
Document: Math 228A (Fall 2011)
Professor: Guy
Latest Update: April 2, 2012
Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents

1 Guy’s Notes (Part 1) 2

2 Guy’s Notes (Part 2) 3
2.1 Error and Stability . 3
2.2 Stability in the 2-Norm . 4

3 Guy’s Notes (Part 3) 5
3.1 3 Properties . 5
3.2 Error and the Residual . 5
3.3 Jacobi and Gauss-Seidel Iteration Methods . 5
3.4 Analysis of Jacobi and Gauss-Seidel . 5
3.5 Iterations to Reduce the Error by a Factor . 5
3.6 Successive Over-Relaxation . 5

4 Guy’s Notes (Part 4) 6
4.1 Motivation for Multigrid . 6
4.2 Coarse Grid Correction . 6
4.3 2-Grid Preliminary Scheme . 6
4.4 2-Grid Revised Scheme . 7
4.5 Restriction Operators . 7
4.6 Interpolation Operators . 8
4.7 Coarse Grid Operator . 8
4.8 Choosing ν1 and ν2 . 8
4.9 From 2-Grid to Multigrid . 8

5 Guy’s Notes (Part 5) 9
5.1 Descent Methods . 9
5.2 Preliminary Steepest Descent Algorithm . 9
5.3 More Efficient Steepest Descent Algorithm . 10
5.4 Conjugate Gradient . 10
5.5 Conjugate Gradient Algorithm . 11
5.6 Analysis of Conjugate Gradient . 11
5.7 Preconditioning . 11
5.8 Preconditioned Conjugate Gradient Algorithm . 12
5.9 Preconditioners . 12

http://www.math.ucdavis.edu/~jlirion

1 Guy’s Notes (Part 1)

2

2 Guy’s Notes (Part 2)

2.1 Error and Stability

We are dealing with the linear system
Au = b

In order to measure error, we need to have a norm. The most common are:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |

‖A‖2 =
√
ρ(A∗A)

where ρ is the spectral radius (eigenvalue of maximum modulus). We define the error vector as

e = u− usol

We also define the truncation error as

τj =
1

h2
(u(xj−1)− 2u(xj) + u(xj+1))− f(xj)

= uxx(xj) +
h2

12
u(4)(xj) +O(h4)− f(xj)

=
h2

12
u(4)(xj) +O(h4)

since uxx = f(x). Thus, we have an expression for the local truncation error:

τ = Ausol − b

Using simple algebra, we can derive that

Ausol = τ + b

Auh = b

A(uh − usol) = −τh

Aeh = −τh

We know that τ = O(h2), so we would like it to be the case that eh = O(h2).

eh = −A−1τh

‖eh‖ = ‖A−1τh‖ ≤ ‖A−1‖‖τh‖

Thus, we want the norm of A−1 to be O(1).

To tell if the system is convergent, we look at:

Consistency: ‖τh‖ → 0 as h→ 0

Convergence: ‖eh‖ → 0 as h→ 0

3

Stability: The system Ahuh = fh is stable if ‖A‖ ≤ C for h ≤ h0 and C is a constant independent of
h.

For a linear PDE, the Lax-Equivalence Theorem says that if a scheme is stable and consistent, then it
is convergent.

2.2 Stability in the 2-Norm

Because A is symmetric,
‖A‖2 = ρ(A) = max |λj |

A−1 is also symmetric, with
‖A−1‖2 = ρ(A−1) = max |λ−1j | = min |λj |

Recall that the eigenvalues of Lu = uxx are un = sin (nπx). Some arithmetic shows that the largest
eigenvalue of A is

λN =
2

h2
(cos (Nπh)− 1)

This will lead to a 2nd order accurate solution.

4

3 Guy’s Notes (Part 3)

3.1 3 Properties

1. Discrete Maximum Principle: if Lhu ≥ 0 on some region, then the maximum value of u is obtained on
the boundary. (If Lhu ≤ 0 on some region, then the minimum value of u is obtained on the boundary.)

2. If u is a discrete function defined on the regular grid discretizing the unit square with u = 0 on the
boundary, then ‖u‖∞ ≤ 1

8‖L
hu‖∞.

3. Let usol solve ∆u = f and the corresponding boundary conditions. Then
‖e‖∞ = ‖uh − usol‖∞ ≤ h2

96 (‖usol,xxxx‖∞ + ‖usol,yyyy‖∞) +O(h4).

3.2 Error and the Residual

Let uk be an approximate solution to Au = f and let u be the exact solution to the discrete problem. We
define algebraic error as

e = ek = u− uk

Then
Ae = Au−Auk = f −Auk

We define the residual as

r = f −Auk

r = Ae

The residual is a measure of how much our approximate algebraic solution, obtained via iteration, fails to
satisfy the discrete equations. The exact solution is

u = uk + e = uk +A−1r

3.3 Jacobi and Gauss-Seidel Iteration Methods

3.4 Analysis of Jacobi and Gauss-Seidel

3.5 Iterations to Reduce the Error by a Factor

3.6 Successive Over-Relaxation

5

4 Guy’s Notes (Part 4)

4.1 Motivation for Multigrid

Relaxation methods slow down as the mesh is refined.

‖ek+1‖
‖ek‖

≈ ρ, ρ→ 0 as h→ 0

We want to find an iterative method such that

‖ek+1‖
‖ek‖

≈ ρ < c < 1 as h→ 0

Note that the estimate of ‖e
k+1‖
‖ek‖ ≈ ρ applies for large k. In practice, convergence is much faster at first but

it slows down dramatically.

Idea: use Gauss-Seidel Red-Black to smooth the error on a fine grid, then transfer to a coarser grid.

4.2 Coarse Grid Correction

Let uh be the algebraic solution to the discrete problem Lhuh = f . Then uh is an approximate solution to

ek = uh − uk

rk = f − Luk

We have the residual equation: Lek = rk

If we can solve this equation: ek = L−1rk

Then the algebraic solution is: uh = uk + L−1rk

We are effectively correcting the approximation.

4.3 2-Grid Preliminary Scheme

Let Ωh represent the original grid, and let Ω2h represent a coarse grid with twice the grid spacing. We will
require transfer operators.

I2hh : G(Ωh)→ G(Ω2h)

This is the restriction operator that maps gridfunctions from the fine grid to the coarse grid.

Ih2h : G(Ω2h)→ G(Ωh)

This is the interpolation operator that maps gridfunctions from the coarse grid to the fine grid.

Our basic scheme looks like this:

1. Obtain an approximate solution, ukh, and solve the error equation, Lhe
k
h = rkh.

2. Transfer rkh to the coarse grid: rk2h = I2hh rkh.

3. Solve L2he
k
2h = rk2h on the coarse grid.

6

4. Transfer ek2h back to the fine grid: ekh = Ih2he
k
2h

5. Correct

uk+1 = uk + ekh

uk+1 = ukh + Ih2hL
−1
2h I

2h
h (f − Lhukh)

uk+1 = (I − Ih2hL−12h I
2h
h Lh)ukh + c

As an iteration method alone, this will not converge. It seems like it has a good shot if the error does not
contain high-frequency components, so we could apply a few steps of smoothing before using coarse grid
correction. However, interpolation introduces high-frequency error. Thus, we should apply a few steps of
post-smoothing after correcting.

4.4 2-Grid Revised Scheme

Given ukh, and approximation to uh.

1. Pre-Smoothing: apply ν1 steps of smoothing.

2. Coarse Grid Correction:

• Compute residual

• Transfer residual to coarse grid

• Solve error equation on coarse grid

• Transfer coarse grid error to fine grid

• Correct approximation

3. Post-Smoothing: apply ν2 steps of smoothing to eliminate high-frequency errors introduced by coarse
grid correction.

Let S be the smoothing operator. The 2-grid multi-grid iteration has the form

M = Sν2KSν2 = Sν2(I − Ih2hL−12h I
2h
h Lh)Sν2

Questions:

• What are the transfer operators, Ih2h and I2hh ?

• What is the coarse grid operator, L−12h ?

• What to choose for ν1 and ν2?

• How well does this work, ρ(M)? ← We will show that ρ(M)� 1

4.5 Restriction Operators

The simplest restriction operator is injection. A better transfer operator is full-weighting. The stencils of
the full-weighting operator are:

• 1-D: I2hh = 1
4

[
1 2 1

]
• 2-D: I2hh = 1

16

 1 2 1
2 4 2
1 2 1

7

4.6 Interpolation Operators

The full-weighting restriction operators suggest the interpolation operators that we should use.

• 1-D: Ih2h = 1
2

]
1 2 1

[
• 2-D: Ih2h = 1

4

 1 2 1
2 4 2
1 2 1

4.7 Coarse Grid Operator

We need to be able to solve the error equation, L2he2h = r2h, on the coarse grid. We have two options:

1. Discretize the coarse grid problem.

• 1-D: (L2he2h)j = 1
(2h)2

(ej−1 − 2ej + ej+1)

• 2-D: 1
(2h)2

 1
1 −4 1

1

2. Galerkin coarse grid operator

L2h = I2hh LhI
h
2h

For 2-D: L2h =
1

(2h)2

 1 2 1
2 −12 2
1 2 1

4.8 Choosing ν1 and ν2

Typically, use ν1 = 1 and ν2 = 1 or ν1 = 2 and ν2 = 1.

4.9 From 2-Grid to Multigrid

Rather than solve the coarse grid error equation, L2he2h = r2h, we can use the same idea and approximate
it by using a coarser grid. We will guess that e2h = 0 and apply multigrid.

A 3-Grid Cycle

• GSRB - Relax Lhuh = fh ν1 times

• Residual - Compute rh = fh − Lhuh

• Restrict - Compute f2h = I2hh rh

– GSRB - Relax (pre-smooth) L2hu2h = f2h ν1 times, with initial guess u2h = 0

– Residual - Compute r2h = f2h − L2hu2h

– Restrict - Compute f4h = I4h2hr2h

∗ GSRB - Solve L4hu4h = f4h (Note: the residual is 0.)

– Interpolate - Correct u2h := u2h + I2h4hu4h

– GSRB - Relax (post-smooth) L2hu2h = f2h ν2 times, with initial guess u2h

• Interpolate - Correct uh := uh + Ih2hu2h

• GSRB - Relax (post-smooth) Lhuh = fh ν2 times, with initial guess uh

8

5 Guy’s Notes (Part 5)

5.1 Descent Methods

Consider the linear system
Ae = f

where A is symmetric positive definite.

Symmetric: A∗ = A
(
AT = A for real-valued matrices

)
Positive Definite: y∗Ay > 0 ∀ y 6= 0

Note: positive definite also means that all eigenvalues are strictly positive.

Because A is symmetric, all eigenvalues are real and the eigenvectors are orthogonal.

AQ = QΛ and Q∗ = Q−1

Q∗AQ = Λ ← all elements are positive

For the discrete Laplacian, Lu = f , with Dirichlet boundary conditions, L is negative definite, so −L is
positive definite.

Consider the functional

φ(u) =
1

2
u∗Au− u∗f

We want to find u that minimizes φ, so we look for critical points, i.e. set

∇φ(u) = 0

∇φ = Au− f

We know that φ is minimized when ∇φ = 0 since ∇∇φ = A, i.e. all second derivatives are positive. How
do we minimize φ(u)? The method of steepest descent.

1. Guess uk

2. Obtain uk+1 by travelling in the direction of largest decrease, i.e. −∇φ(uk) = f −Auk = rk

3. uk+1 = uk + αkr
k ⇒ Choose αk to minimize φ(uk+1)

φ(uk+1) = min
αk

φ(uk + αkr
k)

d

dαk
φ(uk + αkr

k) = 0

minimized at αk =
rT r

rTAr
=
〈r, r〉
〈r, Ar〉

5.2 Preliminary Steepest Descent Algorithm

• Initialize

• Loop in k

– rk = f −Auk

– Check ‖rk‖
– αk = rT r

rTAr

– uk+1 = uk + αkr
k

• End

9

5.3 More Efficient Steepest Descent Algorithm

Note that

rk+1 = f −Auk+1

= f −A
(
uk + αkr

k
)

= rk − αkArk

• Initialize u0 and r0 = f −Au0

• Loop in k

– ω = Ark

– αk = rT r
rTAr

– uk+1 = uk + αkr
k

– rk+1 = rk − αkωk

– Check ‖rk‖

• End

For a 2 × 2 matrix, the level sets are ellipses. If the initial guess is on the major or minor axes, it will
converge in 1 step. Otherwise, the number of steps depends on the ratio of the eigenvalues of the matrix.
We define the condition number of a matrix as

κ(A) = ‖A‖2‖A−1‖2

For a symmetric matrix,

κ(A) =

max
j
|λj |

min
j
|λj |

For large κ, steepest descent is very slow.

5.4 Conjugate Gradient

Instead of descending in the direction of rk, choose a different search direction, pk. Then

uk+1 = uk + αkp
k

αk =
(pk)T rk

(pk)TApk

Start with one step of steepest descent: u0, r0, p0 = r0. Then choose p1 such that

pT1Ap0 = 0

p0 and p1 are orthogonal in the inner product 〈u,v〉A = uTAv, and we say that they are A-conjugate.
The main idea of conjugate gradient is to choose search directions that are A-conjugate to all past search
directions.

10

5.5 Conjugate Gradient Algorithm

• Initialize u0, r0 = f −Au0, p0 = r0

• Loop in k

– ω = Apk

– αk =
rTk rk
ωTpk

– uk+1 = uk + αkpk

– rk+1 = rk − αkω
– Check ‖rk+1‖ ⇒ if small enough, we’re done

– β =
rTk+1rk+1

rTk rk

– pk+1 = rk+1 + βpk

• End loop

5.6 Analysis of Conjugate Gradient

Since A is symmetric positive definite, we define the A-norm as

‖u‖A =
(
uTAu

)1/2
It is shown (Guy’s notes page 11) that

‖ek‖A ≤ a
(√

κ− 1√
κ+ 1

)k
‖e0‖A

5.7 Preconditioning

Conjugate gradient can be sped up if the eigenvalues are clustered together. Rather than solve Au = f , we
solve

M−1Au = M−1f

This will have the same solution, and if M−1A is well conditioned then conjugate gradient will converge
faster.

How to choose M−1

1. Must be symmetric positive definite

2. M−1A should be better conditioned

3. Mx = b should be easy to solve, i.e. M−1 is easy to apply ⇒ ideally, M approximates A

For conjugate gradient, consider transforming the system as

B−1AB−T
(
BTu

)
= B−1f

Ã = B−1AB−T ũ = BTu f̃ = B−1f

Ãũ = f̃

This Ã is symmetric positive definite, and M = BBT . In terms of these transformed variables, the conjugate
gradient method is

11

uk = B−T ũk, pk = B−T p̃k rk = Br̃k

p̃k+1 = r̃k+1 + βp̃k

BT p̃k+1 = B−1r̃k+1 + βBT p̃k

pk+1 = B−TB−1rk+1 + βpk

pk+1 = M−1rk+1 + βpk

5.8 Preconditioned Conjugate Gradient Algorithm

• r0 = f −Au0

• Solve Mz0 = r0

• p0 = z0

• Loop in k

– ωk = Apk

– αk =
zTk rk
pT
k ωk

– uk+1 = uk + αkpk

– rk+1 = rk − αkωk
– Check ‖rk+1‖
– Solve Mzk+1 = rk+1

– β =
zTk+1rk+1

zTk rk

– pk+1 = zk+1 + βpk

5.9 Preconditioners

We would like M to approximate A. Some standard preconditioners for the Poisson equation include

• Symmetric SOR (SSOR) - sweep over the grid forwards and then backwards.

• Incomplete Cholesky Factorization - A = LLT , where L is lower triangular.
A ≈ L̃L̃T ← don’t allow too much fill-in

• Approximate Cholesky - construct L̃ to be easy to solve so that A ≈ L̃L̃T

12

	Guy's Notes (Part 1)
	Guy's Notes (Part 2)
	Error and Stability
	Stability in the 2-Norm

	Guy's Notes (Part 3)
	3 Properties
	Error and the Residual
	Jacobi and Gauss-Seidel Iteration Methods
	Analysis of Jacobi and Gauss-Seidel
	Iterations to Reduce the Error by a Factor
	Successive Over-Relaxation

	Guy's Notes (Part 4)
	Motivation for Multigrid
	Coarse Grid Correction
	2-Grid Preliminary Scheme
	2-Grid Revised Scheme
	Restriction Operators
	Interpolation Operators
	Coarse Grid Operator
	Choosing 1 and 2
	From 2-Grid to Multigrid

	Guy's Notes (Part 5)
	Descent Methods
	Preliminary Steepest Descent Algorithm
	More Efficient Steepest Descent Algorithm
	Conjugate Gradient
	Conjugate Gradient Algorithm
	Analysis of Conjugate Gradient
	Preconditioning
	Preconditioned Conjugate Gradient Algorithm
	Preconditioners

