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1 Guy’s Notes (Part 1)
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2 Guy’s Notes (Part 2)

2.1 Error and Stability

We are dealing with the linear system
Au = b

In order to measure error, we need to have a norm. The most common are:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |

‖A‖2 =
√
ρ(A∗A)

where ρ is the spectral radius (eigenvalue of maximum modulus). We define the error vector as

e = u− usol

We also define the truncation error as

τj =
1

h2
(u(xj−1)− 2u(xj) + u(xj+1))− f(xj)

= uxx(xj) +
h2

12
u(4)(xj) +O(h4)− f(xj)

=
h2

12
u(4)(xj) +O(h4)

since uxx = f(x). Thus, we have an expression for the local truncation error:

τ = Ausol − b

Using simple algebra, we can derive that

Ausol = τ + b

Auh = b

A(uh − usol) = −τh

Aeh = −τh

We know that τ = O(h2), so we would like it to be the case that eh = O(h2).

eh = −A−1τh

‖eh‖ = ‖A−1τh‖ ≤ ‖A−1‖‖τh‖

Thus, we want the norm of A−1 to be O(1).

To tell if the system is convergent, we look at:

Consistency: ‖τh‖ → 0 as h→ 0

Convergence: ‖eh‖ → 0 as h→ 0
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Stability: The system Ahuh = fh is stable if ‖A‖ ≤ C for h ≤ h0 and C is a constant independent of
h.

For a linear PDE, the Lax-Equivalence Theorem says that if a scheme is stable and consistent, then it
is convergent.

2.2 Stability in the 2-Norm

Because A is symmetric,
‖A‖2 = ρ(A) = max |λj |

A−1 is also symmetric, with
‖A−1‖2 = ρ(A−1) = max |λ−1j | = min |λj |

Recall that the eigenvalues of Lu = uxx are un = sin (nπx). Some arithmetic shows that the largest
eigenvalue of A is

λN =
2

h2
(cos (Nπh)− 1)

This will lead to a 2nd order accurate solution.
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3 Guy’s Notes (Part 3)

3.1 3 Properties

1. Discrete Maximum Principle: if Lhu ≥ 0 on some region, then the maximum value of u is obtained on
the boundary. (If Lhu ≤ 0 on some region, then the minimum value of u is obtained on the boundary.)

2. If u is a discrete function defined on the regular grid discretizing the unit square with u = 0 on the
boundary, then ‖u‖∞ ≤ 1

8‖L
hu‖∞.

3. Let usol solve ∆u = f and the corresponding boundary conditions. Then
‖e‖∞ = ‖uh − usol‖∞ ≤ h2

96 (‖usol,xxxx‖∞ + ‖usol,yyyy‖∞) +O(h4).

3.2 Error and the Residual

Let uk be an approximate solution to Au = f and let u be the exact solution to the discrete problem. We
define algebraic error as

e = ek = u− uk

Then
Ae = Au−Auk = f −Auk

We define the residual as

r = f −Auk

r = Ae

The residual is a measure of how much our approximate algebraic solution, obtained via iteration, fails to
satisfy the discrete equations. The exact solution is

u = uk + e = uk +A−1r

3.3 Jacobi and Gauss-Seidel Iteration Methods

3.4 Analysis of Jacobi and Gauss-Seidel

3.5 Iterations to Reduce the Error by a Factor

3.6 Successive Over-Relaxation
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4 Guy’s Notes (Part 4)

4.1 Motivation for Multigrid

Relaxation methods slow down as the mesh is refined.

‖ek+1‖
‖ek‖

≈ ρ, ρ→ 0 as h→ 0

We want to find an iterative method such that

‖ek+1‖
‖ek‖

≈ ρ < c < 1 as h→ 0

Note that the estimate of ‖e
k+1‖
‖ek‖ ≈ ρ applies for large k. In practice, convergence is much faster at first but

it slows down dramatically.

Idea: use Gauss-Seidel Red-Black to smooth the error on a fine grid, then transfer to a coarser grid.

4.2 Coarse Grid Correction

Let uh be the algebraic solution to the discrete problem Lhuh = f . Then uh is an approximate solution to

ek = uh − uk

rk = f − Luk

We have the residual equation: Lek = rk

If we can solve this equation: ek = L−1rk

Then the algebraic solution is: uh = uk + L−1rk

We are effectively correcting the approximation.

4.3 2-Grid Preliminary Scheme

Let Ωh represent the original grid, and let Ω2h represent a coarse grid with twice the grid spacing. We will
require transfer operators.

I2hh : G(Ωh)→ G(Ω2h)

This is the restriction operator that maps gridfunctions from the fine grid to the coarse grid.

Ih2h : G(Ω2h)→ G(Ωh)

This is the interpolation operator that maps gridfunctions from the coarse grid to the fine grid.

Our basic scheme looks like this:

1. Obtain an approximate solution, ukh, and solve the error equation, Lhe
k
h = rkh.

2. Transfer rkh to the coarse grid: rk2h = I2hh rkh.

3. Solve L2he
k
2h = rk2h on the coarse grid.
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4. Transfer ek2h back to the fine grid: ekh = Ih2he
k
2h

5. Correct

uk+1 = uk + ekh

uk+1 = ukh + Ih2hL
−1
2h I

2h
h (f − Lhukh)

uk+1 = (I − Ih2hL−12h I
2h
h Lh)ukh + c

As an iteration method alone, this will not converge. It seems like it has a good shot if the error does not
contain high-frequency components, so we could apply a few steps of smoothing before using coarse grid
correction. However, interpolation introduces high-frequency error. Thus, we should apply a few steps of
post-smoothing after correcting.

4.4 2-Grid Revised Scheme

Given ukh, and approximation to uh.

1. Pre-Smoothing: apply ν1 steps of smoothing.

2. Coarse Grid Correction:

• Compute residual

• Transfer residual to coarse grid

• Solve error equation on coarse grid

• Transfer coarse grid error to fine grid

• Correct approximation

3. Post-Smoothing: apply ν2 steps of smoothing to eliminate high-frequency errors introduced by coarse
grid correction.

Let S be the smoothing operator. The 2-grid multi-grid iteration has the form

M = Sν2KSν2 = Sν2(I − Ih2hL−12h I
2h
h Lh)Sν2

Questions:

• What are the transfer operators, Ih2h and I2hh ?

• What is the coarse grid operator, L−12h ?

• What to choose for ν1 and ν2?

• How well does this work, ρ(M)? ← We will show that ρ(M)� 1

4.5 Restriction Operators

The simplest restriction operator is injection. A better transfer operator is full-weighting. The stencils of
the full-weighting operator are:

• 1-D: I2hh = 1
4

[
1 2 1

]
• 2-D: I2hh = 1

16

 1 2 1
2 4 2
1 2 1
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4.6 Interpolation Operators

The full-weighting restriction operators suggest the interpolation operators that we should use.

• 1-D: Ih2h = 1
2

]
1 2 1

[
• 2-D: Ih2h = 1

4

 1 2 1
2 4 2
1 2 1


4.7 Coarse Grid Operator

We need to be able to solve the error equation, L2he2h = r2h, on the coarse grid. We have two options:

1. Discretize the coarse grid problem.

• 1-D: (L2he2h)j = 1
(2h)2

(ej−1 − 2ej + ej+1)

• 2-D: 1
(2h)2

 1
1 −4 1

1


2. Galerkin coarse grid operator

L2h = I2hh LhI
h
2h

For 2-D: L2h =
1

(2h)2

 1 2 1
2 −12 2
1 2 1


4.8 Choosing ν1 and ν2

Typically, use ν1 = 1 and ν2 = 1 or ν1 = 2 and ν2 = 1.

4.9 From 2-Grid to Multigrid

Rather than solve the coarse grid error equation, L2he2h = r2h, we can use the same idea and approximate
it by using a coarser grid. We will guess that e2h = 0 and apply multigrid.

A 3-Grid Cycle

• GSRB - Relax Lhuh = fh ν1 times

• Residual - Compute rh = fh − Lhuh

• Restrict - Compute f2h = I2hh rh

– GSRB - Relax (pre-smooth) L2hu2h = f2h ν1 times, with initial guess u2h = 0

– Residual - Compute r2h = f2h − L2hu2h

– Restrict - Compute f4h = I4h2hr2h

∗ GSRB - Solve L4hu4h = f4h (Note: the residual is 0.)

– Interpolate - Correct u2h := u2h + I2h4hu4h

– GSRB - Relax (post-smooth) L2hu2h = f2h ν2 times, with initial guess u2h

• Interpolate - Correct uh := uh + Ih2hu2h

• GSRB - Relax (post-smooth) Lhuh = fh ν2 times, with initial guess uh
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5 Guy’s Notes (Part 5)

5.1 Descent Methods

Consider the linear system
Ae = f

where A is symmetric positive definite.

Symmetric: A∗ = A
(
AT = A for real-valued matrices

)
Positive Definite: y∗Ay > 0 ∀ y 6= 0

Note: positive definite also means that all eigenvalues are strictly positive.

Because A is symmetric, all eigenvalues are real and the eigenvectors are orthogonal.

AQ = QΛ and Q∗ = Q−1

Q∗AQ = Λ ← all elements are positive

For the discrete Laplacian, Lu = f , with Dirichlet boundary conditions, L is negative definite, so −L is
positive definite.

Consider the functional

φ(u) =
1

2
u∗Au− u∗f

We want to find u that minimizes φ, so we look for critical points, i.e. set

∇φ(u) = 0

∇φ = Au− f

We know that φ is minimized when ∇φ = 0 since ∇∇φ = A, i.e. all second derivatives are positive. How
do we minimize φ(u)? The method of steepest descent.

1. Guess uk

2. Obtain uk+1 by travelling in the direction of largest decrease, i.e. −∇φ(uk) = f −Auk = rk

3. uk+1 = uk + αkr
k ⇒ Choose αk to minimize φ(uk+1)

φ(uk+1) = min
αk

φ(uk + αkr
k)

d

dαk
φ(uk + αkr

k) = 0

minimized at αk =
rT r

rTAr
=
〈r, r〉
〈r, Ar〉

5.2 Preliminary Steepest Descent Algorithm

• Initialize

• Loop in k

– rk = f −Auk

– Check ‖rk‖
– αk = rT r

rTAr

– uk+1 = uk + αkr
k

• End
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5.3 More Efficient Steepest Descent Algorithm

Note that

rk+1 = f −Auk+1

= f −A
(
uk + αkr

k
)

= rk − αkArk

• Initialize u0 and r0 = f −Au0

• Loop in k

– ω = Ark

– αk = rT r
rTAr

– uk+1 = uk + αkr
k

– rk+1 = rk − αkωk

– Check ‖rk‖

• End

For a 2 × 2 matrix, the level sets are ellipses. If the initial guess is on the major or minor axes, it will
converge in 1 step. Otherwise, the number of steps depends on the ratio of the eigenvalues of the matrix.
We define the condition number of a matrix as

κ(A) = ‖A‖2‖A−1‖2

For a symmetric matrix,

κ(A) =

max
j
|λj |

min
j
|λj |

For large κ, steepest descent is very slow.

5.4 Conjugate Gradient

Instead of descending in the direction of rk, choose a different search direction, pk. Then

uk+1 = uk + αkp
k

αk =
(pk)T rk

(pk)TApk

Start with one step of steepest descent: u0, r0, p0 = r0. Then choose p1 such that

pT1Ap0 = 0

p0 and p1 are orthogonal in the inner product 〈u,v〉A = uTAv, and we say that they are A-conjugate.
The main idea of conjugate gradient is to choose search directions that are A-conjugate to all past search
directions.
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5.5 Conjugate Gradient Algorithm

• Initialize u0, r0 = f −Au0, p0 = r0

• Loop in k

– ω = Apk

– αk =
rTk rk
ωTpk

– uk+1 = uk + αkpk

– rk+1 = rk − αkω
– Check ‖rk+1‖ ⇒ if small enough, we’re done

– β =
rTk+1rk+1

rTk rk

– pk+1 = rk+1 + βpk

• End loop

5.6 Analysis of Conjugate Gradient

Since A is symmetric positive definite, we define the A-norm as

‖u‖A =
(
uTAu

)1/2
It is shown (Guy’s notes page 11) that

‖ek‖A ≤ a
(√

κ− 1√
κ+ 1

)k
‖e0‖A

5.7 Preconditioning

Conjugate gradient can be sped up if the eigenvalues are clustered together. Rather than solve Au = f , we
solve

M−1Au = M−1f

This will have the same solution, and if M−1A is well conditioned then conjugate gradient will converge
faster.

How to choose M−1

1. Must be symmetric positive definite

2. M−1A should be better conditioned

3. Mx = b should be easy to solve, i.e. M−1 is easy to apply ⇒ ideally, M approximates A

For conjugate gradient, consider transforming the system as

B−1AB−T
(
BTu

)
= B−1f

Ã = B−1AB−T ũ = BTu f̃ = B−1f

Ãũ = f̃

This Ã is symmetric positive definite, and M = BBT . In terms of these transformed variables, the conjugate
gradient method is
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uk = B−T ũk, pk = B−T p̃k rk = Br̃k

p̃k+1 = r̃k+1 + βp̃k

BT p̃k+1 = B−1r̃k+1 + βBT p̃k

pk+1 = B−TB−1rk+1 + βpk

pk+1 = M−1rk+1 + βpk

5.8 Preconditioned Conjugate Gradient Algorithm

• r0 = f −Au0

• Solve Mz0 = r0

• p0 = z0

• Loop in k

– ωk = Apk

– αk =
zTk rk
pT
k ωk

– uk+1 = uk + αkpk

– rk+1 = rk − αkωk
– Check ‖rk+1‖
– Solve Mzk+1 = rk+1

– β =
zTk+1rk+1

zTk rk

– pk+1 = zk+1 + βpk

5.9 Preconditioners

We would like M to approximate A. Some standard preconditioners for the Poisson equation include

• Symmetric SOR (SSOR) - sweep over the grid forwards and then backwards.

• Incomplete Cholesky Factorization - A = LLT , where L is lower triangular.
A ≈ L̃L̃T ← don’t allow too much fill-in

• Approximate Cholesky - construct L̃ to be easy to solve so that A ≈ L̃L̃T
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