = LL¥, compute a sparser L such that A ~ LL (= M). Typical approach:
prescribe the sparsity of L.

e Choose G C {(j,k) ! 1 <k < j<n} (ie., asubset of the lower triangular matrix, not including the
diagonal, which must be nonzero).

e Construct L such that [;; # 0 = (j, k) € G.

e Example: G = {(j,k) ‘ 1 <k <j<nandaj, # 0}. Then L has the same sparsity structure as the
lower triangular part of A.

Recall: After k — 1 steps of Cholesky factorization,

lin O 0
lor 22
L= lk—1k—1
Lk
: 0
bt o Dot e o L)
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Algorithm: Incomplete Cholesky Factorization

(Starting at step k)

o If [ <0: stop

e Set lkk = Vlkk
e forj=k+1,k+2 ...,n,do

— Set
0 otherwise

l; .
_{ = (k) ed

—fori=k+1,k+2,...,7,do
x Set

1. Lii — Ll (4,1) € G
7 0 otherwise

— end ¢

end j

Result: L = [I;] such that I, = 0 if (j,h) ¢ G and LL ~ A.
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15 2-13-12

15.1 Incomplete Cholesky Factorization (Continued)

In general, incomplete Cholesky factorization can break down due to g < 0.
However, no breakdowns can occur if A is an H-matrix.

15.2 M-Matrices and H-Matrices

Definition 15.1. M-Matrix

A matrix A € R™™"™ is said to be an M-matriz if there exists an s € R, s > 0, and a nonnegative
matrix B € R™*" such that

A=sl—-B
and
p(B) < s.
Notes:
e B is nonnegative < bj; > 0 for all 5,k
e p(B) = max |\ = spectral radius
p(B) AeU(B)I | = sp
(2 -1 0 0] [0 1 0]
-1 2 -1 0 0 1 1 0 0
0o -1 2 -1 . 0 1 0 1
Tn=1. ] . ) e R™™ B=
: e e D .0
-1 .1
| 0 0 -1 2] 10 0 1 0]
is an M-matrix (for any m > 1):
T,=2I—-B.
The eigenvalues of B are given by
ml
A = 2cos , l=1,2,...
m+1
Its spectral radius is
(B) =2 T c1<2
= 2cos =s
P m+1

Note:

42



2

o Thxm € R™" where n = m~, is also an M-matrix for any m > 1

Definition 15.3. H-Matrix

A matrix A = [a;;] € C"™" is said to be an H-matriz if the matrix A = [aj,] € R**" defined by

~ ’a]’k’ jZk .
Qi = : k=1,2,....n
" { —lajk| J#k J

is an M-matrix.

Theorem 15.4.

Let A e C"™", A > 0, be an H-matrix. Then for any set
G (k) | 1<k <j},

the corresponding incomplete Cholesky factorization A ~ LL (L sonsingular) exists.

15.3 Some Preconditioners (Continued)
15.3.3 SSOR-Type Preconditioning
Let A > 0. WriteA:Do—E—\F/, where
BH

e Dy = diag(A)

e F is the strictly lower triangular part of A.

o ' = E' is the strictly upper triangular part of A.

M = (D - E)D™Y(D — EH),

where D is any diagonal matrix such that D > 0.

Motivation: If D = Dy, then
M = (Dy — E)Dy* (Do — EH)
=Do— E—E" +ED;'EH
~—_——
=A

~ A

if ED;'EH is “small.”
M = (D — E)D™Y2p=1/2(p — Ef)

/

=L —LH
where L is lower-triangular and nonsingular.

A =L'AL " =DY? (D - E)"'A(D — E)"' D'/?
—A
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Computation of

where p = DY2p' and z = Ap.
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16 2-15-12

16.1 SSOR Preconditioning (Continued)

A=Dy—E—FEf «0
M=(D-E)DYD-EY, D>0
A/:DI/QADI/Q

A=(D—-E)'AD - EMH!

How do we compute Z = Ap? Claim: this can be computed with roughly the same amount of work as
z = Ap. (Thus, SSOR preconditioning is almost free!)
A=(D-E)YDy—-E—-E"(D- E")™!
=(D-E)Y(Dy-2D+D —~E+ D — E"¥)(D - E")™!
N——
=:D
=(D—-E)'I+Dy(D—-E""t+(D-FEH!

i=Ap=(D-E)"'(p+Di1(D-E"Yp)+(D—-E")p

=w

Algorithm: FEisenstat Trick

Input: p € C", a routine to multiply by D; (diagonal matrix), a routine to solve linear systems
with matrix D — E, a routine to solve linear systems with matrix D — EX

e Solve (D — Ef)y = for v
e Solve (D — E)w = p+ Dyv for w

e Set Z=w+w

Output: z = Ap

Note: The two triangular solves with D — E¥ and D — E require about the same amount of work as one
multiplication by A.

16.2 Krylov Subspace Methods for General Linear Systems

Az = b, where A € C"*™ is nonsingular, b € C" (16.1)

16.2.1 CGNE

Poor man’s use of CG to solve (16.1):

(16.1) = AT Az = Aty (16.2)

normal equations
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Note: AT A = 0, since 27 A Az = ||Az||3 > 0 for z # 0
Resulting method: CGNE (CG applied to the Normal Equations)

[2" = @l amr g = [[Ax” — Az[|s = [|b — Az]}2

Tk:b—AJ:‘k

CGNE Iterates:

T € Tg + Kk(AHA, AHT())

such that

I|b — Az||s = min |b — Ax||
z€xo+ K (AH A AHrg)

CGNE error bounds:

k
rxllz _ NIb = Azgllz _ lla* — 2pllama _ VE(ATA) -1
K(ATA) +1

lroll2 llb— Amoll2  [Jo* —ollama ~
o (s —1\F
- T\k(A) +1

(where we have used that \/k(AHA) = k(A) = an::((ﬁ))’ Omax(A) is the maximum singular value of A and

is equal to ||A|2, and opin(A) is the minimum singular value of A and is equal to ﬁ) = very slow

convergence in general.

16.2.2 Craig’s Method

A second poor man’s use of CG:

(16.1) & AALy =10 2= A"y (16.3)
=0

Apply CG to (16.3). This is called Craig’s method. Its iterates satisfy:

[ A— = min A
| cll wewo+ Ky (AHA,AH o) | I

Error bound:

|z* — x1||2 <9 </@(A) — 1>k
lz* — o2 k(A) +1

= same slow convergence!
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17.1 Krylov Subspace Methods for General Linear Systems (Continued)

Az =b, A€ C™" nonsingular, b € C" (17.1)
Ky (A, r9) = span {ro, Arg, A%ro,. .., Akilrg}

C"sxog— o1 = > x)p— - (Tozb—AiL‘o)

where xy, € xg + K (A, 1) is such that

b — Axgll2 = min b — Az||
r€xo+ Kk (A,r0)

Recall: CG and CR are based on short recurrences:

Thy1 = Tk + o P

The1l = Th — QR ADE

coupled 2-term recurrences
Pey1=rpp1 + Bl } P

Theorem 17.1.

For general A, it is not possible to implement a minimal residual method with short recurrences: to
generate xx11, vectors from all previous k iterations are needed.

Actual implementation?

17.2 The Arnoldi Process

Goal: Given A € C™™ (not necessarily nonsingular) and ry € C", construct orthonormal basis vectors
V1, V2, ..., Uk, ... such that the first k basis vectors span Ki(A,rp), k=1,2,....
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Algorithm: Arnoldi Process

Input: r9 € C™ and a routine to compute ¢ = Av for any v € C".

Set ﬁl = ||’I°()||2.

2 k—1 k
To,A’I“O,A ’f’o,...,A TQ,A o

k
v, V2, U3,..., Uk, @k-&-l:Avk— E h]‘kvi
Jj=1

If 51 =0, stop: 1o =0
Otherwise, set v = %
for k=1,2,...,do
e Compute ¢ = Ay
o for j=1,2,... )k
— Set hj, = qu
— Set ¢ = q — hjpv;
— (This is called Modified Gram-Schmidt)
end(j)
Set hyq1k = [lqll2

o If hyt1, = 0, stop: the Krylov subspace Kj(A, ) has reached its maximal dimension, i.e.
k= d(A, To)
o Set vk+1 == ﬁ
end (k)
Output: v1,v2,. .., Vg, -+, Vd(A,rg)
Properties
1.

0 k+#j
”’?”j:{1 kij

e This is equivalent to VkH Vi, = I,
2. The vg’s form a basis of the (Ky(A,19))’s,

Ki(A,ro) =span{vi,va,...,op}, k=1,2,...,d(A,ro)

3. Forall k=1,2,...,d(A, ),

k
hiy1 kg VK1 = Avg — E hjrv;
Jj=1
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e Note: this property can be written compactly as

AVy = Vi1 Hy,
where Vi = [1)1 Vg v vk] , Vi = [Vk Uk+1] )
(hyy hip -0 e hik ]
ha1  hoy  hos :
~ h :
Hy = [hjlj=12,...k41 = 2 e ChHixk
1=1,2,...k Pg—1k
P e
| 0 Pt 1.k |

Hj, is an upper Hessenberg matrix. rank Hj = k.

_hn hig - o hik
ha1  hoo  hog :
VkHAVk — Hk — h32 e Ckxk
. hi—1.k
|0 hek—1 ik |
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18 2-22-12

18.1 GMRES
Recall:

Definition 18.1. Miwnimal Residual Method

A minimal residual method is a method where
T € xo + Kk(Aﬂ”o)

such that

|b — Azgll2 = min |b — Ax||2
x€x0+Kk(A,ro)

Here, zg € C", assume that 79 := b — Az # 0 (i.e., mg # A~D).

GMRES is an implementation of the minimal residual method using the Arnoldi process.

Recall:
AV, = Vk+1ﬁk, VkHVk = I}, (orthonormal)
Kk(A, To) = {U = Viz | z € (Ck}

At step k of GMRES:
xewo—l-Kk(A,To) & x=x9+ Viz, zeCk

The corresponding residual vector is:

b—Ax=b—Axg— AV, =z
—_—— =~

=To =Vit1Hy,
"
vlzﬂ—? = rog=u1p1
b— Az = vy — Vip1 Hiz
= Vk+1(ﬂ161 - flkz), where €1 = [1 0o --- O]T S Rk+1
= Ib— Az|l2 = [Vig1(Brer — Hp2)2  (Recall: VAV =1 = |Vyllz = [|yll2)
= ||Bre1 — Hyzl2
= b — Axgll2 = min |Ib — Az||2 = min ||B1e1 —ﬁkzﬂg
z€xo+ K (Aro0) 2€Ck

To compute the kth GMRES iterate:

1. Find 2z, € C* such that 3 B
|B1e1 — Hyzi||2 = min ||Bre; — Hyz|[2
z€CF

This is a least squares problem (LSy).
2. Set T = X0 + szk

This is a least squares problem with a (k + 1) x k matrix Hy. For b € C™, A € C™*" the minimizer of
m(icn ||b — Azx||2 is unique if rank(A) = n. For our problem, we will have a unique solution because Hy, is of
zeCn

full column rank k, and therefore xj is also unique.
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18.2 Solution of (LSy)

Let Q € CFFIXFHL he a unitary matrix (i.e., Q7 Qg = Ix11) such that

where Ry, € C*** is an upper-triangular matrix. The important thing is: rank H r = k = Ry is nonsingular.
So

|Bie1 — Hyzll2 = |QxBier — Ri z|l2
~~
=QrHy,

fr (€ Ck)}

Tt1(€ C)
min ||fi1e; — _E[kZHQ = min ||QrS1e1 — Rizl|2
z€CF 2z€CF

]

Tk+1

QrPies = [

= min
z€Ck

2
= ’Tk+1’
= 2 = Ry fi

Note: [|b— Azgll2 = 7441

Algorithm: GMRES

Input: g € C", a routine to compute matrix-vector products ¢ = Av, a convergence tolerance tol.

Set ro = b — Axg and f; = ||ro]2.
If 1 =0, stop: o = A~'b is the solution of Az = b.

Set v1 = %

For k=1,2,...,, do:

1. Perform the kth step of the Arnoldi process. (So we have Hy, v, vg, ..., Vkt1-)

2. Determine zx and 71 such that

1Tes1] = || Brer — Hyzill2 = min ||Brer — Hyz|2
zeCk

[Tirl [ Nlo—Azi|2
3. If 5 <— ||b—A:170||2> < tol, stop

end (k)

xp = x0 + Vizp = A71D

There cannot be a way of implementing GMRES without storing lots of “stuff” (i.e., the v;’s < V).
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19 2-24-12

19.1 Computation of z; and 7,4

T = 10 + Vizg
[Thtll = 16— Azg|l2

Recall:

Definition 19.1. Givens Rotation

An elementary Givens rotation is

where e + |s]? =

General form:

Notes:

1. For any h = [21} € C?, G can be chosen such that Gh = [g]
2

2. G is unitary: GG =1.

Hy, — Ry by a product k£ Givens rotations.
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G5y GaGoGLH, =

' o oo %'
oo o % %
O O ¥ ¥ ¥

*
L

Gy G,G3GoGy Hy, =
Q
=@

***%I

=0

c o oo %
oo o % %
O O ¥ ¥ ¥

= ’Tk+1’
2

Qrbrer — [0 Rk 0] z

min ||f1e; — ﬁszQ = min
2eCk

QrBrer = [Tlﬁl]
2= R fi

The factorization
_ Ry,
QrHy = [0 0}
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can easily be updated from k — 1 — k:

0 - O0]hksie

We have Q1 Hj,—1 = {0 Rk O}’ where Qi1 = Gr_1Gj—2--- G1.

_ T
0 T2k
Qr—1 H, = Ri 1
0 Th—1k
0 0 1 0 -+ 0 7
L0 - O Thyrk |
Select Gk = [ CIL Sk] such that Gk [jkk ] = [rkk} and set
—8 Ck Thtlk 0
O = [T 0] (Qk-1 O
B 0 Gi/| 0 1
ket 1xk+1
- [ Ry,
= QuHi = 0 - 0}
- .
Ry T2k
Ry =
Tk—1,k
L 0 0 Tkk
fe | _ [Tk 0] [Qr—1 O
|:7'k+1 = Qr(fire1) = 0 G o 1 Bie
Qr-1 0 _ [Qi-1Brer] Ji1
Bier = = Tk
0 1 0
- 0
[ i1
5[
k1 s
e
Ju= | CrTh
Tk+1 = —SkTk
Note:
[Tkt1] = [[b — Azgll2 = ||7kll2
1Tk = [|b — Azgll2 < [7hra| = [[re-1ll2

7kl = Iskl llre—1l2
—~—

<1
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20 2-27-12
20.1 Convergence of the Minimal Residual Method
Az = b, A nonsingular, xg, 7o = b — Axg
Ki(A,r9) = span {ro, Arg, A2rq, ... ,Ak_lro}
= {v=10r0 + MmAro- -+ 14" 0 | v0,7,. .., -1 € C}

={v=p(A)ro |pe[]}
k—1

II: =0 =v+nr+-+7%aX" 0,7, .., %1 €C}
k—1

z € Ki(A,m0) & z=x0+p(A)ro, p €[l

b—Ax =b— Axg —Ap(A)ro =1 — Ap(A) ro

=ro =q(4)
= q(A)ro
where g(A) =1 — Ap(A) € [],, ¢(0) = 1.
Minimal residual property:
|b — Azgll2 = min IIb — Az||2
I€x0+Kk(A,TQ)
= min A)r
N
< i A
< lirolla _min la(A)l:

Theorem 20.1.

The iterates xj that are generated by the minimal residual method (such as GMRES) satisfy

1.

16— Axglla l7ell2 .
— < min A
lb — Azoll2  ||7oll2 ~ «€lly, a(0)=1 laCA)llz

2. Moreover, if A is diagonalizable, i.e., A = UAU™', U € C™" nonsingular and A =
diag(A1, ..., Ap), then

7kl :
< ko(U min “max |q(\;
H7”k||0 ( )qel_b97 q(O):l]:LQ,..-,n‘ ( ])|
Notes:
1. ko(U) = |U||2||U]|l5* = condition number of U with respect to the || - ||2 norm.
2. U= [ul Uy - un],

A:UAU_l S AU =UA & Au; = Nug, i=1,2,...,n
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Proof. (Of #2; we already proved #1.)

A=UANU"!
A2 =UANU'UAU = UN U

A =UNU!
q(A) = Ug(MU,
q(A) = diag(q(A1), q(A2), - - -, q(An))
lg(A)ll2 = [Uq(M)U 2
< NU2llg(M)ll2/T 2
= r2(U)llg(A)ll2

= ra(U)  max |q(};)|

Together with #1:

min max i
¢€Tly, a(0)=1=12,..n l4(%)

Corollary 20.2.

If A is diagonalizable, o(A) C S, 0 ¢ S, S is compact. Then

7k ]|2 .
< k(U min max |g(\
Trolla = ©U) jopping, _, sz eV
\ i
4* .
R
S RS
* 7
r
\x_/

Consequence: We get fast convergence of GMRES if the eigenvalues of A are clustered away from 0.
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Figure 4: “Bad” case.

Figure 3: “Good” case.

Az =b “bad” — A'e' =1 “good”
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21 2-29-12

21.1 Convergence Results (Continued)

Example 21.1. FEigenvalues in a disk S

Figure 5: S={X | [A—c| < p}, where p<[c| & 0¢ S, o(A) CS.

7k ll2 .
< ko(U min  max|g(\
Trolly =20 ity s la()]

i=(1-2) eIl aw=1
k

M| = by
max |¢(A)] = max |g(A)]

852{A=c+pei¢|0§¢<27r}
k

P i
M| = _F
Iilggl(J( )l omax | —ce
k
_ (ﬁ)
|c|
||7“k||2 . (p )k
< ko(U min max |g(A < wo(U) [ £

21.2 A Convergence Bound Based on Bendixson’s Theorem

Recall:

e A=A" = 5(A) is real

o A=A = o(A) is purely imaginary
For any A € C™*™ we can write

A+ AT A AH

A 2 + 2
—_——  ——
::AH :5As

Ay = AL = the Hermitian part of A
Ag = —AY = the skew-Hermitian part of A
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This is the unique decomposition of A into Hermitian and skew-Hermitian matrices.

Theorem 21.2. Bendixson’s Theorem

For all A € o(A),

Amin(AH> S Re A S )\max(AH)

—p(Ag) <ImA < p(Ag) := max |\;
p(Ag) < < p(As) /\jeg(AS)| '

Theorem 21.3.

If A =0,
then
k/2
Il ( 1
<l|1-— fork=1,2,...
_— A ) )
o =\ s ()
o )\max(AH)
where ko(Ap) = N~

21.3 Preconditioned GMRES
Az = b, A € C™™" nonsingular, b € C" (21.1)

Preconditioner: M € C™*™ nonsingular such that M = M; My, where My, My € C™*™ and systems with M;
and My are “easy” to solve, and M ~ A (in some sense).
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Let g € C" be any initial guess for (21.1). Then

Az =b & A(x —x9) =b— Axg
& MTPAM ! My(z — xo) = My (b — Axg)
=:A’ =’/ =:b’
T =x0+ M{lx'
M ~A & M{I'AM;'~1 & A ~1I
~—
=M1 M

Thus, GMRES applied to A’z = b’ converges faster than for Az = b. (e.g., o(A’) is clustered away from 0.)
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22 3-2-12

22.1 Preconditioning with GMRES (Continued)

A € C™™ nonsingular

Az =b & Alz' =1
M= MMy~ A
A= M AM?
x' = May(z — x0)
V = M (b— Axo)

Algorithm (Preconditioned GMRES)

Input: z¢p € C™, a routine to compute ¢ = Av, a routine to solve systems with M7, and a routine to
solve systems with My, a convergence tolerance tol

1. Solve M b = b — Axg for v/
2. Set z, :=0€ C" and rj = V/

3. Run GMRES to solve A’z = b" (with initial guess z(,) to residual accuracy:

/
Irkl _ .,
751l

4. Solve Maw = 372; for w and set xp = zg + w

Output: Approximate solution x; for Az = b.

Note: Step #3 requires matrix vector products
q/ — a/v/ (: Ml_lAMg_lv/)
and each such product requires 1 solve with Ms, 1 multiplication with A, and 1 solve with Mj.

22.2 Some Preconditioners

1. Diagonal Preconditioning. A = Dy — E — F, where Dy = diag(A) is nonsingular, E is strictly lower-
triangular, and F' is strictly upper-triangular. Set M = Dy. Typically, we set M1 = Dy and My = 1

(left preconditioning), or My = I and My = Dy (right preconditioning). In general, this will work
quite well if A is diagonally dominant.

2. Incomplete LU Factorization. PAQ ~ LU, where P and () are permutation matrices (e.g. Markowitz
criterion), L is lower-triangular, and U is upper-triangular. Then

A=~ PTrLuQ”
S~ ,
=My —pp,
Systems with M; and Ms are easy to solve, provided that L and U are sparse enough.
3. SSOR-Type Preconditioner. Based on A = Dy — E — F and proceed as before, but replace E¥ with
F.
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22.3 Restarted GMRES
WLOG, assume A = A’ is already the preconditioned matrix, A € C"*".

Recall: The kth step of the Arnoldi process,
his1,kVk+1 = Avy — higvr — hogva — -+ — Rpgvg,
requires:
e k + 1 inner products (in C™)
e k SAXPY’s (in C")
e 1 multiplication with A
e storage of all vectors vy, va, ..., Vk11

For very large n, the Arnoldi process becomes too expensive quickly (as k increases).
Remedy: Restarts.

Let k be the largest number of Arnoldi steps that one is willing to run. Typical values: ky = 50 or ky = 100.

Remark 22.2. Algorithm (Restarted GMRES)

Input: zp € C", b € C", a routine to compute ¢ = Av, a convergence tolerance tol, the restart
parameter kg

1. Set pp := ||b — Axol|2
2. Run GMRES until
(a) % < tol = stop, 7 ~ A~ 1b.
(b) k = ko is reached = set zg := w, and repeat step #2.
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23 3-5-12
23.1 Domain Decomposition
Basic idea: Solve the PDE

Lu=f inR (23.1)
u=g ondR

by solving p subproblems:

Lu; = f in R;, 1=1,2,...)p
u; = ¢g; on OR;

where R=RiURyU---UR,.

Motivation:
e Parallel computing
e ‘“Different” physics in subdomains R; (e.g. different constants)

e Proof technique (historical)

23.1.1 Classical Alternating Schwarz Method
(Schwarz, 1870)

Figure 6: p=2. R = Ry U Ra. I'1, T2 are artificial boundaries: I'1,T'2 N 9R = .

Guess ugo)’n R~ u‘rl. Forn=1,2,...,
1. Solve Lugn) = fin Ry

(n) { g on 8R1 \ Fl
U= (n—1)

Uy on I'y
for u

(n)
i

2. Solve Lul” = f in R,

(n) g on 8R2 \ Fg
ugn) on I'y
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3. (Repeat up to p...)

Schwarz showed that

lim u, = u = solution of (23.1),
n—oo

where

- ugn) in R1 \R2
"l WY in Ry \ Ry

23.1.2 Discretized Problem (Nonmatching Grids)

We define

S = OR; \ T}

We have 3 types of points.

VR, | < interior grid points of R;
u; — v; = |vy, | <4 true boundary grid points
ur, | < artificial boundary grid points

Lu;=fon R, — Aw; = f;
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Example 23.1.

Lu = —Uzp — Uyy

5-point stencil.

A = [ARz‘ As; AFz‘]

U1
U2

U3
V4
Vs
[4—1}0 -1 00 -1 0}0 -1 00] vg _hQ[fl]
-1 4/0 0 -1 0 0 —-1{0 0 -1 0 vy fo
Ug

)
v10
V11
V12

Notes:

1. A; is rectangular; Ap, is square (and nonsingular)

2. We need interpolation operators, IE? and III;;, to obtain discrete artificial boundary conditions
on I'1 and I'y
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24 3-7-12

24.1 Domain Decomposition (Continued)

Figure 7: R=RiURs, %1 =0R1 \ Ro

Original Problem:

Lu=f in R
U=y on OR

Discretized Problem:

on R; on Ry
Ay = fi Agvy = fo
Uy = 91 Uy = 92
r r
vr, = IR; (v2) R, Ury = IR? (v1)R,

66



Algorithm (Discretized Alternating Schwarz Method for 2 Subdomains)
Choose initial guess for vg, e.g., vl(%) =0.
forn=1,2,...:
1. Solve
Awi”) =fi
U(gr? =91
ur, = I};;vg;g_l)
for vln).
2. Solve
Al =
Ug;) =92
(n) _ qT2,,(7)
vr, = I VR,
for Uén).
3. If ||v§") - vgn_l)H and ||U1({L) - vl(fj_l)H, i=1,2,..., are “small,” stop
end (n)
Note:
(n) _ (n) (n)
Alvln) — fl ARlvFZ - fl - A21 U2n2 _Al—‘lvl’q
(n) =S1
Us, =91 = _ Iy, (n—1)
vﬁ? — I}Qévﬁ%‘” = J1 — Ar,Ip,vR,

where .]El = f1 — A2191
2 solves in step n of the above algorithm:

ARlvg? =fi— AFJ}%U%—I)

AR2U§;2) = f~2 — AFQIIE? ’U;;Z)
< step n of block Gauss-Seidel applied to the linear system

= [

ARIF AFI I II;L;
Ar, Iy Ar,

_ A A
Az Ago

vp, = lim oW, i=1,2,...
n—00 g
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Block Gauss-Seidel for Av = f, where

A - A A12} 7 with A1; and Ass nonsingular,
| A21 Az
; -f1:|
=15
_AH 0
M: =
| A1 A22:|

Av=f & Mv:(M—A)v+f
So at step n of Gauss-Seidel, we get v(™ from

Mo™ = (M — A)p™ D 4 f.

A11 0 v%n) o
Agp Aga] ™| —

fi— Alzvén_l)
f2

Y2
Algorithm (Alternating Schwarz as Block Gauss-Seidel)

1. Choose initial guesses for vgl) and vg, e.g., set vgjl) =0 and vg =0. Set f; = f; — As, gi.

2. Solve
el-1f
UR; f2

as initial guesses.

Ag,  ArIp
AFQI]E; Ag,

(0)
by block Gauss-Seidel, with [vl(%])
Up,

Notes:
1. A is not symmetric in general.

2. For self-adjoint elliptic PDE’s: Ar, > 0 and Ar, > 0
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25 3-9-12

25.1 Homework 5 Comments

1

Generalize T.,,V 4+ VT, = h*F to an m, x my grid, mg; # m,. We have h, = ﬁ, hy = s

Ty, V4oV Tp, =F
~— ~~

My XMy Mg XMy

Also, at some point we will need to use the feature of GMRES in Matlab where we can specify a routine
instead of a matrix A.

25.2 Alternating Schwarz as a Preconditioner

Algorithm

Input: your favorite Krylov subspace method for nonsymmetric A, M = e.g. GMRES

1. Choose initial guesses for vggl) and vg, e.g. vg)l) = UESZ) = 0. Set fi = f1 — As, 91 and

fo=fo— As,g2. (Recall: OR; = ¥; UT}.)

2. Solve -
Ap,  Ar, g} |:UR1] _ []ﬁ}
Ar 02 Ag, | |vrs f2
=A
O
with the chosen Krylov subspace method with initial guess f%]) and preconditioner
v
Ra
M= { Ar, 0 ]
Ar 12 Ag,

Notes:
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1. The preconditioner is applied from the left:

A =M1A= [: :] (can be solved by hand)

(A1 Ags
A=

| A21 A22}

_AH 0
M=

| A1 AQQ}

A7 0

M=l x Ag‘;]

A AT+ ApX =0
X = _A2_21A21A1_11

AT 0
M-l = A _]
__1‘1221f12114111 A221
M—IA _ [ 141_11 O:| |:A11 A12:| _ 0 AI11A12
|— Ay Ao AT Ag1 Ago —ALt e Aoy T — Ay Aot A Ara
=0
_ (1 AT A
M~A= O
0 T— Ay Ay ALl Ars
1t1 ‘ _
AT A
M-1lA pl} _ p1 -l- 11 12]92
[m P2 — ﬁ221A21A111A12P2
t |
Aqity = Ajap Ag, — fast solver

Aoty = Aoty

_ + 11
- M IA — D1 :|
1 P [p2—t2

Alternating Schwarz is not parallel = like multiplicative Schwarz for matching grids.
Apply GMRES to A’!

2. If grids in R; and Ry match, then IE; and III;? are just “pruned” identity matrices. For example,

1
0
0

o O O

00
01
00

o O O

0
0
1

25.3 Matching Grids
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R=R;
Lu=f
u=g
= Av=1>
Often A = 0, e.g. Lu = —Uzyp — Uyy.
Order the unknowns vector v such that
v =
Take I = [I O] such that
YRi\R>
IUl = Ury
UR10R2
Similarly, take Is = [0 1 ] such that
VRiNR>
v = (%
YRo\Ry

e Ay := I AI{ (discretization in R;)

o Ay := LAI} (discretization in Ry)

| Vio\F

U Ry
in R=R1URy
on OR

URl \R2
Ury
URl NR2
ur,

= unknowns in R;.

= unknowns in Rs.
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Example 25.2.

—um;—uyny in R=RiURy
u=gqg on OR

le\}TQ =1:3

Ur, =4:7

v= |VURnRy, =28:9
ur, =10:13
_VRQ\FT1 =14 15_
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26 3-12-12

26.1 Alternating Schwarz Example (Continued)

Continuing from last time...

Using the 5 point stencil, we get a linear system Av = b.

Example 25.2 Continued...

—Ugy — Uyy = f

u=4g

in R=RiURy
on OR

4 -1 0-1 0 0 OO O}0O0 O O OO0 O V1
-1 4 -1y{0 -1 0 0|0 OO0 O O OO0 O V2
o -1 4,0 0 -1 00 0}0 O O O0O}O0 O U3
-1 0 0}4 -1 0 O}|-1 00O O O 0|0 O U4
o -1 0(-1 4 -1 00 =170 O O O] 0 O Us
o 0 -14,0 -1 4 =140 O0}0 O O O}O0 O Vg
o o o600 O -1 40 =10 0 O O] 0 O v7
o o0 o0f(-1 0 O O|4 -1|-1 0 -1 0] 0 O U8
o o o0,0 -1 0 -1|-1 40 0 0 =10 O Vg
o o o0,0 O O Of-1 0} 4 -1 0 O0}]-1 0 V10
o o0 o0 O O O0(0O0 O}|-1 4 -1 0] 0 -1 V11
o o o0,0 O O Of-1 0}0 -1 4 =10 O V12
o o0 o000 O O OO =10 O -1 4]0 O V13
o o0 o0 O O o000 O}|-1 0 0 O01]4 -1 V14
. 6 06 00 o O Oy,0 O}0 -1 0 O0]-1 4 V15

fi+g11+ 912
Jo+ 921
f3+ 931+ 932
fa+gn
f5
Je + ge1
fr+gmn+gm
Is
fo
Jio + 91011
fi1 + 9111
fi2 + 9121
fi3 + 9131 + 9132
fia + 9141 + g1a,2

| fi5 + 9151 + 9152

Note that our A matrix has 2 blocks. The upper left block corresponds to A;, and the lower right
block corresponds to As. (If we had p subdomains, then A would have p blocks.)

Exzample 25.2 Continued (Again)...

I = [Igxg Ogxe],
Iy = [0sx7  Isxs] .
Ay = LAIT
Ay = LAIT

IltR—>R1
IQZR—>R2

26.2 Multiplicative Schwarz Method

Initial guess 00,
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Av =b, M~A, Mv=(M-Av+b
Mo = (M — A)o™ + b
oD = o™ L A (h — Av™)
e = A" — ™ (error)
et = (1 — M1 A)e™
for n=0,1,2,...:
o(m2) = ™ 4 IFATHL (b — Av(™)
—_——

:Ae(n)
o) = y(nts) 4 IFAT (b — Av(""'%))

The corresponding iteration matrix:

e(t2) = A1y — o(mF2) = o™ _ [T A1 Ae™ = (T — [TA1 1 A)e™
D) = (I - If Ay 1, 4)e("+3)

The error propogation of this method is

"D = (I — P)(I — Py)e™,
where b= IfA;lliA, 1=1,2,...

The iteration matrix is a product, which is why this method has come to be known as the multiplicative
Schwarz method.

For “sufficient” overlap of Ry and Rs, we get linear convergence:
1] < e,

where p < 1 is independent of the mesh sizes h, and hy.
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27 3-14-12
27.1 Multiplicative Schwarz as a Preconditioner

") = (I — P)(I — Pp)e™ (27.1)
where P, = B;A, B; := IiTA;IIi
General iterative method:
e — (1 — M1 4)e™, M (=~ A) is nonsingular
Accelerate converge: Krylov subspace method with preconditioner M. What is M for (27.1)7
I -P)I—-P)=1-P—P,+ PP
=1—(B1+ By — BAB) A

py
M :=(B; + By — ByAB;)™!
_[A o
sl )
A—l
B + By = [ 1 e } (Note: there is some overlap)
2

Use M as a preconditioner.
Mqg=wv =4 q:(B1+B2—B2ABl)U

Note: A = 0, By + By = 0, but in general M # M” so M % 0. Thus, we cannot use CG! So we have to use
a nonsymmetric Krylov method, e.g. GMRES. This isn’t so bad because we shouldn’t need a whole lot of
iterations.

The B2 AB; term is a “bad guy” because it destroys the symmetry of M and it prevents parallel computing.

27.2 Additive Schwarz Method

Intial guess v(@).
for n=20,1,2,...:

o(2) = o™ 4 By (b — Ap™)
o) = y(nt2) 4 By (b — Av(™)
Now:
et = (I — (By + By)A) e
M:=(Bi+By) >0

We can use M as a preconditioner for CG. M is called the additive Schwarz preconditioner.

Note:
B B (AT o] [ [o o
Mg=w & q-(B1+Bg)v—<[0 0}4—[0 A2_1]>U
U1
v = | (overlap)
V2

o Al_lvl + 0
1= 0 A2_1U2
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The subdomain solves for Ry and Ry can be done in parallel!
Note: All of this extends to p subdomains: Ry, Ra, ..., R,.

Notes for the Homework and Final Project

e Matlab’s backslash would work, but it is not allowed!

e We can use Matlab’s built-in GMRES and CG.

27.3 The Lanczos Process
Given: A € C™*", ry € C™.
Goal: Generate vectors vy, vo,..., Vg, ..., such that

Ki(A,r9) = span {vy,va, ..., vk}, kE=1,2,...,d(A,rg)

using recurrences of fixed length. (The Arnoldi process produces orthonormal basis vectors, but at each step
it requires information from all prior steps. It does not minimize residuals because, as we know, that would
not be possible with fixed recurrences.)
o pi!
v = To
Vg1 = Ay

Vi41Vk41 = Avp — opvg, — Brvg—1
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28 3-16-12

28.1 The Lanczos Process (Continued)

Ae (Cnxn7 ro € Cn, Kk(A,T(]) = span {Ul,UQ, .. .,’Uk}-

Recall: The Arnoldi process generates orthonormal vy’s using recurrences (in matrix form):

AVj, = Vi1 Hy, (28.1)
where Vi = [vl vy - vk}
(hy1 hia o0 - hyg |
ho1  haa  hog :
and f{k = 2 - - : S (Ck+1><k, hj+1’j >0
e bk
P 1

0 P11 |

Orthonormality of the vy's < VEV, = I, VAV = [I; 0].

Multiply (28.1) on the left by VkH:

hll * *
VEAV = [, o) = | ;A (28.2)
0 hr k-1 Dk

Theorem 28.1.

The matrix Hy (produced by k steps of the Arnoldi process) is the projection of A onto the kth
Krylov subspace:

ViH AV, = Hy.

Special case: A = A",
Then Hy, = VEAV, = VEARY, = (VEAV,)H = HE. Thus, Hy, is Hermitian = tridiagonal, by (28.2).

Since hjy1; >0, j=1,2,...,k —1, it follows that

[ar B
P2 az B3
—~—

tridiagonal e e /Bk

i Br k]
(28.1) for A = AHI AVk = Vka + [0 - 0 Bk+1vk+1]
Avj = Bjvj—1 + ajvj + Bi11vj41, J=12,..,k
Bj+1vj+1 = Avj — ojvj — Bjvj_1, i=12,...,k
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This means that for A = A¥ | the orthonormal vectors v, can be generated via a 3-term recurrence!

Thus, the Arnoldi process for A = A is the Hermitian Lanczos process.

Algorithm (Hermitian Lanczos Process)

Input: ro € C", a routine to compute ¢ = Av for any v € C" (where A = AH)

Set 81 = ||7"()”2.
if 51 =0, stop: 1o =0
Otherwise, set v; = %, vy :=0 e C™.
for k=1,2,..., do:
e Compute g = Av
e Set ¢ =q— Brvg-1 (= Avg — Brvg-1)
e Compute ay, = v,fq
e Set ¢ = q — agvg (= Avg — Brvg—1 — agvy)
o Set Br1 = [lgfl2
e if Bry1 = 0, stop: the Krylov subspace Kj(A,ro) has reached its maximum dimension, i.e.,
k= d(fi,ro)

o Set vpy 1 = 72

Brt1

end (k)

Output: Orthonormal vectors vy, vs,...,v; and projection T}.

Notes:
1. Unlike Arnoldi, the work per kth iteration is constant:

e 1 product Av
e 2 inner products
e 2 SAXPY’s

e 1 division of a vector by a scalar

2. For A > 0, thenr,g_Gl: e Vg, k=1,2,...,.
~—
eC

3. In finite-precision arithmetic, the vectors vy gradually lose orthogonality = you may need to run more
iterations than the theory predicts.
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29 3-19-12
Office Hours:
e Today 12:30-1:30
e Wednesday 10-11

e Friday 11-12

29.1 The Lanczos Process (Continued)

The general case: A € C™"*™. We can still have

AV =ViTe + [0 -+ 0 Brsrverd] (29.1)
=Br+1Vkt1€}
where
Vk:[vl vy e Uk]
0
e = GRk
0
1

T, = tridiagonal
But the v’s are no longer orthonormal. We introduce a second sequence,
W1, W2y ...y, Wy

such that
span {wy, wo, . . ., w,} = Ki(AT,¢), k=1,2,...,d(AT,¢)

where ¢ € C" is a “left” starting vector. (In the complex case, AT — A ¢ ¢, wj — W;.)
The recurrence relations in compact form are:
ATW, = Wi T, + ’yk+1wk+1e;‘g (29.2)
where W), = [wl wy - wk] and Tk is tridiagonal.
Notation: The v;’s are called the right Lanczos vectors, and the wy’s are called the left Lanczos vectors.
The v’s and wy’s are constructed to be bi-orthogonal:
wivg=0  forall j#k, jk=12,...
If A= A" ¢ =75, then w; = wj, and thus
vJHvk =0 for all j # k.

We can still choose a normalization of the v,’s and wy’s. We use:

lokllz =1, |wgll2 =1 for all k
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Algorithm (Nonsymmetric Lanczos Process)

Input: rp € C", ¢ € C", a routine to compute ¢ = Av for any v € C™, a routine to compute
s = ATw for any w € C" (here A € C™*")

Set 1 = |[roll2 and y1 = [|c[|2.
If 5y =0 or v =0, stop: rg =0 or ¢ =0.

Otherwise, set v; = %, w, = 701, vg =wo =0 € R", and dy = 1.

for k=1,2,...,, do:

e Compute 6 = wgvk
o If §; = 0, stop: “breakdown” of the algorithm

e Compute ¢ = Avi, and s = ATwy,

® Set g =q— <’>’k 5551) vg—1 (<= this guarantees that w{flq =0)

T
e Set ap = %cq, q = q — agyy, (< this guarantees that wlq = 0)

e Set s=s5—apw, and s = s — (ﬁk 6551) wy,_1 (<= this guarantees that s”v, =0, sTv,_; = 0)

e Set Bry1 = [lqll2 and vg1 = |82
o If 11 = 0, stop: the Krylov subspace Kj(A,rg) has reached its maximum dimension,

k= d(A,ro)
o If 7411 = 0, stop: the Krylov subspace Kj(A”,c) has reached its maximum dimension,
k= d(AT,c)
e Set vp 1 = Tq+1 and wii1 = %‘11
[a1 n2 0]
B2 az m3
T, — . )
L
| 0 Br k)

O,
Br41Vk41 = Av, — avp, — <7k5k1> Vg—1

=Mk
[ & 0]
Yo az &3
Ty = :
. &k
| 0 Ve Q)
O,
= Or——
&k k5
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bi-orthogonal, 79

centered-difference approximation, 26
CGNE, 46

Cholesky factorization, 10

compressed sparse row (CSR) format, 25
conjugate residual method, 37
coordinate (COO) format, 24

Craig’s method, 46

discrete Fourier transform, 30
eigendecomposition, 36
fill-in element, 17

Givens rotation, 52
grade, 35

H-matrix, 43
Hermitian positive definite, 9

Krylov subspace, 35
large-scale, 4

M-matrix, 42

minimal polynomial, 35
minimal residual method, 50
Modified Gram-Schmidt, 48

normal equations, 45
out degree, 6
pivot element, 23

row stochastic, 7

SAXPY, 34
sparse, 4
spectral radius, 42

Toeplitz matrix, 7

weakly stationary, 9
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