
Document: Math 228B (Winter 2011)
Professor: Guy
Latest Update: April 2, 2012
Author: Jeff Irion
http://www.math.ucdavis.edu/~jlirion

Contents

1 Guy’s Notes (Part 1) 3
1.1 Intro . 3
1.2 Fourier Transforms . 3
1.3 Forward Time Centered Space Discretization of the Diffusion Equation and Advection Equation 4
1.4 Stability Analysis for Forward Euler . 4
1.5 Analysis of Forward Euler for the Heat/Diffusion Equation 5
1.6 FE & CD for the Advection Equation . 5
1.7 Backward Euler . 6
1.8 Analysis of Forward Euler, Backward Euler, and the Trapezoidal Rule 6
1.9 Standard Classes of ODE Methods . 7

2 Guy’s Notes (Part 2) 9
2.1 Consistency, Stability, and Convergence . 9
2.2 Lax Equivalence Theorem . 9
2.3 Stability of Crank-Nicolson in the 2-norm for the 1-D Diffusion Equation 10
2.4 Stability of FE for Diffusion in the ∞-norm . 11

3 1-18-11 12
3.1 Stability Analysis for Growing Solutions . 12
3.2 von Neumann Analysis . 12
3.3 Forward Euler for the Diffusion Equation . 14

4 1-20-11 16
4.1 Stability and Discretization . 16
4.2 Implicit Methods for Diffusion . 17
4.3 ADI & LOD . 18

5 1-25-11 19
5.1 LOD & ADI (Continued) . 19
5.2 Fractional Step Schemes . 20

6 1-27-11 22
6.1 Newton’s Method . 22
6.2 Alternate Method: Fractional Step Method . 23
6.3 Strang Splitting . 24

7 2-1-11 25
7.1 Intro . 25
7.2 IMEX Methods . 25
7.3 LOD for Diffusion . 25
7.4 Nonrectangular Domains . 25
7.5 Cartesian Grid . 26

http://www.math.ucdavis.edu/~jlirion

8 2-3-11 28
8.1 Boundary Fitted Mesh . 28
8.2 Hyperbolic Problems . 28

9 2-8-11 31
9.1 Comments on HW1, Problem 2 . 31
9.2 Comments on HW1, Problem 4 . 32
9.3 Lax-Friedrich for ut + aux = 0 . 32

10 2-10-11 34
10.1 CFL Condition . 34
10.2 Upwinding . 35

11 2-15-11 38
11.1 Upwinding (Continued) . 38
11.2 Stability of Lax-Wendroff . 39

12 2-17-11 41
12.1 Discontinuous Solutions . 41
12.2 Modified Equations . 41
12.3 Lax-Friedrichs Modified Equation . 42

13 2-22-11 44
13.1 Comments on HW2 . 44
13.2 Wrapping Up Modified Equations . 44
13.3 Boundary Conditions . 45
13.4 Linear Systems . 46

14 2-24-11 47
14.1 Finite Volume Methods & Conservation Laws . 48
14.2 Numerical Flux Function: Advection Equation . 49

15 3-1-11 50
15.1 Finite Volume Methods (Continued) . 50
15.2 Idea behind high-resolution methods . 51
15.3 REA Algorithms . 51

16 3-3-11 53
16.1 REA Algorithms (Continued) . 53
16.2 Common High-Resolution Limiters . 55

17 3-8-11 56
17.1 High Resolution Methods (Continued) . 56
17.2 Total Variation . 56
17.3 Total Variation Diminishing (TVD) . 56

1 Guy’s Notes (Part 1)

1.1 Intro

In 228B we will focus on time-dependent problems:

ut = D∆u (heat/diffusion equation)

ut + aux = 0 (advection equation)

utt = c2∆u (wave equation)

Also, mixed equations:

ut = D∆u+R(u) (reaction-diffusion equation)

ut + a∇u = D∆u+R(u) (advection-diffusion-reaction equation)

Nonlinear problems:

ut + uux = 0 (Burgers equation)

Conservation laws:

ut + (f(u))x = 0

• The diffusion equation is parabolic

• The advection equation and wave equation are hyperbolic

1.2 Fourier Transforms

For u ∈ L2(R), the Fourier transform û(ξ) is

û(ξ) =
1√
2π

∫
R
u(x)e−iξx dx

û(ξ) is also in L2, and the inverse transform is

u(x) =
1√
2π

∫
R
û(ξ)eiξx dx

Parseval’s Relation:
‖u(x)‖2 = ‖û(ξ)‖2

Fourier Transforms of derivatives:

ux(x)→ iξû(ξ)

uxx(x)→ (iξ)2û(ξ) = −ξ2û(ξ)

3

1.3 Forward Time Centered Space Discretization of the Diffusion Equation and Ad-
vection Equation

Consider

ut = Duxx on x ∈ [0, 1]

u(0) = u(1) = 0

u(x, 0) = f(x)

If we discretize space only we get a system of N couple ODEs:

d

dt
u(t) = Lu(t) uj(0) = f(xj)

We can use an ODE solver to find the solution. This is called the method of lines.

In practice, a solver designed for the particular PDE will be more efficient than an ODE solver. The simplest
method for solving ODEs is forward Euler. Discretize into time steps ∆t so that

tn = n∆t

dy

dt
= f(y)

yn+1 = yn + f(yn)∆t

The forward Euler discretization for the heat equation is:

unj ≈ u(xj , tn)

This is stable if the time step is small enough.

The forward Euler discretization for the advection equation is:

un+1
j − unj

∆t
+ a

(
unj+1 − unj−1

2h

)
= 0

This scheme is unstable for all choices of ∆t. In other words, maxj |unj | → ∞ as n → ∞ for any ∆t, when
we know that max

x
|u(x)| should be bounded.

1.4 Stability Analysis for Forward Euler

Given the ODE y′ = f(y). Suppose we have a method that produces a sequence yn given y0, where
yn ≈ y(n∆t). Apply the method to y′ = λy. Let z = λt, where z may be complex since y′ = Ay may have
complex eigenvalues. z is in the region of absolute stability if yn → 0 as n→∞.

yn+1 − yn

∆t
= λyn

yn+1 = (1 + λ∆t)yn

yn = (1 + λ∆t)ny0

4

yn → 0 if |1 + λ∆t| < 1

The region of absolute stability is:
{z ∈ C

∣∣ |1 + z| < 1}
This is the unit disc of radius 1 centered at −1.

1.5 Analysis of Forward Euler for the Heat/Diffusion Equation

un+1
j − unj

∆t
=
D

h2
(unj−1 − 2unj + unj+1)

We need λ∆t = z in the region of absolute stability for all eigenvalues λ of DL, where L is the discrete
Laplacian. The eigenvalues of L are:

λk =
2

h2
(cos(kπh)− 1) k = 1, . . . , N

The largest eigenvalue is:

λN =
2

h2
(cos(Nπh)− 1) ≈ − 4

h2

Forward Euler is stable on the diffusion equation if

−4D∆t

h2
> −2

∆t <
h2

2

The diffusion equation is an example of a stiff equation, where the ratio of the eigenvalues (similar to the
condition number) is large. Since dy/dt = λy, λ has dimensions of 1/time. Therefore, λ−1 can be thought
of as the time scale of change, and so a equation is stiff when it has a wide range of time scales. In the
diffusion equation, the fastest time scales are associated with high spatial frequency modes and are damped
very quickly.

1.6 FE & CD for the Advection Equation

un+1
j − unj

∆t
+

a

2h
(unj+1 − uj − 1n) = 0

Consider periodic space and look at the eigenvectors of the centered-difference operator:

(D0u)j =
1

2h
(uj+1 − uj − 1)

The eigenvectors are
uj = eikxj

D0e
ikxj =

1

2h
(eikxj+1 − eikxj−1)

=
1

2h
(eik(xj+h) − eik(xj−h))

= eikxj
eikh − e−ikh

2h

=
i sin(kh)

h
eikxj

5

Since the eigenvalues are pure imaginary, there is no way to choose ∆t to that λ∆t lies in the region of
absolute stability.

1.7 Backward Euler

yn+1 − yn

∆t
= f(yn+1)

• This is an example of an implicit method , meaning that we have to solve for yn+1

• This method is very effective for stiff problems

Region of Absolute Stability

y′ = λy

yn+1 − yn

∆t
= λyn+1

(1− λ∆t)yn+1 = yn

yn+1 =
1

1− λ∆t
yn

• This is an A-stable method, meaning that the region of absolute stability contains the whole left
half-plane

• Backward Euler is stable for the heat equation for any time step

1.8 Analysis of Forward Euler, Backward Euler, and the Trapezoidal Rule

Both Forward Euler and Backward Euler are first-order accurate in time. The Forward Euler discretization
of the diffusion equation is:

ut = Duxx

0 =
un+1
j − unj

∆t
− D

h2

(
unj−1 − 2unj + unj+1

)
The local truncation error is:

τnj =
u(xj , tn+1)− u(xj , tn)

∆t
− D

h2
[u(xj−1, tn)− 2u(xj , tn) + u(xj+1, tn)]

τnj = ut +
∆t

2
utt +O(∆t2)−D

[
uxx +

h2

12
uxxxx +O(h4)

]
τ =

∆t

2
utt −

Dh2

12
uxxxx + higher order terms

τ = uxxxx ·
(

∆tD2

2
+
Dh2

12

)
+ higher order terms (utt = D2uxxxx via the ODE)

For Backward Euler,

τ = uxxxx ·
(
−∆tD2

2
− Dh2

12

)
+ higher order terms

What about 2nd order in time?
yn+1 − yn−1

2∆t
= f(yn)

6

This is called the midpoint method . It is an example of a multi-step method. It is 2nd order accurate, but
it has a very restrictive stability region.

We can get 2nd order accuracy by averaging Forward Euler and Backward Euler:

yn+1 − yn

∆t
=

1

2

(
f(yn+1) + f(yn)

)
1

2

(
f(yn+1) + f(yn)

)
= f(yn+1/2) +O(∆t2)

This is called the trapezoidal rule. Its absolute stability is:

yn+1 − yn

∆t
=
λ

2
(yn + yn+1)(

1− λ∆t

2

)
yn+1 =

(
1 +

λ∆t

2

)
yn

yn+1 =
1 + z/2

1− z/2
yn

|2 + z| ≤ |2− z|
<(z) ≤ 0

Thus, the trapezoidal rule is A-stable.

The trapezoidal rule applied to the heat equation with the standard second-order discrete Laplacian is called
Crank-Nicolson. It is unconditionally stable, and it is 2nd order accurate in space and time.

1.9 Standard Classes of ODE Methods

1. Runge-Kutta: one step, multi-stage methods
Example:

y∗ = yn +
∆t

2
f(yn)

yn+1 = yn + ∆tf(y∗)

OR y∗ = yn + ∆tf(yn)

yn+1 = yn +
∆t

2
(f(yn) + f(y∗))

General r-stage Runge-Kutta method:

Yi = yn + ∆t
n∑
j=1

Aijf(tn + cj∆t, Yj)

yn+1 = yn + ∆t
r∑
j=1

bjf(t0 + cj∆t, Yj)

• A is called the RK matrix

• bs are the RK weights

• cs are the RK nodes

7

For example, the classical 4th order RK matrix is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

=
c A

bT

2. Linear Multi-Step Methods General r-step method:

r∑
j=0

αjy
n+j = ∆t

r∑
j=0

βjf(yn+j)

Adams Methods

yn+r − yn+r−1

∆t
=

r∑
j=0

βjf(yn+j)

• If βr = 0⇒ Adams-Bashforth method, explicit (1-step AB method is FE)

• If βr 6= 0⇒ Adams-Moulton method, implicit (1-step AM is the trapezoidal rule)

Backward Differentiation Formula (BDM) Methods

n∑
j=0

αjy
n+j = ∆tβrf(yn+r)

1-step BDF is Backward Euler: Y n+1 − yn = ∆tf(yn+1)
BDF 2 is:

3yn+2 − 4yn+1 + yn = 2∆tf(yn+2)

This is 2nd order accurate and absolutely stable.

8

2 Guy’s Notes (Part 2)

2.1 Consistency, Stability, and Convergence

We want to know how to ensure that the numerical scheme gives solutions that converge to the solution of
the PDE as ∆t, h→ 0.

• Convergence: a numerical scheme is convergent if for any point x∗, t∗ in the domain, |unj −u(x∗, t∗)| →
0 whenever xj → x∗ and tn → t∗, i.e. ∆t, h→ 0.

• Consistency: the local truncation error τ → 0 as ∆t, h→ 0.

• Stability: a method is Lax-Richtmyer stable if for each time T , there is a constant CT independed of
∆t such that

‖Bn‖ ≤ CT
This allows for the solution to grow in time, but not in the number of steps to get a fixed point in time.

Let un and vn be two different solutions to

un+1 = Bun + bn (with different initial conditions, u0 and v0)

The method is stable if for each time T , there is a constant KT , independent of u0 and v0, such that

‖un − vn‖ ≤ KT ‖u0 − v0‖ ∀ n∆t ≤ T

In other words, if the solutions start close, then they stay close.

2.2 Lax Equivalence Theorem

Theorem 2.1. Lax Equivalence Theorem
Notes 1/13/11

For linear problems,
stability + consistency⇒ convergence

OR

A linear, consistent difference scheme to a well-posed linear PDE is convergent iff it is sta-
ble.

Proof

• Let un+1 = Bun + bn be stable and consistent

• Let ûsol be the solution to the PDE at time tn at the grid points

• Recall: the error is en = un − unsol

• Plug usol into the difference equation:

un+1
sol = Bunsol + bn + ∆tτn

9

• For Forward Euler:

un+1 − un

∆t
= Lun ⇒ un+1 = un + ∆tLun

un+1
sol − u

n
sol

∆t
= Lunsol ⇒ un+1

sol = (I + ∆tL)unsol + ∆tτn︸ ︷︷ ︸
subtract from the difference equation

en+1 = Ben −∆tτn

e0 = 0 because we’re given the IC

e1 = −∆tτ0

e2 = −∆tBτ0 −∆tτ1

e3 = −∆tB2τ0 −∆tτ1 −∆tτ2

. . .

en = −∆t
∑
k=1

nBn−kτk−1

‖en‖ ≤ ∆t
∑
k=1

n‖Bn−kτk−1‖

≤ ∆t
∑
k=1

n‖Bn−k‖‖τk−1‖

• Let T = n∆t

• We know that ‖Bn−k‖ ≤ CT and (n− k)∆t ≤ n∆t = T . Thus,

‖en‖ ≤ ∆tCT
∑
k=1

n‖τk−1‖

≤ n∆tCT max
1≤k≤n

‖τk−1‖ = CT max
1≤k≤n

‖τk−1‖ → 0 (by consistency)

2.3 Stability of Crank-Nicolson in the 2-norm for the 1-D Diffusion Equation

un+1 − un

∆t
=

1

2
(Lun+1 + Lun) + fn+1/2︸ ︷︷ ︸

or 1
2

(fn+fn+1)(
I − ∆t

2
L

)
un+1 =

(
I +

∆t

2
L

)
un + ∆tfn+1/2

un+1 =

(
I − ∆t

2
L

)−1(
I +

∆t

2
L

)
︸ ︷︷ ︸

B

un + ∆t

(
I − ∆t

2
L

)−1

fn+1/2

• B is symmetric, so ‖B‖2 = ρ(B)

• The eigenvalues of L are:

λk =
2

h2

(
cos(kπh)− 1

)
≤ 0

• The eigenvalues of B are:

λk =
1 + ∆t

2 λk

1− ∆t
2 λk

≤ 1

• ‖B‖2 ≤ 1, so ‖Bn‖2 ≤ ‖B‖n2 ≤ 1, so Crank-Nicolson is stable.

10

2.4 Stability of FE for Diffusion in the ∞-norm

un+1 − un

∆t
= Lun + fn

un+1 = (I + ∆tL)un + ∆tfn

• ‖B‖∞ = max row sum = ∆t
h2 +

∣∣1− 2∆t
h2

∣∣+ ∆t
h2

• Assume 1− 2∆t
h2 > 0 ⇒ ∆t ≤ h2

2

• ‖B‖∞ = 1, so ‖Bn‖∞ ≤ ‖B‖n∞ = 1, so FE is stable for diffusion in the ∞-norm.

11

3 1-18-11

3.1 Stability Analysis for Growing Solutions

un+1 = Bun + bn

This is stable if: ‖B‖ ≤ CT
n∆t ≤ T

But what if the solution is supposed to grow?

If there is a constant α, independent of ∆t (for ∆t sufficiently small) such that

‖B‖ ≤ 1 + α∆t

then the scheme is Lax-Richtmyer stable.
Suppose

‖B‖ ≤ 1 + α∆t

‖Bn‖ ≤ ‖B‖n ≤ (1 + α∆t)n ≤ eα(n∆t) ≤ eαT

1 + α∆t ≤ eα∆t (1 + α∆t are the first 2 terms in the Taylor expansion)

for n∆t ≤ T . T can depend on time, but not on the number of time steps.
Consider

ut = uxx + bu

If b is positive, we may expect growth of the solution.

Forward Euler:
un+1 = (I + ∆tL+ ∆tbI)un

Suppose ∆t ≤ h2/2.

‖I + ∆tL+ ∆tbI‖∞ =
2∆t

h2
+

∣∣∣∣1− 2∆t

h2
+ ∆tb

∣∣∣∣
≤ 1 + ∆t|b|

This is stable for any b. This is good for b > 0, but if b < 0 the solution should not grow (for suitable
boundary conditions).

If b < 0, Guy would enforce ‖B‖ ≤ 1 (strong stability). This way you aren’t allowing for growth when the
solution shouldn’t be growing.

3.2 von Neumann Analysis

It is often difficult to compute norms of matrices. Recall how we used the Fourier transform to solve
the diffusion equation on the real line. The same idea works for any linear constant coefficient PDE, and it
also works for constant coefficient linear difference equations on the whole real line or for periodic boundaries.

Discretized real line:
xj = jh, j = −∞, . . . ,∞

12

Note that eiξxj are eigenfunctions of constant coefficient difference operators.
Centered Difference Operator (D0):

(D0u)j =
uj+1 − uj−1

2h(
D0e

iξxj
)
j

=
eiξxj+1 − eiξxj−1

2h
=
eiξ(xj+h) − eiξ(xj−h)

2h
= eiξxj

(
eiξh) − e−iξh)

2h

)

=
i sin(ξh)

h
eiξxj

Second Difference Operator (D+D−):

(D+D−u)j =
uj−1 − 2uj + uj+1

h2(
D+D−e

iξxj
)
j

=
2

h2
(cos(ξh)− 1) eiξxj

= − 4

h2
sin2

(
ξh

2

)
eiξxj

Let vj be a discrete function on the discrete real line. The Fourier transform of vj is:

v̂(ξ) =
h√
2π

∞∑
j=−∞

vje
−iξxj for − π ≤ ξh ≤ π ⇒ −π

h
≤ ξ ≤ π

h

The inverse Fourier transform is:

vj =
1√
2π

∫ π/h

−π/h
v̂(ξ)eiξxj dξ

Thus, we have:

F :
1√
2π

∫ π/h

−π/h
v̂(ξ)eiξxj dξ︸ ︷︷ ︸
vj

7→ v̂(ξ)

F−1 :
h√
2π

∞∑
j=−∞

vje
−iξxj

︸ ︷︷ ︸
v̂(ξ)

7→ vj

Note:
real space (bounded)︸ ︷︷ ︸

discrete

→ Fourier space (discrete)︸ ︷︷ ︸
bounded

Parseval’s relation holds:

‖v̂‖2 = ‖v‖2 =

∑
j

|vj |2
1/2

To show the stability of un+1 = Bun, we can show that

‖B‖2 ≤ 1 + α∆t

This is equivalent to
‖un+1‖2 ≤ (1 + α∆t)‖un‖2

By Parseval’s relation, we can show stability by showing that

‖ûn+1‖ ≤ (1 + α∆t)‖ûn‖2

13

3.3 Forward Euler for the Diffusion Equation

un+1
j = unj +

D∆t

h2

(
unj−1 − 2unj + unj+1

)
unj =

1√
2π

∫ π/h

−π/h
ûn(ξ)eiξxj dξ (definition of Inverse Fourier Transform)

↑ plug this into the difference scheme

un+1
j =

1√
2π

∫ π/h

−π/h
ûn(ξ)

(
eiξxj +

D∆t

h2

(
eiξxj−1 − 2eiξxj + eiξxj+1

))
dξ

=
1√
2π

∫ π/h

−π/h
ûn(ξ)

(
1− 4D∆t

h2
sin2

(
ξh

2

))
eiξxj dξ

ûn+1 =

(
1− 4D∆t

h2
sin2

(
ξh

2

))
ûn (apply F to both sides)

= g(ξ)ûn

g(ξ) is called the amplification factor . The von Neumann condition is

|g(ξ)| ≤ 1 + α∆t ∀ ξ

If this is met, then
‖ûn+1‖2 ≤ (1 + α∆t)‖ûn‖2

and so the scheme is stable.

For Forward Euler, we require: ∣∣∣∣1− 4D∆t

h2
sin2

(
ξh

2

)∣∣∣∣ ≤ 1

−1 ≤ 1− 4D∆t

h2
sin2

(
ξh

2

)
≤ 1

0 ≤ 4D∆t

h2
sin2

(
ξh

2

)
≤ 2

∆t ≤ h2

2D

To perform von Neumann analysis, assume a solution of the form

unj = eiξxj

and compute
un+1
j = g(ξ)eiξxj

More generally,
unj = g(ξ)neiξxj

14

For example, the von Neumann analysis of the leapfrog (midpoint) scheme for diffusion is:

un+1
j − un−1

j

2∆t
=
D

h2
(unj−1 − 2unj + unj+1)(

gn+1 − gn−1

2∆t

)
�
��eiξxj =

D

h2
gn
(
−4 sin2

(
ξh

2

))
�
��eiξxj

g2 − 1 = −8D∆t

h2
sin2

(
ξh

2

)
g

g2 +
8D∆t

h2
sin2

(
ξh

2

)
g − 1 = 0

g±(ξ) =

−8D∆t
h2 sin2

(
ξh
2

)
±
√(

8D∆t
h2 sin2

(
ξh
2

))
+ 4

2
|g±| ≥ 1 ∀ ξ ⇒ unconditionally stable

15

4 1-20-11

4.1 Stability and Discretization

Idea: sometimes instability is a local phenomenon.

Consider the variable coefficient diffusion equation:

ut = (D(x)ux)x ← conservation form

= −Jx

For diffusion:

1-D: J = −Dux
higher dimensions: ut = −∇ · J, J = −D∇u

We want our discretization to mimic the conservation form.

Discretize a line with points . . . , xj−1, xj , xj+1, . . .

ut = −Jx uj ≈ u(xj)

Approximate Jx at the grid points.
Approximate J at the edges.

Jj+ 1
2
≈ J(xj+ 1

2
)

(Jx)j ≈
Jj+ 1

2
− Jj− 1

2

h

∂uj
∂t

= ut =
Jj− 1

2
− Jj+ 1

2

h

Jj+ 1
2

= −Dj+ 1
2

(
uj+1 − uj

h

)

((D(x)ux)x)j ≈
Dj+ 1

2

(
uj+1−uj

h

)
−Dj− 1

2

(
uj−uj−1

h

)
h

≈
Dj− 1

2
uj−1 −

(
Dj− 1

2
+Dj+ 1

2

)
uj +Dj+ 1

2
uj+1

h2

von Neumann Analysis

Analyze the constant coefficient problem

∆t ≤ h2

2D
for some D

Pick D = maxD(x).
Use the ‖ · ‖∞ norm to analyze stability.

un+1 = (I + ∆tL)un

‖I + ∆tL̃‖∞ = max
j

(
∆t

h2

(
Dj− 1

2
+Dj+ 1

2

)
+

∣∣∣∣1− ∆t

h2

(
Dj− 1

2
+Dj+ 1

2

)∣∣∣∣)
Impose that

1− ∆t

h2

(
Dj− 1

2
+Dj+ 1

2

)
≥ 0 ⇒ ∆t ≤ h2

Dj− 1
2

+Dj+ 1
2

∀ j

16

Then
‖I + ∆tL̃‖∞ = 1

Question: Is Crank-Nicolson for this variable coefficient problem unconditionally stable?(
I −∆tL̃

)
un+1 =

(
I + ∆tL̃

)
un

du

dt
= L̃u

If L̃ is negative definite, then it is stable.
Check:

uT L̃u ≤ 0

4.2 Implicit Methods for Diffusion

Solve a linear system at each time step.
For example, Crank-Nicolson:(

I − ∆tD

2
L

)
un+1 =

(
I +

∆tD

2

)
un + ∆tfn+ 1

2

In 1-D, factor in O(N) work to solve the tridiagonal system.

Higher Dimensions
Forward Euler time step restriction:

• 1-D: ∆t ≤ h2

2D

• 2-D: ∆t ≤ h2

4D

• 3-D: ∆t ≤ h2

6D

In 2- or 3-D, how do we solve (
I − ∆t

2
L

)
un+1 = r

We can use an iterative scheme, such as SOR, CG, or MG. Or we can use direct solve.(
I − ∆t

2 L
)

has the same eigenvectors as L, and the eigenvalues are just the shifted eigenvalues of L.

The condition number of I − ∆t
2 L = O(∆t/h2).

As ∆t→ 0, h fixed, I − ∆t
2 L→ I, and we expect convergence in 1 step.

As ∆t→∞, h fixed, I − ∆t
2 L blows up.(

1

∆t
− 1

2
L

)
u =

1

∆t
r, r is O(∆t)

−Lun+1 = O(1)← Poisson equation

17

r =

(
I +

∆t

2
L

)
+ ∆tfn+1/2

∆t→ 0,
∆t

h
fixed,

∆t

h2
→∞

We have a good initial guess for un+1:
un+1 = un +O(∆t)

There is another way to approximately solve the system that was not available for time-independent prob-
lems. . .

4.3 ADI & LOD

Recall:
∆ = ∂2

x + ∂2
y L = Lx + Ly

What if we diffuse in the x-direction and then in the y-direction⇒ LOD scheme (Locally One-Dimensional)(
I − ∆t

2
Lx

)
u∗ =

(
I +

∆t

2
Lx

)
un(

I − ∆t

2
Ly

)
un+1 =

(
I +

∆t

2
Ly

)
u∗

What about 1 dimension implicit and 1 dimension explicit ⇒ ADI (Alternating Direction Implicit)
Common ADI scheme “Peaceman-Rachford”:(

I − ∆t

2
Lx

)
u∗ =

(
I +

∆t

2
Ly

)
un(

I − ∆t

2
Ly

)
un+1 =

(
I +

∆t

2
Lx

)
u∗

18

5 1-25-11

5.1 LOD & ADI (Continued)

• First substep

– Solve a tridiagonal system on each line ⇒ O(N) work

– Do this Ny times ⇒ O(NxNy) work

• Second substep

– O(Ny) work done Nx times ⇒ O(NxNy) work

Questions: Accuracy? Stability? Boundary conditions?

Stability: Both LOD and ADI are unconditionally stable.
von Neumann Analysis:

û∗ =
1− 4∆t

h2 sin2
(
ξ2h
2

)
1 + 4∆t

h2 sin2
(
ξ1h
2

) ûn
ûn+1 =

1− 4∆t
h2 sin2

(
ξ1h
2

)
1 + 4∆t

h2 sin2
(
ξ2h
2

) û∗
=

(
1− 4∆t

h2 sin2
(
ξ1h
2

))(
1− 4∆t

h2 sin2
(
ξ2h
2

))
(

1 + 4∆t
h2 sin2

(
ξ1h
2

))(
1 + 4∆t

h2 sin2
(
ξ2h
2

))
︸ ︷︷ ︸

g(ξ1,ξ2)

ûn

|g(ξ1, ξ2)| ≤ 1 ∀ξ1, ξ2

Accuracy of ADI:
Multiply the first equation by (I + ∆t

2 Lx) and use the fact that (I − ∆t
2 Lx) and (I + ∆t

2 Lx) commute to get:(
I − ∆t

2
Lx

)(
I +

∆t

2
Lx

)
u∗ =

(
I +

∆t

2
Lx

)(
I +

∆t

2
Ly

)
un

Use the second equation to eliminate u∗:(
I − ∆t

2
Lx

)(
I − ∆t

2
Ly

)
un+1 =

(
I +

∆t

2
Lx

)(
I +

∆t

2
Ly

)
un(

I − ∆t

2
(Lx + Ly) +

∆t2

4
LxLy

)
un+1 =

(
I +

∆t

2
(Lx + Ly) +

∆t2

4
LxLy

)
un

un+1 − un

∆t
=

1

2
(Lun+1 + Lun) +

∆t

4
LxLy(u

n − un+1)

As ∆t→ 0:
∆t2

4
LxLy

(
un − un+1

∆t

)
≈ −∆t2

4

∂5u

∂x2∂y2∂t

ut = ∆u+ O(∆t2) +O(h2)︸ ︷︷ ︸
from Crank-Nicolson

+O(∆t2)︸ ︷︷ ︸
from ADI

19

Boundary Conditions:
We are using Forward Euler in the y-direction and Backward Euler in the x-direction.

u∗ 6≈ un+1 u∗ = un+ 1
2 +O(∆t2)

Boundary conditions:

u∗0j = u
n+ 1

2
0j u∗Nx+1,j = u

n+ 1
2

Nx+1,j

Another way: Add the 2 ADI (Peaceman-Rachford) equations

2u∗ =

(
I +

∆t

2
Ly

)
un +

(
I − ∆t

2
Ly

)
un+1

u∗ =
un + un+1

2
− ∆t

4
Ly
(
un+1 − un

)
u(x, t+ ∆t)− u(x, t)

∆t
=

1

h2
(u(x− h, t)− 2u(x, t) + u(x+ h, t)) + τ︸︷︷︸

O(∆t)

un+1 = u(x, tn) + ∆tLu(x, tn)

u(x, tn+1) = un+1

y′ = f(y)

yn+1 = y(tn) + ∆tf(y(tn))

y(tn + ∆t) = y(tn) + ∆ty′(tn) +O(∆t2)

= y(tn) + ∆tf(y(tn))︸ ︷︷ ︸
yn+1

+O(∆t2)

u∗ on the boundary on LOD

(
I − ∆t

2
Lx

)
u∗ =

(
I +

∆t

2
Lx

)
un(

I∆t
2
Ly

)
un+1 =

(
I +

∆t

2
Ly

)
un

u∗ does not approximate the solution.
We can solve the 2nd equation on the boundary after finding some approximation to u∗ at the corners.

3-D, second order ADI is known as the “Douglass-Gunn scheme”

LOD is an example of a fractional stepping method.

5.2 Fractional Step Schemes

e.g. the reaction-diffusion equation:
ut = D∆u+R(u)

• D∆u: transport by diffusion

• R(u): chemical reaction

20

e.g. Fisher’s equation:
ut = Duxx + ku(1− u)

How to solve this numerically?
Try a Crank-Nicolson scheme:

un+1 − un

∆t
=

1

2

(
Lun+1 + Lun

)
+

1

2

(
R(un) +R(un+1)

)
(
I − ∆t

2
L

)
un+1 − ∆t

2
R(un+1)︸ ︷︷ ︸

this is nonlinear

=

(
I − ∆t

2
L

)
un +

∆t

2
R(un)

We can use Newton’s method to solve it.

21

6 1-27-11

ut = uxx+R(u)(
I − ∆t

2
L

)
un+1 − ∆t

2
R(un+1) =

(
I +

∆t

2
L

)
un +

∆t

2
R(un)

6.1 Newton’s Method

Newton’s method for a scalar equation is a way of finding solutions u to f(u) = 0. Guess a solution, then
linearize the equation and solve for the zero in the linear equation

uk+1 = uk − f(uk)

f ′(uk)

How should this be generalized for a system of equations?

F(u) = 0

f ′(uk)(uk+1 − uk) = −f(uk)

f ′(uk)δk = −f(uk)

uk+1 = uk + δk

The Jacobian of F at uk takes the role of f ′(uk).

Jkδk = −F(uk)

uk+1 = uk + δk

Example: Reaction Diffusion (with b = 1)

F (u) =

(
I − ∆t

2
L

)
u− ∆t

2
R(u)−

(
I +

∆t

2
L

)
un − ∆t

2
R(un)

Want to find un+1 so that F (un+1) = 0, where n ≡ time step and k ≡ Newton’s method iteration.

F ′(u) =

(
I − ∆t

2
L

)
− ∆t

2
R′(u)

F ′(un+1,k)δk = −F (un+1,k)← solve this linear system

Note that R is a diagonal matrix, so R′ is obtained by differentiating each entry.

un+1,k+1 = un+1,k + δk ← update u

Check:

1. ‖δ‖ < tol

2. ‖F (un+1,k+1)‖ < tol

22

6.2 Alternate Method: Fractional Step Method

du

dt
= Lu+R(u)

Advance in 2 steps

• Start with un and update du
dt = Lu over time length ∆t to get u∗

• Start at u∗ and update du
dt = R(u) over time length ∆t to get un+1

Is this easier?

If I take 2 substeps with second-order accurate in time methods, do we get a second-order scheme?
⇒ In general, no.

Consider ut = A(u) +B(u)
The simplest fractional stepping scheme is:

• Solve ut = A(u) to get u∗

• Solve ut = B(u) to get un+1 (with initial condition (guess?) u∗)

We can analyze without considering what numerical scheme we use in each substep.

Look at the linear problem
du

dt
= ut = Au+Bu

Start at u(tn):
u(tn+1) = e(A+B)∆tu(tn)

Use fractional stepping:

u∗ = eA∆tu(tn)

un+1 = eB∆tu∗ = eB∆teA∆tu(tn)

If A and B are matrices, eA+B 6= eAeB in general.

Fractional stepping error: un+1 − u(tn+1)

Taylor expand un+1 and u(tn+1) as ∆t→ 0:

e(A+B)∆t = I + ∆t(A+B) +
∆t2

2
(A+B)2 +O(∆t3)

eB∆teA∆t =

(
I + ∆tB +

∆t2

2
B2 +O(∆t3)

)(
I + ∆tA+

∆t2

2
A2 +O(∆t3)

)
= I + ∆tA+ ∆tB +

∆t2

2
A2 + ∆t2BA+

∆t2

2
B2 +O(∆t3)

= I + ∆t(A+B) +
∆t2

2
(A2 + 2BA+B2) +O(∆t3)

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2 6= A2 + 2BA+B2 in general, unless A & B commute

23

un+1 − u(tn+1) = O(∆t2)

This fractional stepping gives a first order accurate scheme. This is because there is O(∆t2) error per step,
and there are O(∆t−1) total steps.

How to get smaller splitting errors, resulting in a more accurate scheme?

6.3 Strang Splitting

1. Half-Step: ut = A(u)

2. Full-Step: ut = B(u)

3. Half-Step: ut = A(u)

e
∆t
2
Ae∆tBe

∆t
2
A = e∆t(A+B) +O(∆t3)

The overall solution is second-order.

Another scheme (cheaper than Strang):

1)
ut = A(u)
ut = B(u)

}
first order

2)
ut = B(u)
ut = A(u)

}
first order

The overall scheme is second order. In other words, un+1 is first order and un+2 is second order.

24

7 2-1-11

7.1 Intro

ut = A(u) +B(u)

Suppose A is stiff and B is not.

• Use implicit time methods for stiff problems

• Use explicit time methods for not stiff problems

7.2 IMEX Methods

A different approach from fractional stepping is IMEX ⇒ mix an implicit scheme and an explicit scheme.

For example, use trapezoidal rule for A and 2nd order AB (Adams Bashforth)⇒ becomes a 3 order scheme.

un+1 − un

∆t
=

1

2

(
A(un) +A(un+1

)
︸ ︷︷ ︸

trapezoidal

+
3

2
B(un)− 1

2
Bun−1)︸ ︷︷ ︸

Adams Bashforth

• With fractional stepping, it’s very difficult to get better than 2nd order accuracy.

• For this scheme, we can use FE for the first step, since it is 2nd order

7.3 LOD for Diffusion

Recall: (
I − ∆t

2
Lx

)
u∗ =

(
I +

∆t

2
Lx

)
un(

I − ∆t

2
Ly

)
un+1 =

(
I +

∆t

2
Ly

)
u∗

In terms of fractional stepping:
ut = Lxu+ Lyu

This is 2nd order in time if Lx and Ly commute. In general, Lx and Ly commute on the interior but not
near the boundaries. But if we have a constant coefficicient on a periodic domain, then they commute.

Crank-Nicolson: (
I − ∆t

2
(Lx + Ly)

)
un+1 =

(
I +

∆t

2
(Lx + Ly)

)
un

LOD can be used as an effective preconditioner if you want to use conjugate gradient to apply the inverse
of the matrix.

7.4 Nonrectangular Domains

ut = D∆u

Different Approaches to Discretization

25

1. Cartesian grid: put the odd-shaped domain in a big box and discretize the box.
Challenge: figuring out how to modify the discretization to account for the curved boundary.

2. Use body fitted mesh, where the gridpoints are the points on the mesh.
Use coordinates that deform with the boundary.

3. Use an unstructured mesh
Put down some points on the interior and the boundary, triangulate the domain. Often used with the
Finite Element Method. Can be automated fairly easily.

7.5 Cartesian Grid

• Regular Point: its 4 neighbors lie within the domain

• Irregular Point: at least one neighbor lies outside the domain

26

Suppose we have Dirichlet boundary conditions. Think of L = Lx +Ly. For this example, Lx does not need
to be modified. There are 2 ways to do this:

1. Use a 3-point discretization of Ly using N,P,B

2. Quadratically extrapolate the data from N,P,B to S and use the regular stencil at P

In simple cases, these give the same discretization for Ly
For strategy 1, the main question is how do we modify the notation?
Let d(P,B) = αh.

yP − yB = αh, 0 < α < 1

Then the 3-point approximation to uyy is

uyy ≈
2

(α+ 1)h2
uN −

2

αh2
uP +

2

α(α+ 1)h2
uB

=
2αuN − 2(α+ 1)uP + 2uB

α(α+ 1)h2

Need to store the stencil of the discrete Laplacian at the irregular points (at least).
Outside the domain?
Stability:
We want to avoid explicit time schemes, even when

h2

4D
is not small

The stability restriction is:

∆t ≤ h2

2
(

1
α + 1

β

)
D

Accuracy:
The 3-point approximation to the 2nd derivative is 1st order accurate for non-uniform spacing. At irregular
points, the LTE is O(h). At regular points, the LTE is O(h2). However, since irregular points are near the
boundary (1-D) and regular points are in the interior (2-D), we have a lot more regular points than irregular
points. Recall: in 228a we showed that in 1-D, an O(h) discretization adjacent to the boundary contributed
O(h3) to the total error. The same result holds in 2-D.

27

8 2-3-11

8.1 Boundary Fitted Mesh

Idea: map the physical domain to a rectangular domain, discretize the transformed domain, and solve.

x = r cos θ

y = r sin θ

Use polar coordinates to transform from (r, θ) coordinates to (x, y). Discretize using equally spaced points
in r and θ. The circles are lines of constant r, and the outward rays are lines of constant θ. If we plot
this discretized domain in r-θ space, we are working with a rectangle. We also have to transform the PDE
(Laplacian):

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2

The “price” of using transformed coordinates is an equation that depends on the new coordinates.

Let x = (x1, x2) be the original coordinates.
Let ξ = (ξ1, ξ2) be the transform coordinates.
Let x = F(ξ) ← the challenge is to find this map.

Jij =
∂Fi
∂xj

g = JTJ

Once we have our trnsformation F, the transformed Laplacian in ξ coordinates is

∆u =
∑
i

∑
j

1√
|g|

∂

∂ξi

(√
|g|g−1

ij

∂u

∂ξj

)
This is easy if you have the map. We often don’t have the map, but it can be generated numerically.

8.2 Hyperbolic Problems

Intuitive sense: propogation of information requires a finite amount of time.

ut +Aux = 0

is hyperbolic if A has real eigenvalues and is diagonalizable.

In 2-D:
ut +Aux +Buy = 0

28

Non-Linear
ut +∇ · F(u) = 0

Start with the advection equation:
ut + aux = 0

Solution is
u(x, t) = u0(x− at)

on the real line with initial condition
u(x, 0) = u0(x)

The initial data just translates.

The diffusion equation is forgiving because data smoothes out, but this does not happen with the advection
equation.

We showed previously that forward time, centered space discretizationis unstable.

un+1
j − unj

∆t
+ a

(
unj+1 − unj−1

2h

)
= 0

von Neumann analysis:

g(ξ) = 1− a∆t

h
sin(ξh)i

|g(ξ)| > 1 for some ξ

However, a growing solution does not imply unstable. (Provided that the solution grows exponentially slowly
and is bounded by some rate.) This scheme is actually stable as long as ∆t→ 0 sufficiently faster than h.

Note: absolute stability does not allow a solution to grow, but Lax Richtmeyer does.

Suppose we take ∆t = h2 for our refinement path.

|g(ξ)|2 = 1 +
a2∆t2

h2
sin2(ξh)

= 1 + ∆t

(
a2∆t

h2
sin2(ξh)

)
≤ 1 + ∆ta2

This is stable, but we would never do this because there are stable, explicit schemes with ∆t = O(h).

Write this discretization as

un+1
j = unj −

∆t

2h

(
unj+1 − unj−1

)
With a slight modification, we get the Lax-Friedrichs scheme (which is stable):

un+1
j =

1

2
(unj+1 + unj−1 −

∆ta

2h
(unj+1 − unj−1)

Let ν =
∆ta

h

29

ν is called the Courant number . Then we can rewrite Lax-Friedrichs as:

un+1
j =

1

2
(unj+1 + unj−1)− ν

2
(unj+1 − unj−1)

von Neumann analysis:

g(ξ) =
1

2
(eiξh + e−iξh)− ν

2
(eiξh − e−iξh)

= cos(ξh)− iν sin(ξh)

|g(ξ)|2 = cos2(ξh) + ν2 sin2(ξh)

This is stable provided that

ν2 ≤ 1

|ν| ≤ 1

30

9 2-8-11

9.1 Comments on HW1, Problem 2

Crank-Nicoloson for diffusion equation with initial data

u(t = 0) =

{
1 0 ≤ x ≤ 0.5
0 0.5 < x ≤ 1

Let’s look at the regions of absolute stability for the trapezoidal rule and backward Euler. (Crank-Nicolson
is the application of the trapezoidal rule to diffusion with the standard 3-point discretization.)

y′ = λy

yn+1 = R(z)yn, where z = λ∆t

This is absolutely stable if |R(z)| ≤ 1.

For Trapezoidal Rule:

R(z) =
1 + z/2

1− z/2
(9.1)

For Backward Euler:

R(z) =
1

1− z
(9.2)

Method Of Lines aplied to
du

dt
= Lu

where L is the discrete Laplacian.

λk = − 4

h2
sin2

(
kπh

2

)
, k = 1, . . . , N

If we plot λk vs. k, we see that the largest magnitude eigenvalues correspond to large k, i.e. high spatial
frequencies.

What does it mean to have large negative eigenvalues? It means “those things” decay very rapidly.

As h → 0, λN → −∞ ⇒ z → −∞ along the real axis (note: z is/can be complex). For the Trapezoidal
Rule, R(z) → −1 (see (9.1)). For Backward Euler, R(z) → 0 (see (9.2)). This is telling us that the high
frequency modes in trapezoidal rule decay and oscillate in discrete time.

Both Backward Euler and Trapezoidal Rule are A-stable, but backward Euler is L-stable (stronger).

• If |R(z)| ≤ 1 ∀ z such that <(z) ≤ 0, then the method is A-stable.

• If |R(z)| → 0 as |z| → ∞, then the method is L-stable.

– Note: L-stable 6⇒ A-stable

When applying Crank-Nicolson, be aware of your initial conditions.

All BDF methods are L-stable.
BDF 1 & 2 are both A-stable.
BDF 1 is Backward Euler.
BDF 2 is

3un+1 − 4un + un−1

2∆t
= f(un+1)

31

What is the extra cost of BDF 2 compared to Backward Euler? More storage (you have to store 1 more
time level).

Implicit Runge-Kutta is L- & A-stable and 2nd order accurate.

u∗ = yn +
∆t

4
(f(un) + f(u∗))

where u∗ approximates un+1/2.

un+1 =
1

3

(
4u∗ − un + ∆tf(un+1)

)
Let’s look at the amplification factor for Crank-Nicolson:

g(ξ) =
1− 2∆t

h2 sin2
(
ξh
2

)
1 + 2∆t

h2 sin2
(
ξh
2

) , ξh = θ, −π ≤ θ ≤ π

g(θ) =
1− δ sin2

(
θ
2

)
1 + δ sin2

(
θ
2

) where δ =
2∆t

h2

We can get rid of oscillations by making δ ≈ 1⇒ ∆t ≈ h2/2. But this is the stability restriction for Forward
Euler.

9.2 Comments on HW1, Problem 4

In 4(a), many claimed

|g(ξ)|2 ≤ 1 +
|a|
h

∆t ⇒ stability

This does not take into account the path that ∆t/h must take. It merely says that as ∆t→ 0 with h fixed,
it is stable.

µ =
b∆t

h2
≤ 1

2

9.3 Lax-Friedrich for ut + aux = 0

ut + aux = 0

un+1
j =

unj−1 + unj+1

2
− a∆t

2h

(
unj+1 − unj−1

)
un+1
j − unj

∆t
=
unj−1 − 2unj + unj+1

2∆t
− a

2h

(
unj+1 − unj−1

)
ut +O(∆t) =

h2

2∆t

(
unj−1 − 2unj + unj+1

2∆t

)
− aux +O(h2)

ut +O(∆t) =
h2

2∆t
uxx+O

(
h4

∆t

)
− aux +O(h2)

ut + aux = O(∆t) +O(h2) +O

(
h2

∆t

)
︸ ︷︷ ︸

Local Truncation Error

Let ∆t, h→ 0 and h2/∆t→ 0. For stability, we require that∣∣∣∣a∆t

h

∣∣∣∣ ≤ 1

32

Take ∆t/h = constant. This effectively makes the last term O(h)→ 0 as h→ 0, so the scheme is constant.
Therefore, Lax-Friedrich converges.

Why did that one tweak give us a stable scheme? It introduced a small diffusion into the problem. Therefore,
we could think of Lax-Friedrich as a discretization of

ut + aux = εuxx, ε =
h2

2∆t

In our homework we showed that Forward Euler with centered difference is stable if

ν2 ≤ 2µ ≤ 1

ν2 =
a2∆t2

h2
, µ =

ε∆t

h2

2µ = 2

(
h2

2∆t

)
∆t

h2
= 1

Stability Constraint: ν2 = 1

33

10 2-10-11

Courant Number: ν = a∆t
h

For Lax-Friedrichs, we require |ν| ≤ 1

10.1 CFL Condition

(Stands for Courant-Friedrichs-Lewy)

In hyperbolic equations, there is a finite speed of proprogation. We can use this idea in designing numerical
schemes.

The domain of dependence of the point (x, t) is the set of points that determine the solution, u(x, t), at (x, t).

For
ut + aux = 0

Our solution is of the form
u(x, t) = u0(x− at)

The solution is constant on the curves (lines) x− at = x0.

The Domain of Dependence (DoD) of (x, t) is (x − at, 0), i.e. a single point. If we had a nonhomogeneous
equation, the DoD would be the line.

DoD for ut = uxx on R: the whole spatial domain (i.e. the whole real line)

For numerical methods, we are interested in the numerical (discrete) domain of dependence. That is, the
set of points in discrete space and time which determine the numerical solution unj at (xj , tn).

Suppose we use a 3-point centered explicit time scheme.

The filled in points are the numerical DoD.

34

What happens to the numerical DoD as we refine space and time with r = ∆t
h fixed?

⇒ The number of points increases, but they occupy the same region of space-time.

At time t0, the points in the numerical domain of dependence are contained within the interval
[
X − h

∆tT,X + h
∆tT

]
=

[X − T/r,X + T/r].

It is reasonable to expect that for the scheme to converge, we need the domain of dependence of the PDE
to be contained within the DoD of the numerical scheme.

The CFL Condition: Da ⊆ DN as ∆t, h→ 0.

For ut + auxx = 0, the DoD is

x− at ∈
[
X − T

r
,X +

T

r

]
X − T

r
≤ X − aT ≤ X +

T

r

−T ≤ −raT ≤ T

−1 ≤ ra ≤ 1

|ra| ≤ 1∣∣∣∣∆tah
∣∣∣∣ ≤ 1

|ν| ≤ 1

This is the CFL condition for this equation with this stencil.

CFL is a necessary condition for convergence, but it is not sufficient.

For example, forward time centered-space is not stable even when |ν| ≤ 1, if ∆t = O(h).

Generally, we think about CFL for hyperbolic problems, not for parabolic problems.

10.2 Upwinding

ut + auxx = 0

Suppose a > 0, i.e. information is moving to the right. Why use the centered space scheme?

35

Suppose ν =
a∆t

h
< 1

If we know the solution at Q, then we know it at P because u(P) = u(Q). Question: where is Q?

xj − atn+1 = xQ − atn
xQ = xj − a∆t← in general, this is not on the grid

Use the numerical solution at points A & B to interpolate to point Q.

QA = xj − (xj − a∆t) =
a∆t

h
h = νh

QB = xj − a∆t− xj−1 = h− a∆t = h− νh = (1− ν)h

u(P) = u(Q)

≈ (1− ν)hu(Q) + νhu(B)

h
≈ (1− ν)u(A) + νu(B)

The upwinding numerical scheme is

un+1
j = (1− ν)unj + νunj−1

= unj − ν(unj − unj−1)

= unj −
a∆t

h
(unj − unj−1)

un+1
j − unj

∆t
+ a

(
unj − unj−1

h

)
= 0

Forward time, backward space.
↑ This is differencing in the upwind direction.

un+1
j = unj −

{
ν(unj+1 − unj) a < 0

ν(unj − unj−1) a > 0

Essentially, we are averaging the exact solution.

This scheme is 1st order in space and time.

We require |ν| ≤ 1.

Stability
Assume a > 0. Use von Neumann analysis:

g(ξ) = 1− ν(1− e−iξh)

= (1− ν) + νe−iξh

36

This is stable if ν ≤ 1.

37

11 2-15-11

11.1 Upwinding (Continued)

Assume a > 0.

un+1
j = unj −

a∆t

h
(unj − unj−1)

= unj − ν(unj − unj−1)

= (1− ν)unj + νunj−1

Since this scheme entails averaging of points, it does not introduce any artificial maxima (or minima).

Let

mn = max
j
|unj |

mn+1 ≤ mn

mn+1 = max
j
|un+1
j | ≤ max

j

(
(1− ν)|unj |+ ν|unj−1|

)
≤ mn

Upwinding is only first-order accurate in space and time. How do we do better?

Return to the idea of following characteristics (lines/curves where the solution is constant).

To get a second-order scheme, we could use a 3-point interpolation scheme using points B,C,D. This gives
a scheme known as Lax-Wendroff. If we use a 3-point interpolation using A,B,C then we get the Beam-
Warming scheme.

Note: usually Lax-Wendroff is derived using a Taylor series, which generalizes much more easily than char-
acterisitic tracing.

Given u(x, t), we want to know u(x, t+ ∆t).

u(x, t+ ∆t) = u(x, t) + ∆tut(x, t) +
∆t2

2
utt(x, t) +O(∆t3)

Use the PDE to express time derivatives in terms of space derivatives.

ut + aux = 0

ut = −aux
utt = −auxt = −a(ut)x = a2uxx

u(x, t+ ∆t) = u(x, t)−∆taux(x, t) +
a2∆t2

2
uxx(x, t) +O(∆t)3

38

We get the second order Lax-Wendroff scheme by ignoring the O(∆t3) terms and using second order differ-
ences in space.

un+1
j = unj −

a∆t

2h
(unj+1 − unj−1) +

a2∆t2

2h2
(unj−1︸︷︷︸

B

−2 unj︸︷︷︸
C

+unj+1︸︷︷︸
D

)

The Local Truncation Error of this scheme is O(h2) +O(∆t2).

Beam-Warming, a > 0, uses one-sided differences.

un+1
j = unj −

a∆t

2h
(3unj − 4unj + unj−2) +

a2∆t2

2h2
(unj − 2unj−1 + unj−2)︸ ︷︷ ︸

D−D−unj

Note that we have an O(h) approximation to uxx at xj .

LTE = O(∆t2) +O(h2) +O(h∆t)

The last term will be second order provided that ∆t = O(h).

11.2 Stability of Lax-Wendroff

|g(ξ)|2 = −4ν2(1− ν2) sin4

(
ξh

2

)
︸ ︷︷ ︸
∈[0,1]

CFL constraint: |ν| ≤ 1⇒ 0 ≤ ν2 ≤ 1

|g(ξ)|2 = 1−B sin2

(
ξh

2

)
|g(ξ)| ≤ 1 ∀ ξ

This is stable provided we meet the CFL constraint:

|ν| ≤ 1∣∣∣∣a∆t

h

∣∣∣∣ ≤ 1

∆t ≤ h

|a|

• Upwinding is 1st order in space and time for smooth solutions.

• Lax-Wendroff is 2nd order in space and time for smooth solutions.

For the diffusion equation, we weren’t worried about smoothness because diffusion smooths out initial con-
ditions. This is not true for hyperbolic problems.

The solution to ut + aux = 0 is u(x, t) = u(x− at).

With upwinding and Lax-Wendroff, it is not a good idea to reduce ∆t by too much. Therefore, it is best
to run as close to ν = 1 as you can. Rather than just decreasing ∆t, it is better to decrease ∆t and h together.

39

• Upwinding smears ⇒ better for discontinuous initial data

• Lax-Wendroff lags ⇒ better for continuous initial data

40

12 2-17-11

12.1 Discontinuous Solutions

Upwinding

• No wiggles

• Smearing of the solution

• Quality of the solution degraded when ν was re-
duced

Lax-Wendroff

• Wiggles ⇒ didn’t go away with refinement!

• Phase lag in the solution

• Quality of the solution degraded when ν was re-
duced

12.2 Modified Equations

PDE

Get a PDE to describe the behavior of the
difference equations

discretize−−−−−→

←−

Difference equations
↓
With Upwinding and Lax-Wendroff, the problem
is that we observe behavior not exhibited by the
solutions of the PDE.

Upwinding for a > 0, ut + aux = 0

un+1
j − unj

∆t
+ a

(
unj − unj−1

h

)
= 0

Let v(x, t) be a smooth function of continuous space and time that solves the difference equations.

v(xj , tn) = unj

Plug v into the difference equations and expand as ∆t, h→ 0.

v(x, t+ ∆t)− v(x, t)

∆t
+ a

(
v(x, t)− v(x− h, t)

h

)
= 0

vt +
∆t

2
vtt +

∆t2

6
vttt +O(∆t3) + a

(
vx −

h

2
vxx +

h2

6
vxxx +O(h3)

)
= 0

vt + avx =
ah

2
vxx −

∆t

2
vtt︸ ︷︷ ︸

first order

−
(
ah2

6
vxxx +

∆t2

6
vttt

)
︸ ︷︷ ︸

second order

+O(h3) +O(∆t3)

Upwinding is a first-order accurate approximation to ut + aux, but it is a second order approximation to

vt + avx =
ah

2

(
vxx −

∆t

ah
vtt

)
We can use this equation to express vtt in terms of spatial derivatives.

vtt = −avxt +
ah

2

(
vxxt −

∆t

ah
vttt

)
vtx = −avxx +

ah

2

(
vxxx −

∆t

ah
vttx

)
= vxt

vtt = a2vxx +O(h)

vt + avx =
ah

2

(
vxx −

∆t

ah
a2vxx

)
+O(h2)

vt + avx =
ah

2
(1− ν)vxx +O(h2)

41

Upwinding solves this equation:
vt + avx = Dvxx

to second order accuracy, where

D =
ah

2
(1− ν).

• As h→ 0 with ν fixed, D → 0

• D gets smaller as ν → 1

• Reducing ∆t while keeping h fixed makes ν → 0 and therefore increases D

12.3 Lax-Friedrichs Modified Equation

The modified equation to leading order for Lax-Friedrichs is

vt + avx = DLF vxx

where

DLF =
h2

2∆t
(1− ν2)

=
h2

2∆t
(1− ν)(1 + ν)

=
ah

2
(1− ν)

h

a∆t
(1 + ν)

=
ah

2
(1− ν)

(
1 +

1

ν

)
= DUP

(
1 +

1

ν

)
Thus, there is at least twice as much diffusion in LF than in upwinding.

Where do the wiggles come from in Lax-Wendroff?

Lax-Wendroff is a second order approximation to ut + aux = 0, but it is a 3rd order approximation to

vt + avx = µvxxx

where

µ =
ah2

6
(ν2 − 1)︸ ︷︷ ︸

<0

• a > 0 ⇒ µ < 0

• a < 0 ⇒ µ > 0

What does the ∂3
x term do to the solution?

We will solve this equation using the Fourier transform.

v̂t + aiξv̂ = −µiξ3v̂

v̂t = −i(aξ + µξ3)v̂

v̂(ξ, t) = v̂(ξ, 0)e−i(aξ+µξ
3)t

|v̂(ξ, t)| = |v̂(ξ, 0)|

42

Thus, the amplitude is preserved for each mode. By Parseval’s relation, we can conclude that

‖v(x, t)‖2 = ‖v(x, 0)‖2

Transform back:

v(x, t) =
1√
2π

∫
R
v̂(ξ, t)eixξ dξ

=
1√
2π

∫
R
v̂(ξ, 0)e−i(aξ+µξ

3)t+ixξ dξ

=
1√
2π

∫
R
v̂(ξ, 0)eiξ(x−ct) dξ

where
c = a+ µξ2.

The mode with wavenumber ξ travels at speed a+ µξ2. For small values of ξ, c = a+O(ξ)2.

For Lax-Wendroff, this property means that high spatial frequencies travel more slowly than the low spatial
frequencies. Wave velocity depends on the wave number; this is called dispersion.

vt + avx = µvxxx

is a dispersive equation.

Lax-Wendroff is great for smooth solutions, but has bad behavior on high frequency modes.

For C∞ functions, v̂(ξ) decays exponentially in ξ as |ξ| → ∞. For u discontinuous, û(ξ) decays like 1/ξ.

The equation
vt + avx = µvxxx

preserves the 2-norm of the initial data. Lax-Wendroff does not because of the higher order terms.

vt + avx = µvxxx − εvxxxx, ε = O(h3)

Question: what is the accuracy of these methods? After all, we are using Taylor series to represent a
discontinuous function.

Answer: these methods will not converge in the max norm, but they will converge in the integral norms.

43

13 2-22-11

13.1 Comments on HW2

• Problem 1: when showing that the scheme is conditionally stable, we can get a bound (not necessarily
a tight bound), but we need to show that if ∆t is large enough then the scheme will not converge

13.2 Wrapping Up Modified Equations

Dissipative vs. Dispersive Properties of a Scheme

• Dissipative: how do the wave numbers get damped?

– Upwinding: at 2nd order

– Lax Wendroff: at 4th order

• Dispersive: how faithfully do you match the right wave speeds?

– Lax Wendroff: leading order error is dispersive (waves travel at different speeds)

– To analyze further, plot the amplification factors for schemes as a function of wave number, see
how dissipative it is

∗ Leapfrog and Crank-Nicolson are non-dispersive

Accuracy of using Taylor series for discontinuous initial data: Upwinding

Use a modified equation and compare the solution to the solution of the original equation. Solve

ut + aux = 0

vt + avx = Dvxx

on the whole real line with initial conditions

u(x, 0) = v(x, 0) =

{
1 x ≤ 0
0 x > 0

The solution of the advection equation is

u(x, t) = u0(x− at)

and the solution of the modified equation is

v(x, t) = 1− erf

(
x− at√

4Dt

)
where

erf = − 2√
π

∫ x

−∞
e−z

2
dz

Upwinding resembles v(x, t) more than u(x, t), so we can get an idea for how accurate it is by comparing
the two. Let’s use the 1-norm to estimate the rror of upwinding.

44

‖u(x, t)− v(x, t)‖1 =

∫ ∞
−∞

∣∣∣∣u0(x− at)−
(

1− erf

(
x− at√

4Dt

))∣∣∣∣ dx
=

∫ ∞
−∞

∣∣∣∣u0(z)−
(

1− erf

(
z√
4Dt

))∣∣∣∣ dz where z = x− at

=

∫ 0

−∞

∣∣∣∣erf

(
z√
4Dt

)∣∣∣∣ dz +

∫ ∞
0

∣∣∣∣1− erf

(
z√
4Dt

)∣∣∣∣ dz
=

∫ 0

−∞
erf

(
z√
4Dt

)
dz

= 2
√

4Dt

∫ 0

−∞
erf(s) ds where s =

z√
4Dt

‖u− v‖1 = C
√
Dt

where C is independent of D and t.

For upwinding,

D =
ah

2
(1− ν)

‖u− v‖1 = O(
√
h)

*** We will verify this on HW3.

13.3 Boundary Conditions

We’ve been avoiding having to deal with boundary conditions by using periodic domains. What boundary
conditions are required on finite domains?

ut + aux = 0 on (0, 1), a > 0

The solution is constant along the characteristic curves x − at = C. The solution depends on the initial
condition and the values at the left boundary, x = 0, a.k.a. the inflow boundary, but it does not depend on
the values at x = 1, a.k.a. the outflow boundary (for a > 0). Therefore, we need to be given a boundary
condition at x = 0: u(0, t) = f(t). We cannot specify a right boundary conditions.

On a discretized domain, the first point (j = 0) must be given and the last point (j = N + 1) is solved for.

Upwinding with a > 0:

un+1
j = unj −

a∆t

h
(unj − unj−1)

This is no problem because it uses only one point to the left.

un0 = f(n∆t)

Lax-Wendroff
↑ Depends on spatial points to the left and right. So what do we doe at the last point, j = N + 1?

Beam-Warming
↑ This is one-sided, so there is no problem at x = 1. The problem is at j = 1 because we need the data at
j = 0 and j = 1.

What to do at outflow boundaries?

45

• Switch to a one-sided scheme

• Use a numerical boundary condition

– Add a j = N + 2 point

∗ Constant extrapolation: Let uN+2 = uN+1

∗ Linear extrapolation: uN+2 = 2uN+1 − uN
∗ Extrapolation using the PDE: unN+2 = un−1

N+2 −
a∆t
h (un−1

N+2 − u
n−1
N+1)

13.4 Linear Systems

ut +Aux = 0

utt = c2uxx equivalent to q +

(
0 c2

1 0

)
qx = 0, q =

(
ut
ux

)
Acoustic Waves
p is pressure, u is velocity,

ρt = −kux
ρut = −ρxρutt = Kuxx

c2 =
k

ρ

Schemes like Lax-Wendroff, Lax-Friedrichs, etc. are no different for systems.

un+1
j = unj −

∆t

2h
A(uj+1 − unj−1) +

∆t2

2h
A2(unj−1 − 2unj + unj+1)

This is stable provided that ∣∣∣∣∆tλh
∣∣∣∣ ≤ 1 ∀ λ

where the λ are the eigenvalues of A.

46

14 2-24-11

Wave equation:
utt = c2uxx

qt +

(
0 c2

1 0

)
qx = 0

Upwinding:
We take the upwind direction for our difference scheme.
Question: How do we define the upwind direction?

The eigenvalues of the wave equation matrix are

λ± = ±c

Thus, we have information going to the right and to the left.

ut +Aux = 0

Assume that A is constant,i.e. independent of space and time. (This is not a requirement, but it makes the
analysis easier.) Diagonalize A:

A = RΛR−1, Λ diagonal

ut +RΛR−1ux = 0

(R−1u)t + Λ(R−1u)x = 0

Let w = R−1u ← changing to eigen-coordinates

u =
∑
j

wjrj

wt + Λwx = 0

The equations for each wj are decoupled.

A =

(
0 c2

1 0

)
, Λ =

(
c 0
0 −c

)

∂

∂t
w1 + c

∂

∂x
w1 = 0

∂

∂t
w2 − c

∂

∂x
w2 = 0

Λ = Λ+ + Λ−

Λ+ =
Λ + |Λ|

2

Λ− =
Λ− |Λ|

2

wn+1
j = wnj −∆tΛ+

(
wnj − wnj−1

h

)
︸ ︷︷ ︸

right moving waves

−∆tΛ−
(
wnj−1 − wnj

h

)
︸ ︷︷ ︸

left moving waves

To be clear,
wn
j ≈ w(xj , tn)

47

Now transform back to the original variables:

un+1
j = unj −

∆t

h
A+(unj − unj−1)− ∆t

h
A−(unj+1 − unj)

Where
A+ = RΛ+R−1, A− = RΛ−R−1

We can do these compositions locally when A is non-constant.

14.1 Finite Volume Methods & Conservation Laws

1-D conservation law:
ut + (f(u))x = 0

where u is the conserved quantity. The advection equation is a simple example of a conservation law, with
f(u) = au.

Assume that u and f are smooth.
ut + f ′(u)ux = 0

This looks like a nonlinear or variable coefficient advection equation.

Next quarter we will study the Inviscid Burgers equation:

ut + uux = 0

The equation ut + (f(u))x = 0 comes from the integral law

d

dt

∫ x2

x1

u(x, t) dx = f(u(x1, t))− f(u(x2, t))

The amount of u in the intervale [x1, x2] changes only by flux of u across the boundary.

Finite Difference Method: discretize the domain into a set of points

uj ≈ u(xj)

Finite Volume Method: divide the domain into a set of volumes and represent a function by its average
value over each volume.

In 2-D, divide the domain into cells
Cj =

[
xj−1/2, xj+1/2

]
Let uj represent the average value of u(x) over volume j:

uj ≈
1

hj

∫ xj+1/2

xj−1/2

u(x) dx, hj = xj+1/2 − xj−1/2

1

hj

∫ xj+1/2

xj−1/2

u(x) dx = u(xj) +O(h2)

This is a midpoint approximation of that integral, and xj is the center/centroid of the volume. This leads
to a cell-centered grid (see HW2).

Conservation law on the jth cell:

d

dt

∫
Cj

u(x, t) dx = f(u(xj−1/2, t))− f(u(xj+1/2, t))

48

Integrate this from time tn to time tn+1:∫
Cj

u(x, tn+1) dx−
∫
Cj

u(x, tn) dx = −
∫ tn+1

tn

f(u(xj+1/2, t))− f(u(xj−1/2, t)) dt

Divide through by the volume of the jth grid cell, hj = h and use that

uj(t) =
1

h

∫
Cj

u(x, t) dx

to get that

uj(tn+1) = uj(tn)− ∆t

h

∫ tn+1

tn

f(u(xj+1/2, t))− f(u(xj−1/2, t))

∆t
dt

So far we have made no approximations. Let

Fnj+1/2 ≈
1

∆t

∫ tn+1

tn

f(u(xj+1/2, t)) dt

un+1
j = unj −

∆t

h
(Fnj+1/2 − F

n
j−1/2)

This is equivalent to
un+1
j − unj

∆t
+
Fnj+1/2 − F

n
j−1/2

h
= 0

This looks like a finite difference discretization of ut + (f(u))x = 0.

Note that this scheme satisfies a discrete conservation law:

h

j2∑
j=j1

un+1
j = h

j2∑
j=j1

unj −∆t

j2∑
j=j1

(Fj+1/2 − Fj−1/2)

= h

j2∑
j=j1

unj −∆t(Fj2+1/2 − Fj1−1/2)

14.2 Numerical Flux Function: Advection Equation

f(u) = au

How to pick Fnj+1/2?
Attempt 1: Average

Fnj+1/2 =
f(unj) + f(unj+1)

2

=
aunj + aunj+1

2

un+1
j = unj −

∆t

h

(
a

(
unj + unj+1

2

)
− a

(
anj−1 + unj

2

))
un+1
j = unj −

a∆t

2h

(
unj+1 − unj−1

)
But this is forward time, centered difference ⇒ unstable.

Attempt 2: Upwind
The upwind flux is

Fnj+1/2 =

{
auj+1 a < 0
auj a > 0

Assume a > 0.

un+1
j = unj −

∆t

h
(auj − auj−1)

49

15 3-1-11

15.1 Finite Volume Methods (Continued)

uj =
1

h

∫ xj+1/2

xj−1/2

u(x, t) dx

ut + (f(u))x = 0

un+1
j = unj −

∆t

h

(
Fnj+1/2 − F

n
j−1/2

)
Fnj+1/2 ≈

1

∆t

∫ tn+1

tn

f(u(xj+1/2, t)) dt

We choose

Fj+1/2 =

{
aunj a > 0

aunj+1 a < 0

This results in upwinding. Upwinding is OK. It is diffusive, but it has low order accuracy.

If we replace Fnj+1/2 with F
n+1/2
j+1/2 then we get a scheme centered in time and space that should give us a

second order method.

Two-Step Lax-Wendroff

1. u
n+1/2
j+1/2 = 1

2(unj + unj+1)− ∆t
2h

(
f(unj+1)− f(unj)

)
This looks like a half time step of Lax-Friedrichs to predict the edge value.

2. un+1
j = unj − ∆t

h

(
f(u

n+1/2
j+1/2)− f(u

n+1/2
j−1/2)

)
In the first step we are using values at cell centers to evaluate fluxes at edges. In the second step we use the
fluxes at edges to evaluate the fluxes at centers.

This two step method is equivalent to Lax-Wendroff for the linear advection equation.

The flux for Lax-Wendroff is

FLW
j+1/2 =

a

2
(unj u

n
j+1)− a2∆t

2h

(
unj+1 − unj

)
Assume a > 0. Add and subtract the upwind flux, which is:

FUp
j+1/2 = aunj

FLW
j+1/2 = aunj − aunj +

a

2

(
unj + unj+1

)
− a2∆t

2h

(
unj+1 − unj

)
= aunj +

(
a

2
− a2∆t

2h

)(
unj+1 − unj

)
= FUp

j+1/2 +
a

2
(1− ν)

(
unj+1 − unj

)
︸ ︷︷ ︸

The selected term is a second-order correction to upwinding. FLW
j+1/2 − F

Up
j+1/2

50

15.2 Idea behind high-resolution methods

FHR = FUp + (FLW − FUp)φ

The idea is to adjust φ locoally based on the steepness of the numerical solution. When φ is near zero, we
get upwinding. When φ is near 1, we get Lax-Wendroff. φ is called the flux limiter function.

15.3 REA Algorithms

Reconstruct: from cell averages, reconstruct an approximation to the original function.
Evolve: solve the PDE exactly for one time step with the reconstruction as the initial data.
Average: compute new averages

R Step
Godunov’s method (for reconstruction) is based on piecewise constant reconstruction.

E Step
Evolve the system by a∆t.

A Step

un+1
j =

a∆tunj−1 + (h− a∆t)un

h

un+1
j = unj −

a∆t

h

(
unj − unj−1

)
This scheme is just upwinding.

Note that the PDE is only used in the E Step.

This idea leads to a generalization of upwinding for nonlinear PDEs.

ut + (f(u))x = 0

ut + f ′(u)︸ ︷︷ ︸
speed

ux = 0 for f smooth

This is easy to solve away from the discontinuities.

We need to know how to solve Riemann problems in order to apply the scheme. The Riemann problem is

ut + (f(u))x = 0

u(x, 0) =

{
ul x < 0
ur x > 0

How to get higher-order accuracy?
We need to work on the R step ⇒ use a more accurate reconstruction.

e.g. piecewise linear (not worrying about continuity)

ũ(x, t) = unj + σnj (x− xj), xj−1/2 < x < xj+1/2

1

h

∫
Cj

ũ(x, t) dx = unj + 0

51

Thus, the average is independent of the slope.

How do we choose the slopes?

• σj = 0⇒ Godunov (upwinding)

• Centered difference: σj =
uj+1−uj−1

2h ⇒ Fromm’s method

• Assume a > 0

– Upwind: σj =
uj−uj−1

h ⇒ Beam-Warming

– Downwind: σj =
uj+1−uj

h ⇒ Lax-Wendroff

Any one of these results in a second-order accurate scheme.

Consider a > 0, downwind slope, discontinuous solution.

unj =

{
1 j ≤ J
0 j > J

Due to the “tilting” of the piecewise linear pieces, this will overshoot (new maximum) behind the disconti-
nuity.

With an upstream slope, we get undershoot (new minimum) in front of the discontinuity.

52

16 3-3-11

16.1 REA Algorithms (Continued)

Using upwinding/downwinding to get the slopes for reconstruction can introduce maxima and minima.

One way to remove the oscillation from the numerical scheme is to use a slope limiter to avoid over- and
under-shoots.

e.g. minmod slope

σj = minmod

(
uj − uj−1

h
,
uj+1 − uj

h

)

minmod (a, b) =

a |a| < |b|, ab > 0
b |b| < |a|, ab > 0
0 ab ≤ 0

This does not introduce any new maxima/minima. This reconstruction will not give any oscillations. Es-
sentially, we are selecting between upwinding, Lax-Wendroff, and Beam-Warming at each point.

This scheme is still very diffusive (in comparison to the ones we’ll develop later). We could allow for steeper
slopes.

A good “multi-purpose” choice of slope limiter is the monotonized center difference, aka MC-limiter.

σj = minmod

(
uj+1 − uj−1

2h
, 2 minmod

(
uj − uj−1

h
,
uj+1 − uj

h

))
Why do we have the factor of 2? Let ũj(x, tn) be the reconstruction in cell j. Suppose it is monotone:
uj−1 ≤ uj ≤ uj+1. We want

ũj(xj−1/2) ≥ uj−1

ũj(xj+1/2 ≤ uj+1

ũj = uj + σj(x− xj)

ũj(xj−1/2) = uj + σj

(
−h

2

)
≥ uj−1

σj ≤ 2

(
uj − uj−1

h

)
Slope limiters and flux limiters are related. Let’s compute the effective flux for an REA-type method for
the advection equation using piecewise linear reconstruction.

Discrete conservation law:

un+1
j = unj −

∆t

h

(
Fnj+1/2 − F

n
j−1/2

)

53

Fnj+1/2 ≈
1

∆t

∫ tn+1

tn

f(u(xj+1/2, t)) dt

Assume f(u) = au, a > 0. In our discretization, we have

Fnj+1/2 =
1

∆t

∫ tn+1

tn

aũ(xj+1/2, t)) dt

=
1

∆t

∫ tn+1

tn

aũj(xj+1/2 − a(t− tn), tn) dt

ũj(x, tn) = unj + σ(x− xj)

Fnj+1/2 =
1

∆t

∫ tn+1

tn

a
(
unj + σ(xj+1/2 − a(t− tn)− xj)

)
dt = aunj︸︷︷︸

upwind flux

+
ah

2

(
1− a∆t

h

)
σnj︸ ︷︷ ︸

correction to upwinding

For example, if

σnj =
uj+1 − uj

h

Fnj+1/2 = F up
j+1/2 +

a

2
(1− ν)(uj+1 − uj)︸ ︷︷ ︸
RLW

j+1/2

Fnj+1/2 = F up
j+1/2 + (FLW

j+1/2 − F
up
j+1/2)φ

For a positive or negative,

Fnj+1/2 =

{
auj + a

2

(
1− a∆t

h

)
hσnj a ≥ 0

auk+1 − a
2

(
1 + a∆t

h

)
hσnj+1 a < 0

In general,

Fnj−1/2 = F up
j−1/2 +

|a|
2

(
1− |a|∆t

h

)
δnj−1/2

where δ is a limited version of the difference

(∆u)j−1/2 = uj − uj−1

δnj−1/2 = φ(θj−1/2)(∆u)j−1/2

where φ is the limiter function. If things are smooth, φ ≈ 1. If things aren’t smooth, φ ≈ 0. How do we
measure smoothness of data?

Define

θj−1/2 =
∆uJ,up−1/2

∆uj−1/2

What is Jup?

Jup =

{
j − 1 a > 0
j + 1 a < 0

For a smooth function, θ ≈ 1, except near critical points (1st derivative is zero).

Note: ∆uj−1/2 = uj − uj−1

We want φ near zero when not smooth, and φ near one when smooth.

Upwinding: φ = 0
Lax-Wendroff: φ = 1
Beam Warming: φ = θ (Identity function)

54

16.2 Common High-Resolution Limiters

• minmod: φ(θ) = minmod (1, θ)

• MC: φ(θ) = max
(
0,min

(
1+θ

2 , 2, 2θ
))

• Superbee: φ(θ) = max (0,min(1, 2θ),min(2, θ))

• van Leer: φ(θ) = θ+|θ|
1+|θ|

55

17 3-8-11

17.1 High Resolution Methods (Continued)

un+1
j = unj −

∆t

h

(
Fnj+1/2 − F

n
j−1/2

)
Fnj−1/2 = F up

j+1/2 +
∣∣∣a
2

∣∣∣ (1−
∣∣∣∣a∆t

h

∣∣∣∣) δnj−1/2

δnj−1/2 = φ(θj−1/2)∆uj−1/2

∆uj−1/2 = uj − uj−1

θj−1/2 =
∆uJup−1/2

∆uj−1/2

How do I get something that stays accurate on smooth parts and doesn’t introduce wiggles? In other words,
how do I pick our limiter function, φ(θ), to avoid numerical oscillations when the solution is sharp (almost
discontinuous) and give 2nd order accuracy when the solution is smooth?

17.2 Total Variation

Total variation of a grid function is:

TV(u) =
∑
j

|uj − uj−1|

For a differentiable function f on (a, b), the total variation of f is

TV(f) =

∫ b

a
|f ′(x)| dx

f = constant has zero variation. A function with wiggles has nonzero variation. A function with more
wiggles will have bigger variation.

|∆y| = |f ′(x)||∆x|

Variation is a measure of how much a function goes up and down; it is somewhat related to arc length.

• The solution to the advection equation has constant variation in time, since it merely translates.

• Numerical oscillations increase the variation.

• We avoid oscillations by requiring that the total variation goes down in time (remains constant is too
much to hope for).

17.3 Total Variation Diminishing (TVD)

A numerical scheme is total variation diminishing (TVD) if

TV(un+1) ≤ TV(un)

TVD is a way to avoid numerical oscillations.

TVD implies monotonicity preserving :

if unj ≥ unj+1 ∀ j, then un+1
j ≥ un+1

j+1

56

A monotonicity preserving scheme will not introduce new maxima/minima.

We want to choose our limiter function so that our scheme is TVD.

What about achieving 2nd order? We need

1. φ(1) = 1

2. φ is Lipschitz continuous at θ = 1

• This is satisfied for φ with bounded left and right derivatives at θ = 1. i.e. a corner in φ at θ = 1
is OK, but a cusp (�, but vertical) will not work.

Scheme for a > 0:

un+1
j = unj − ν(unj − unj−1)− ν(1− ν)

2

(
φ(θj+1/2)(unj+1 − unj)− φ(θj−1/2)(unj − unj−1)

)
(17.1)

On HW3 we proved that a scheme of the form

un+1
j = unj − Cnj−1(unj − unj−1) +Dn

j (unj+1 − unj)

is TVD if Cnj−1 ≥ 0, Dn
j ≥ 0, and Cnj +Dn

j ≤ 1 for all j.

How do we pick C and D? Try the “obvious” choice:

Cnj−1 = ν − ν(1− ν)

2
φ(θj−1/2, Dn

j = −ν(1− ν)

2
φ(θj+1/2), 0 ≤ ν ≤ 1 by CFL

Because φ is positive (at least for some θ), these choices won’t give TVD. The trick is to write

unj+1 − unj =
unj − unj−1

θj+1/2

If we plug this into (17.1) then we get

D = 0, Cnj−1 = ν +
ν(1− ν)

2

(
φ(θj+1/2)

θj+1/2
− φ(θj−1/2)

)
This scheme is TVD if

0 ≤ Cnj−1 ≤ 1

This will give us constraints on φ.

−ν ≤ ν(1− ν)

2

(
φ(θj+1/2)

θj+1/2
− φ(θj−1/2)

)
≤ 1− ν

−2 ≤ − 2

1− ν
≤
φ(θj+1/2)

θj+1/2
− φ(θj−1/2) ≤ 2

ν
≤ 2

From CFL, 0 ≤ ν ≤ 1. For TVD, it is sufficient to enforce∣∣∣∣φ(θj+1/2)

θj+1/2
− φ(θj−1/2)

∣∣∣∣ ≤ 2

for all θ1 and θ2.

57

TVD Requirements

• In order to guarantee TVD, at extreme points (θ < 0, meaning that the left and right slopes have
different signs) we require that φ(θ) = 0 for all θ ≤ 0.

• We require φ ≥ 0 (we may reduce or accentuate slopes, but we never change directions).

• We require that 0 ≤ φ(θ)
θ ≤ 2 and 0 ≤ φ(θ) ≤ 2

– These last 2 imply that 0 ≤ φ(θ) ≤ minmod (2, 2θ)

A requirement to have second order is that φ(1) = 1. We want φ(θ) to be a convex combination of Beam-
Warming and Lax-Wendroff. minmod is the lower bound of the Sweby region, and the superbee limiter is
the upper bound of the Sweby region. minmod is as close as we can get to upwinding (diffusive). Superbee
is as sharp of a reconstruction as we can get and still be TVD. MC limiter and van Leer are good all-purpose
limiters. All of these methods fail to converge at discontinuities (so the max norm will not converge), but
some are able to contain the lack of convergence around the discontinuity.

If θ is really big, Beam-Warming will steepen the slope, increasing it at most by a factor of 2.

58

Index

A-stable, 6
A-stable (2), 31
absolute stability, 5
Adams methods, 8
Adams-Bashforth, 8
Adams-Moulton, 8
ADI scheme, 18
amplification factor, 14

backward differentiation formula (BDM) methods, 8
Beam-Warming, 39

CFL condition, 35
consistency, 9
convergence, 9
Courant number, 30
Crank-Nicolson, 7

dispersion, 43
Douglass-Gunn scheme, 20

finite volume method, 48
Fisher’s equation, 21
flux limiter function, 51
fractional step method, 23

Godunov’s method, 51

high-resolution methods, 51
hyperbolic problems, 28

IMEX methods, 25
implicit method, 6
irregular point, 26

L-stable, 31
Lax equivalence theorem, 9
Lax-Friedrichs scheme, 29
Lax-Richtmyer stable, 9
Lax-Richtmyer stable (2), 12
Lax-Wendroff, 39
leapfrog (midpoint) scheme, 15
LOD scheme, 18

method of lines, 4
midpoint method, 7
minmod, 53
monotonicity preserving, 56

Newton’s method, 22

Peaceman-Rachford, 18

REA algorithms, 51
region of absolute stability, 4
regular point, 26
Runge-Kutta, 7

slopelimiter, 53
stability, 9
stiff, 5
Strang splitting, 24
strong stability, 12

total variation, 56
total variation diminishing, 56
trapezoidal rule, 7

upwinding, 36

von Neumann condition, 14

59

	Guy's Notes (Part 1)
	Intro
	Fourier Transforms
	Forward Time Centered Space Discretization of the Diffusion Equation and Advection Equation
	Stability Analysis for Forward Euler
	Analysis of Forward Euler for the Heat/Diffusion Equation
	FE & CD for the Advection Equation
	Backward Euler
	Analysis of Forward Euler, Backward Euler, and the Trapezoidal Rule
	Standard Classes of ODE Methods

	Guy's Notes (Part 2)
	Consistency, Stability, and Convergence
	Lax Equivalence Theorem
	Stability of Crank-Nicolson in the 2-norm for the 1-D Diffusion Equation
	Stability of FE for Diffusion in the -norm

	1-18-11
	Stability Analysis for Growing Solutions
	von Neumann Analysis
	Forward Euler for the Diffusion Equation

	1-20-11
	Stability and Discretization
	Implicit Methods for Diffusion
	ADI & LOD

	1-25-11
	LOD & ADI (Continued)
	Fractional Step Schemes

	1-27-11
	Newton's Method
	Alternate Method: Fractional Step Method
	Strang Splitting

	2-1-11
	Intro
	IMEX Methods
	LOD for Diffusion
	Nonrectangular Domains
	Cartesian Grid

	2-3-11
	Boundary Fitted Mesh
	Hyperbolic Problems

	2-8-11
	Comments on HW1, Problem 2
	Comments on HW1, Problem 4
	Lax-Friedrich for ut + aux = 0

	2-10-11
	CFL Condition
	Upwinding

	2-15-11
	Upwinding (Continued)
	Stability of Lax-Wendroff

	2-17-11
	Discontinuous Solutions
	Modified Equations
	Lax-Friedrichs Modified Equation

	2-22-11
	Comments on HW2
	Wrapping Up Modified Equations
	Boundary Conditions
	Linear Systems

	2-24-11
	Finite Volume Methods & Conservation Laws
	Numerical Flux Function: Advection Equation

	3-1-11
	Finite Volume Methods (Continued)
	Idea behind high-resolution methods
	REA Algorithms

	3-3-11
	REA Algorithms (Continued)
	Common High-Resolution Limiters

	3-8-11
	High Resolution Methods (Continued)
	Total Variation
	Total Variation Diminishing (TVD)

