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1 1-12-12

1.1 Basic Fourier Analysis

Let f ∈ L1(R), i.e. ‖f‖L1(R) =
´
R |f(x)| dx <∞. Its Fourier transform is F : R→ R̂ ≈ R, given by

(Ff)(ω) = f̂(ω) =

ˆ
R
f(x)e−2πixω dx

where ω is the frequency (math & engineering) or momentum (physics).

Theorem 1.1. Plancherel

If f ∈ L1∩L2(R), then ‖f‖L2(R) = ‖f̂‖L2(R) and the Fourier transform extends to a unitary operator
on L2(R).

⇒ F∗ = F−1

Theorem 1.2. Parseval

〈f, g〉 =
〈
f̂ , ĝ
〉

for f, g ∈ L2(R)

1.2 Two Basic Operators

The translation operator (also called the shift operator):

Txf(t) = f(t− x), x, t ∈ R

The modulation operator (also called the frequency shift operator):

Mωf(t) = e2πiωtf(t)

3



Fundamental Calculation:

TxMωf(t) = Mωf(t− x)

= e2πiω(t−x)f(t− x)

= e−2πiωxe2πiωtf(t− x)

= e−2πiωxMwTxf(t)

⇒ TxMw = e−2πiωxMwTx

Thus, Tx and Mω commute iff x · ω ∈ Z.

Tx and Mω are unitary:

(̂Txf) = M−xf̂ ⇔ F(Txf) = M−xf̂

(̂Mωf) = Tωf̂ ⇔ F(Mωf) = Tωf̂

Lemma 1.3.

1. Tx and Mω are unitary operators.

2.
(̂Txf) = M−xf̂

3.
(̂Mxf) = Txf̂

Definition 1.4. Convolution

Let f, g ∈ L1(R). Then the convolution f ∗ g is

(f ∗ g)(x) =

ˆ
R
f(y)g(x− y) dy

The following hold:

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1
(̂f ∗ g) = f̂ · ĝ

Theorem 1.5. Inversion of Fourier Transform

If f ∈ L1(R) and f̂ ∈ L1(R), then

f(x) =

ˆ
R
f̂(ω)e2πixω dω

for all x, ω ∈ R.
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Fourier Transform and Derivatives:
Let Dα be the derivative operator of order α. Then

(̂Dαf)(w) = (2πiω)αf̂(ω)

and
̂((−2πiω)αf)(w) = Dαf̂(ω).

Some functions and their Fourier Transforms:

Example 1.6. Indicator Function Fourier Transform

f(x) = 1[−T/2,T/2]

f̂(ω) =
sinπωt

πω
= sinc function (sinus cardinalus = cardinal sine)

Theorem 1.7. Gaussian Fourier Transform

ϕa(x) = e−πx
2/a

(If a = 1, we write ϕ(x).)

For all a > 0:

ϕ̂a(ω) =
√
aϕ
(ω
a

)
=
√
aϕ1/a(ω)

So ϕ̂(ω) = ϕ(x) is a fixed point.

Proof.

d

dω
ϕ̂a(ω) = ̂(−2πixϕa)(ω)

̂(
ia
d

dx
ϕa

)
(ω) = ia(2πiω)ϕ̂a(ω)

d

dω
ϕ̂a(ω) = −2πaωϕ̂a(ω)

ϕ̂a(ω) = Ce−πaω
2

Now we need to show that C =
√
a.

C = ϕ̂a(0) =

ˆ
R
e−πx

2/a dx

5



Definition 1.8. Dilation

Daf(x) =
1√
a
f
(x
a

)
Dilation is unitary.

It is easily verified that ‖f‖2 = ‖Daf‖2.

Theorem 1.9.

(̂Daf) = D1/af̂

1.3 Smoothness and the Fourier Transform

Rule of thumb: smoothness of f ⇒ decay of f̂ → Sobolev spaces.

Lemma 1.10.

Dαf ∈ L2(R) ∀ α ≤ n ⇔
ˆ
R
|f̂(ω)|2 (1 + |ω|)2︸ ︷︷ ︸

weight function

dω <∞

This says that |f̂(ω)| must decay faster than |ω|n if f is n times differentiable.

Fourier series are useful for analyzing periodic functions. Assume f is 1-periodic:

f(x) = f(x+ k), k ∈ Z.

Identify f with an interval... the torus, T.

Theorem 1.11. Plancherel (on T)

Let f ∈ L2(T) and let f̂(n) =
´
T f(x)e−2πixn dx be the nth Fourier coefficient. Then

f(x) =
∑
n∈Z

f̂(n)e2πinx

and
‖f‖L2(T) =

∑
n∈Z
|f̂(n)|2

6



Poisson’s Summation Formula (PSF, equivalent to the Shannon sampling theorem) relates Fourier series to
Fourier transforms.

Lemma 1.12. Periodization Trick

If f ∈ L1(R) then for all α > 0,

ˆ
R
f(x) dx =

ˆ α

0

∑
k∈Z

f(x+ αk)︸ ︷︷ ︸
α-periodic function

dx

Proof. The translated intervals are disjoint except for a set of measure 0, and their union is R. Thus,

ˆ
R
f(x) dx =

∑
k∈Z

ˆ α(k+1)

αk
f(x) dx

=

ˆ α

0

∑
k∈Z

f(x+ αk) dx.

7



2 1-17-12

2.1 Poisson Summation Formula

Theorem 2.1. Poisson Summation Formula (PSF), Version 1

Assume that for some ε > 0 and c > 0, we have

|f(x)| ≤ c(1 + |x|)−1−ε and |f̂(ω)| ≤ c(1 + |ω|)−1−ε

Then ∑
n∈Z

f(x+ n)︸ ︷︷ ︸
periodization in time domain

=
∑
n∈Z

f̂(n)e2πinx

︸ ︷︷ ︸
sampling in frequency domain

. (PSF)

This identity holds pointwise for all x ∈ R, and both sums converge absolutely for all x ∈ R.

Proof. Set

g(x) :=
∑
n∈Z

f(x+ n).

Then g is a 1-periodic function. The decay assumption on f implies that f ∈ L1(R) ⇒ g ∈ L1(T).

ĝ(n) =

ˆ
[0,1]

g(x)e−2πixn dx

=

ˆ
[0,1]

∑
k∈Z

f(x+ k)e−2πin(x+k) dx

=

ˆ
[0,1]

f(x)e−2πinx dx (Fubini) Periodization Lemma

= f̂(n)

The decay assumption on f̂ implies that
∑
n∈Z
|f̂(n)| <∞ ⇒ g has an absolutely convergent Fourier series:

g(x) =
∑
n∈Z

f̂(n)e2πinx

⇒
∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx

Remarks:

1. We can replace absolute convergence by convergence in L2 and pointwise equality by equality a.e. If∑
n
f(x+ n) ∈ L2(T) and

∑
n
|f̂(n)|2 <∞, then (PSF) holds a.e.

2. Denote δx : 〈δx, f〉 = f(x). Then PSF says

̂
(
∑
n∈Z

δn) =
∑
n∈Z

δn

8



3. More general PSF:

Theorem 2.2. Poisson Summation Formula (PSF), Version 2

Let α > 0. Then ∑
n∈Z

f(x+ nα) =
1

α

∑
n∈Z

f̂
(n
α

)
e2πixn/α

2.2 Shannon’s Sampling Theorem

Given a function f ∈ L2(R), we want to store f in digital form. ⇒ Need to represent f by a discrete set of
data (as fast as possible). The Shannon Sampling Theorem is an intermediate step.

Naive approach: Sample f at equally spaced points, n · τ, n ∈ Z, sampling interval = τ > 0.

(Note: in everything we’ve done so far, we can replace R with G, a locally compact group. Examples and their
corresponding “Fourier spaces” include Rd → R̂d, Zd → Td, Td → Zd, Cd → Cd, Rd×Zn×C→ Rd×Tn×C.)

We can associate to each sampling value f(nτ) a Dirac distribution f(nτ) ⇔ δ(x− nτ). By doing this, we
get a discretized function (“signal”) fd:

fd(x) =
∑
n

f(nτ)δ(x− nτ)

9



The Fourier Transform of δ(x− nτ) is e−2πinx ⇒

f̂d(ω) =
∑
n

f(nτ)e−2πinτω.

How is f̂d related to f̂?

PSF implies that

f̂d(ω) =
1

τ

∑
k∈Z

f̂

(
ω − k

τ

)
(2.1)

Thus, discretizing a function in time corresponds to periodizing its Fourier transform.

Can we recover f from fd?
In general, NO.
But sometimes, YES.

Definition 2.3. Bandlimited Function

A function f ∈ L2(R) is called bandlimited if f̂(ω) = 0 for all |ω| > Ω.

BΩ =
{
f ∈ L2(R)

∣∣ supp f̂ ⊆ [−Ω,Ω]
}

For example, in phone conversations, we assume that voice is limited to 8 kHz. Music typically goes up to
20 kHz (we can’t hear higher frequencies).

Theorem 2.4. Shannon’s Sampling Theorem

(Shannon 1948, Whittaker 1915, Kotelnikov 1933, Roabe 1939, ...)

Let f ∈ BΩ. Then if we have discrete sampling, we can recover f from the sampling points f(nτ)
by

f(x) =

∞∑
n=−∞

f(nτ)hτ (x− nτ),

where

hτ (x) = τ ·
sin πx

τ

πx

and τ = 1
2Ω . (Note: hτ is more or less the sinc function. )

Proof. If n 6= 0, then supp f̂
(
ω − n

τ

)
does not intersect with supp f̂(ω) because f̂(ω) = 0 for |ω| > Ω = 1

2τ .

10



Hence, (2.1) implies that

f̂d(ω) =
1

τ
f̂(ω) if |ω| ≤ 1

2τ

The Fourier Transform of hτ is
ĥτ = τ1[− 1

2τ
, 1
2τ ]

Since supp f̂ ∈
[
− 1

2τ ,
1
2τ

]
, we have that

f̂(ω) = hτ (ω) · f̂d(ω) if |ω| ≤ 1

2τ

Now apply the Inverse Fourier Transform and get

f(x) = F−1(f̂)(x) = F−1(ĥτ (ω) · f̂d(ω))

= (hτ ∗ fd)(x)

= hτ ∗
∞∑

n=−∞
f(nτ)δ(x− nτ)

=
∞∑

n=−∞
f(nτ)hτ (x− nτ)

11



Aliasing:

Assume f̂ /∈
[
− 1

2τ ,
1
2τ

]
, then the support of f̂

(
ω − k

τ

)
intersects the support of f̂(ω). ⇒ High-frequency

components of f get “folded” → aliasing .
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3 1-19-12

3.1 Shannon’s Sampling Theorem (Review)

Let Ω = 1
2 ⇒ τ = 1, hτ (x) = sinc(x) = sinπx

πx .

Shannon Sampling Theorem:

f(x) =

∞∑
n=−∞

f(n) sinc(x− n) (Cardinal series)

f(x) = (sinc ∗f)(x) =

ˆ
R
f(y) sinc(x− y) dy

=

ˆ
R
f(y)sinc(y − x) dy (using that sinc is even and real-valued)

= 〈f, Tx sinc〉

The sinc function acts as a reproducing kernel on the space B1/2. That is, it reproduces the function value
at the point. So we can define:

Definition 3.1. Projection Operator, Low-Pass Filter

Define the operator PΩ : L2(R)→ BΩ by

PΩf = f ∗ sinc

(
Ω =

1

2

)
For f ∈ BΩ, then f = f ∗ sinc (because f = F ′(f̂ · 1[− 1

2
, 1
2 ])) and P 2

Ω = PΩ, P ∗Ω = PΩ (follows from

real-valuedness of sinc function). Thus, PΩ is an orthogonal projection. The sinc function acts as a
low-pass filter (since the frequencies that survive are in [−Ω,Ω]). On the other hand, a band-pass
filter could allow frequencies from multiple bands (intervals?) to survive.

3.2 Limitations of Shannon’s Sampling Theorem

• Aliasing problem: f may not be exactly bandlimited.

• Requires a uniform sampling pattern.

• Truncation error due to the infinite sum.

• Perturbation in the samples, f(n), can cause divergence of the series.

⇒ In practice, you never use the formula f(x) =
∞∑

n=−∞
f(n) sinc(x− n).

The Oversampling Theorem requires that τ = 1
2Ω (or τ < 1

2Ω). This is called the Nyquist rate.

Let Ω = 1
2 , τ < 1 ⇒ “oversampling.”

13



Let τ = 1
2 < 1.

Figure 1: Period is 1
τ
= 2.

sinc function decay in time: O
(

1
x

)
causes slow convergence. Instead, we can use a function g(x) such that

ĝ(ω) =


1 |ω| < 1

2
0 |ω| ≥ 3

2
anything otherwise

Idea: choose it such that g(x) decays fast.
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Definition 3.2. Raised Cosine

ĝ(ω) =


1 |ω| < 1

2
0 |ω| ≥ 3

2
1
2

(
1 + cos

(
πω − π

2

))
1
2 ≤ ω ≤

3
2

1
2

(
1 + cos

(
πω + π

2

))
−1

2 ≥ ω ≥ −
3
2

(See the plot above.) This gives cubic decay of g(x) : O
(

1
x3

)
. (However, we are hiding a constant

which does come into play in practice.

This requires oversampling because of the transition phase.

Observations/Notes:

• We can design ĝ(ω) such that it is infinitely often differentiable.

• The best possible decay rate for g(x) is of order ex
α
, α < 1; α = 1 is not possible. Typically, we call

this subexponential decay. True exponential decay is not possible. (Berding, Molliovin 1962)

Form of uncertainty principle: if ĝ(ω) is compactly supported, then g(x) cannot be compactly supported
(and vice versa).

Note: a signal that is limited in time is unlimited in bandwidth (e.g. a phone call).

Proposition 3.3.

If

hτ (x) = τ
sin πx

τ

πx
,

then {Tnτhτ}n∈Z is an orthonormal basis for BΩ if Ω = 1
2τ .

Proof. Since ĥτ = τ1[− 1
2
, 1
2 ], Plancherel implies

〈Tnτhτ , Tmτhτ 〉 = τ2

ˆ ∞
−∞

1[− 1
2
, 1
2 ]e
−2πi(n−m)τω dω

= τ2

ˆ 1
2

− 1
2

e−2πi(n−m)τω dω

=

{
0 n 6= m
1 n = m

So we have proved orthonormality, now we need to prove that it is a basis. Shannon’s Sampling Theorem
says that any f ∈ B1/2τ can be written as a linear combination of {Tnτhτ}n∈Z. Thus, {Tnτhτ}n∈Z are a
basis.

Let τ = 1, Ω = 1
2 ⇒ {Tn sinc}n∈Z is an orthonormal basis for B1/2. Now let τ = 1

2 , Ω = 1
2 (oversampling):

{Tn/2 sinc}n∈Z is not an orthonormal basis because it has too many functions. This gives rise to “oversampled
Shannon”:

f(x) =
1

2

∞∑
n=−∞

f
(n

2

)
sinc

(
x− n

2

)
.
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3.3 Frames

Frames are an “overcomplete basis.” They preserve almost all of the good properties of bases, and give us
some additional properties by virtue of having more functions than are needed.

Frame Theory: Duffin, Schoeffer 1952, in connection with non-uniformly sampled bandlimited sets.

Definition 3.4. Orthonormal Basis

{ek}k∈I is an orthonormal basis for a separable Hilbert space H if

1. 〈ek, el〉 = δkl

2. {ek}k∈I spans H, where I is a countable index set (e.g. I = Z)

Properties of Orthonormal Bases:

1. f =
∑
k∈I
〈f, ek〉 ek if f ∈ H

2. These coefficients, 〈f, ek〉, are unique

3.
∑
k

| 〈f, ek〉 |2 = ‖f‖22 (Plancherel)

Definition 3.5. Frame, Frame Bounds, Tight Frame

The sequence of vectors {gk}k∈I is called a frame for the Hilbert space H if there exist constants
A,B > 0 such that for any f ∈ H,

A‖f‖22 ≤
∑
| 〈f, gk〉 |2 ≤ B‖f‖22

(Typically we want A and B to be similar in size.) A and B are called frame bounds. If A = B,
then {gk}k∈I is called a tight frame: ∑

k

| 〈f, gk〉 |2 = A‖f‖22

If A = B = 1 and ‖gk‖ = 1 for all k, then {gk} is an orthonormal basis.

16



4 1-24-12

4.1 Frames (Continued)

There exist A,B > 0 such that

A‖f‖22 ≤
∑
| 〈f, gk〉 |2 ≤ B‖f‖22 for all f ∈ H1

Motivated by Plancherel: ∑
| 〈f, gk〉 |2 = ‖f‖22

4.2 Two Fundamental Operators

Definition 4.1. Synthesis Operator

F : `2(I)→ H,

Fc =
∑
k∈I

ckgk for c = {ck}k∈I ∈ `2(I)

This is a generalization of the idea of a Fourier series.

Definition 4.2. Analysis Operator

F ∗, the adjoint of the synthesis operator (proven next).
F ∗ : H → `2(I),

F ∗f = {〈f, gk〉}k∈I , f ∈ H

The analysis operator is indeed the adjoint of the synthesis operator.

Proof.

〈Fc, f〉︸ ︷︷ ︸
=〈c,F ∗f〉

=
〈∑

ckgk, f
〉

=
∑

ck 〈gk, f〉

=

〈
c, {〈gk, f〉}︸ ︷︷ ︸

=F ∗f

〉

Definition 4.3. Frame Operator

The frame operator is defined as

Sf =
∑
〈f, gk〉 gk

Note: S = FF ∗.

17



Given two self-adjoint operators, P and Q, we denote P ≥ Q if

〈f, Pf〉 ≥ 〈f,Qf〉 for all f ∈ H.

S satisfies
AI ≤ S ≤ BI,

where I is the identity on H. Since

Sf =
∑
k

〈f, gk〉 gk ⇒ 〈Sf, f〉 =
∑
〈f, gk〉 〈gk, f〉

=
∑
〈f, gk〉 〈f, gk〉

=
∑
| 〈f, gk〉 |2

Since A > 0, S is positive definite on H.

Lower frame bound: AI ≤ S implies invertibility of S.
Upper frame bound: S ≤ BI implies continuity.

Definition 4.4. Dual Frame

Define hk = S−1gk for all k ∈ I. We call {hk}k∈I the (canonical) dual frame. {hk}k∈I is a frame
for H with frame bounds 1

B ,
1
A .

From SS−1 = S−1S = I, we get

f = SS−1f

=
∑〈

S−1f, gk
〉
gk

=
∑〈

f, S−1gk
〉
gk

=
∑
〈f, hk〉 gk

f = S−1Sf

=
∑
〈Sf, hk〉hk

=
∑
〈f, Shk〉hk

=
∑
〈f, gk〉hk

f =
∑
〈f, hk〉 gk

f =
∑
〈f, gk〉hk

If {gk} is a frame for H, then any f ∈ H can be written as

f =
∑
k

ckgk, {ck} ∈ `2(I)

But {ck} is not unique (unlike in an orthonormal basis). One choice for these coefficients is ck = 〈f, hk〉;
these are called the canonical coefficients.

18



Proposition 4.5.

Let {gk}k∈I be a frame for H and f =
∑
ckgk for c = {ck} ∈ `2(I). Then∑

k

|ck|2 ≥
∑
k

| 〈f, hk〉 |2

where hk = S−1gk.

Proof. Set ak = 〈f, hk〉. Then f =
∑
akgk, and〈

f, S−1f
〉

=
∑

ak
〈
gk, S

−1f
〉

=
∑

ak
〈
S−1gk, f

〉︸ ︷︷ ︸
ak

=
∑
|ak|2

〈
f, S−1f

〉
=
∑

ck
〈
gk, S

−1f
〉

=
∑

ckak = 〈c, a〉

‖a‖22 = 〈c, a〉

Consider

‖c‖22 = ‖c− a+ a‖22 = ‖c− a‖22 + ‖a‖22 + 〈c− a, a〉+ 〈a, c− a〉
= ‖c− a‖22 + ‖a‖22 (since 〈c, a〉 = 〈a, a〉)
≥ ‖a‖22

In optimization language:
Consider

min ‖c2‖ such that Fc = f (Fc =
∑

ckgk)

The solution is ck = 〈f, hk〉.

4.3 Tight Frames

Definition 4.6. Tight Frame

{gk} is called a tight frame if A = B.

AI = S = BI

S−1 =
1

A
I

hk =
1

A
gk

f =
1

A

∑
〈f, gk〉 gk

19



Example 4.7. Tight Frames in R2

Figure 2: Rotated orthonormal

basis.

Figure 3: An orthonormal basis

included twice.

Example 4.8. Oversampling of Bandlimited Function

Let Ω = 1
2 .

τ = 1 ⇒ {Tkτ sinc}k∈Z are ONB for B1/2

τ = 1
2 ⇒ {Tk/2 sinc}k∈Z are a tight frame for B1/2 with bounds A = B = 2.

Definition 4.9. Frame Gram Matrix

A frame Gram matrix R : `2(I)→ `2(I) (although it could act only on a subspace of `2), where

Rkl = 〈gl, gk〉 .

Let c = `2(I), then

Rc = F ∗Fc =

{〈∑
k

ckgk, gl

〉}
l∈I

For an orthonormal basis, R = I.
For a frame, R is in general not invertible on `2(I).

When is R invertible?

20



Definition 4.10. Riesz Basis

(There are many equivalent definitions for a Riesz basis.) {gk}k∈I is a Riesz basis for H if any of
the following are true:

1. There exists an orthonormal basis {ek} for H such that

Uek = gk for all k ∈ I, U invertible.

2. The Gram matrix R is invertible on `2(I).

3. The coefficients ck in f =
∑
ckgk are unique and in `2(I).

4. {gk} is a frame for H, but it fails to be a frame for H if any of the gk is removed.
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5 1-26-12

5.1 ONB, Riesz Basis, and Frames

ONB ↔ Riesz Basis, Frames ↔ Tight Frames

Recall: {gk}k∈I is a Riesz basis if

• the Gram matrix R is invertible

• every f ∈ H can be written as f =
∑
ckgk, where the ck are unique

How do we find these ck’s?

Definition 5.1. Dual Riesz Basis

For a Riesz basis {gk}k∈I , we define the dual Riesz basis as {hk}k∈I as hk = S−1gk.

Definition 5.2. Biorthogonal

For a Riesz basis {gk}k∈I , {hk}k∈I are biorthogonal :

〈gk, hl〉 = δkl

Know: the spectrum of frame operator S satisfies σ(S) ⊆ [A,B].
Recall:

S = FF ∗

R = F ∗F

⇒ σ(R) ⊆ {0 ∪ [A,B]}

If {gk} are a Riesz basis, then σ(R) ⊆ [A,B].

{Tkτ sinc}k∈Z is a tight frame for B1/2 if τ ≤ i with A = B = 1
2 . What if the sampling points xk are not

xk = kτ? When can we recover f ∈ B1/2 from {f(xk)}k∈I?

We can recover f whenever {Txk sinc}k∈Z forms a frame for B1/2. Recall:

f(xk) = 〈f, Txk sinc〉

f =
∑
〈f, gk〉

Theorem 5.3. Kodec 1
4 Theorem (1962)

If the set {xk}k∈Z satisfies |xk − k| < 1
4 , then {Txk sinc} is a Riesz basis for B1/2. Therefore, we can

recover f from {f(xk)}k∈Z.
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We need a dual Riesz basis hk = S−1gk. We have gk = Txk sinc. {gk}k∈Z is generated by one function (sinc).

If xk are not uniformly spaced, then {hk}k∈Z is not of the form hk = Txkh. We have to compute hk =
S−1Txk sinc for each k in order to obtain f :

f =
∑
k∈Z

f(xk)hk.

5.2 Finite Frames

Let H = Rn or Cn.

Consider the set of functions {fk}mk=1, fk ∈ Rn.
Collect {fk} in a matrix F =

[
f1 f2 · · · fm

]
∈ Rn×m (F is the synthesis operator, Fc =

∑
ckfk).

Note: F typically has more columns than rows. It cannot have less columns than rows.

• For an ONB, F is a unitary n× n matrix: F ∗F = FF ∗ = I.

• For a Riesz basis, F is an n× n invertible matrix, the columns of (F−1)∗ form the dual Riesz basis.

• For a frame, F is an n×m of rank n and m ≥ n.

What are the frame bounds of F?
Let σ1 ≤ σ2 ≤ · · · ≤ σn be the singular values of F (i.e. the square roots of the eigenvalues of F ∗F ). Then
the lower frame bound is A = σ2

1 and the upper frame bound is B = σ2
n.

• If F is a tight frame, then σ1 = σ2 = · · · = σn

From Linear Algebra: the condition number of a matrix is σn
σ1

.

Definition 5.4. Condition Number

The condition number of a frame is

κ =
σn
σ1

=
B

A
.

5.3 Frames for Coding

Assume we are given a vector x ∈ Cn and we want to transmit x from one place to the other. We know
with a certain probability up to 1

3 of the coefficients get lost during transmission. We could re-transmit in
case of data loss.

Or we could introduce redundancy: choose a frame {fk}mk=1 and compute ck = 〈x, fk〉 and transmit the ck’s.
If 1

3 of the ck’s are lost, can we still recover x from the remaining ck’s? We need at least m ≥ 3
2n, is this

enough?
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Example 5.5.

Let x ∈ R2. Choose m ≥ 3
2 · 2 = 3 elements. Set F =

[
f1 f2 f3

]
. Choose

F =

[
1 0 −1
0 1 0

]
.

Compute ck = 〈x, fk〉 , k = 1, 2, 3. If we lose c1 (or c3), we need to recover x from c2, c3 using f2, f3.
F̃ =

[
f2 f3

]
still spans R2, so we compute the dual frame to F̃ and get

x = c2h2 + c3h3,

where
[
h2 h3

]
are the dual frame to F̃ .

If c2 is lost, then F̃ =
[
f1 f3

]
, but F̃ is not a frame for R2. ⇒ cannot recover x from c1, c3.

Example 5.6.

Choose instead

F =

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
We can recover x from any two out of {ck}3k=1.
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Example 5.7.

Choose

F =

[
1 0.9 0
0 0.1 1

]
Assume we lose

[
0
1

]
. Then

F̃ =

[
1 0.9
0 0.1

]
The dual frame is [

1 0
9 −10

]

The condition number of F̃ is large.

We want redundancy, but we also want that the frame elements are not “too close.” ⇒ | 〈fk, fl〉 | should be
small.

Definition 5.8. Coherence

The coherence of a frame {fk}mk=1 is defined as

µ({fk}mk=1) = max
k 6=l

| 〈fk, fl〉 |
‖fk‖‖fl‖

.

We often consider normalized frames, i.e. ‖fk‖2 = 1 for all k. Then

µ = max
k 6=l
| 〈fk, fl〉 | = max

k 6=l
|Rk,l|

So we want frames that

• have small µ

• are normalized

• are tight.
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Example 5.9.

If {fk} is an ONB, then µ = 0.
In general, 0 ≤ µ ≤ 1.
How small can µ be for a given m,n?

Theorem 5.10.

Let {fk}mk=1 be a frame for Rn or Cn with ‖fk‖ = 1 for all k. Then

µ ≥
√

m− n
n(m− 1)

(5.1)

Equality holds in (5.1) if an only if {fk}mk=1 is an equiangular tight frame.

Definition 5.11. Equiangular

Equiangular means that
| 〈fk, fl〉 | = α for k 6= l
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6 1-31-12

6.1 A Theorem on Tight Frames

Theorem 6.1.

Let {fk}mk=1 be a frame for Cn or Rn with ‖fk‖ = 1, k = 1, . . . ,m. Then

µ ≥
√

m− n
n(m− 1)

(6.1)

Equality holds if and only if {fk}mk=1 is an equiangular tight frame (ETF).

µ = max
k 6=l
| 〈fk, fl〉 |

| 〈fk, fl〉 | = α

Proof. Idea: Look at the Gram matrix, R = [〈fk, fl〉]mk,l=1. Recall: σ(R) = {0∪ [A,B]}. Let {λk}nk=1 be the
eigenvalues of R that are not zero. Recall:

n∑
k=1

λk = trace(R) =
m∑
k=1

Rkk = m =
m∑
k=1

‖fk‖22.

Then

m2 = (traceR)2 =

(
m∑
k=1

λk

)2

= 〈1, {λk}〉2

≤ ‖1‖22‖{λk}‖22 = n
n∑
k=1

λ2
k = n trace(R2)

Recall that

n∑
k=1

λ2
k = ‖R‖2F

‖A‖F ≡

√√√√ 2∑
k,l=1

|Akl|2

Then

n∑
k=1

λ2
k =

n∑
k,l=1

| 〈fk, fl〉 | ≥
m2

n
. (6.2)
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We have

µ2 = max
k 6=l
| 〈fk, fl〉 | ≥

1

m2 −m

m∑
k 6=l
k,l=1

| 〈fk, fl〉 |2

=
1

m2 −m


m∑

k,l=1

| 〈fk, fl〉 |2︸ ︷︷ ︸
≥m2

n
by (6.2)

−m


µ2 ≥ 1

m2 −m
·
(
m2

n
−m

)
=

m− n
n(m− 1)

which proves (6.1).

Equality in (6.1) implies that

| 〈fk, fl〉 | =
m− n
n(m− 1)

for all k 6= l

Equality in (6.1) also implies that λ1 = λ2 = . . . = λn = m
n ⇔ tight frame.

Remark 6.2.

This bound cannot be achieved for all n,m.

Corollary 6.3.

Equality in (6.1) can only hold if

• m ≤ n(n+1)
2 for Rn.

• m ≤ n2 for Cn.

Example 6.4. C2

Let

T =

[
0 1
1 0

]
, M =

[
1 0
0 −1

]
, v =

1√
6

[ √
3 +
√

3

eiπ/4
√

3−
√

3

]
.

Then F = [v, Tv, Mv, TMv] has µ = 1√
3

and frame bounds A = B = 2.
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Remark 6.5. CONJECTURE (Zanner)

For each n there exists a vector f ∈ Cn such that {fkl}nk,l=1 is an ETF for Cn, where fkl =

T kM lf, k, l = 0, . . . , n− 1. Here

T =


0 1 0

0 1
. . .

. . .

. . . 1
1 0

 , M =


ω0 0

ω1

. . .

0 ωn−1

 , ω = e2πi/n

This has been proven for certain n, and verified numerically for n = 2, . . . , 41.

This is important in Quantum Physics, where it is known as SIC-POVM: “Symmetric Informationally Com-
plete Positive Operator Valued Measure.”

A quantum state in finite dimensions can be identified with a positive semidefinite Hermitian matrix. Say
X ∈ Cn×n and X is hpd (hermitian positive semidefinit). We want to measure X. This means that we take
measurements of the form 〈X,Fk〉 := trace(XFk), k = 1, . . . ,m. The Fk’s are hpd and are often chosen to
be rank-one (i.e. pure quantum state). If Fk is rank one, then Fk = fkf

∗
k . Given 〈X,Fk〉, can I recover X?

(X does not have to be rank one.) If X is rank n,then we need at least m = n2 measurements. In practice,
we often want additional properties for the Fk.

Any ETF {fkl}mk,l=1 gives a SIC-POVM {Fkl}nk,l=1, where Fkl = fklf
∗
kl.

6.2 Mutually Unbiased Bases

Assume we have two orthonormal bases U = [u1, . . . , un], V = [v1, . . . , vn] in Cn. Let F = [U V ]. How
small can µ(F ) be?

Example 6.6.

Let U = I, V = Discrete-Fourier Transform matrix: Vkl = 1√
n
e2πikl/n, k, l = 0, . . . , n − 1. We can

show µ = 1√
n

.

R = F ∗F =

[
U∗

V ∗

] [
U V

]
=

[
I DFT

DFT ∗ I

]
⇒ max

k 6=l
|Rkl| =

1√
n

1√
n

is the smallest coherence between two orthonormal bases. Call such U, V mutually unbiased

bases (MUB).

[Quantum Physics, Schwinger 1965]
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Theorem 6.7.

In Cn, we can have at most n+1 MUB’s (this means that the frame F = [U1, . . . , Un+1] has µ = 1√
n

.)

In Rn, it is at most
⌊
n
2

⌋
+ 1.

Example 6.8.

Consider Cn, where n is a prime ≥ 5. Let f ∈ Cn be defined by

f(k) =
1√
n
e2πik3/n, k = 0, . . . , n− 1.

Let
fj,l = T jM lf, j, l = 0, . . . , n− 1.

Then {fjl}n−1
l=0 is an orthonormal basis ⇒ call it Uj .

µ ([Uj Ui]) =
1√
n
, j, i = 0, . . . , n− 1.

Choose Un = I.
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7 2-2-12

7.1 DFT and FFT

Let x ∈ Cn. We want to compute the Fourier transform x̂.

Definition 7.1. Discrete Fourier Transform

The Discrete Fourier Transform (DFT):

x̂(k) =
1√
n

n−1∑
l=0

x(l)e−2πikl/n, k = 0, 1, . . . , n− 1

The matrix

F =


ω0·0
n ω0·1

n . . . ω
0·(n−1)
n

ω1·0
n ω1·1

n . . . ω
1·(n−1)
n

...
...

. . .
...

ω
(n−1)·0
n ω

(n−1)·1
n . . . ω

(n−1)·(n−1)
n


where ω = e2πi/n is the “nthe root of unity.” F is unitary: F ∗ = F−1.

A naive implementation of x̂ takes O(n2) operations.

7.1.1 Fast Fourier Transform (FFT)

Cooley-Tuckey (1965), Gauss (1805)

Consider

x̂(k) =

n−1∑
l=0

x(l)e−2πik/n, k = 0, 1, . . . , n− 1.

When the frequency index is even, we group the terms with index l and l + n
2 :

x̂(2k) =

n
2
−1∑
l=0

(
x(l) + x

(
l +

n

2

))
e

=−πikl/n︷ ︸︸ ︷
−2πikl/

n

2 .

When the frequency index is odd, we get

x̂(2k + 1) =

n
2
−1∑
l=0

e−2πil/n
(
x(l)− x

(
l +

n

2

))
e−2πikl/n

2

Key observation:
Even frequencies can be computed by computing the DFT of a n

2 -length signal.

xeven(l) = x(l) + x
(
l +

n

2

)
, l = 0, . . . ,

n

2
− 1.

Odd frequencies can be computed by the DFT of a n
2 -length signal.

xodd(l) = e−2πil/n
(
x(l)− x

(
l +

n

2

))
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⇒ A DFT of length n can be computed by 2 DFT’s of length n
2 , plus n operations (for forming xeven and xodd).

Let n = 2m.

Splittings can be organized such that the total effort for computing x̂ is O(n log n) operations (= 3n log n).
⇒ FFT

We can extend this idea to signals of length 3m, 5m, 2m1 · 3m2 , . . .. This is still fast as long as the prime
factors are small.

In Matlab: FFT, IFFT (inverse)

7.1.2 Matrix Interpretation of FFT

Observation: We can write the DFT matrix Fn as

Fn = Pn

[
Fn/2 0

0 Fn/2

]
Qn

where Qn is a permutation matrix (⇒ doesn’t count towards operations); it is called the perfect shuffle
permutation.

Pn =

[
In/2 Dn/2

In/2 −Dn/2

]
where In/2 is the identity matrix and Dn/2 is a diagonal matrix with powers of ω in its diagonal.

Example 7.2. FFT vs. DFT

Say n = 8192 = 213. FFT is about 1000 times faster than DFT.

7.1.3 (Fast) Convolution of Finite Signals

Let f, g ∈ Cn. Convolution:

(f ∗ g)(k) =

?∑
l=?

f(l)g(k − l), k = 0, . . . , n− 1

If k = 0, l = 1, we need g(−1). We need to define g(k − l) for k − l < 0 or k − l > n− 1. What do we do at
the signal boundaries?

Two standard cases:
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1. “Zero padding:” Define
g(k) = 0
f(k) = 0

}
for k < 0, k ≥ n

Drawbacks:

(a) If f, g have length n, then f ∗ g has 2n− 1 nonzero entries.

(b) It can introduce an artificial “jump.”

2. Periodic extension:
g(k) = g(k mod n)

If f and g are n-periodic, then f ∗ g is also n-periodic. Also, the algebraic properties of the Fourier
Transform are preserved.

(f ∗ g) = F−1(f̂ · ĝ)

In Matlab: fft(fft(f)×fft(g))

Let f, g ∈ Cn.

Why do we take a Fourier Transform?
To understand the frequency behavior of f(x).

Information about when frequencies dominate in f is hidden in f̂(ω). For example, musical score is a joint
time-frequency representation of music. Playing music ↔ synthesis operator, f =

∑
k,l

ck,lfk,l. Writing down

musical score ↔ analysis operator 〈f, fk,l〉 = ck,l.
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8 2-7-12

8.1 Uncertainty Principle

Figure 4: The idea of “instantaneous frequency.”

We need some notion of “localization” or “concentration of energy.”

f is concentrated at a point u if ˆ
R
|f(x)|2(x− u)2 dx

is small compared to ‖f‖22. Similarly, f̂(ω) is concentrated at ξ if

ˆ
ω
|f̂(ω)|2(ω − ξ)2 dω

is small relative to ‖f̂‖22.

Denote

σ2
x =

1

‖f‖22

ˆ
R

(x− u)2|f(x)|2 dx

σ2
ω =

1

‖f̂‖22

ˆ
R

(ω − ξ)2|f̂(ω)|2 dω

Theorem 8.1. Heisenberg-Pauli-Weyl Inequality

(Heisenberg 1927, Wiener 1925)

Let f ∈ L2(R). Then

σxσω ≥
1

4π

with equality if and only if

f(x) = ae2πiξxe−b(x−u)2 , a, b, ξ ∈ R, a, b > 0
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Proof. We assume that lim
x→∞

√
xf(x) = 0 and ‖f‖2 = 1 (although the theorem holds for all f ∈ L2(R)). If

f(x) is localized around u and f̂(ω) is localized around ξ, then f(x+ u)e−2πixξ is localized around (0, 0).

Thus, it is sufficient to consider u = 0, ξ = 0 (otherwise make a change of variables).

σ2
xσ

2
ω =

(ˆ
R
|xf(x)|2 dx

)(ˆ
R
|ωf̂(ω)|2 dω

)
Since iωf̂(ω) = 1

2π (f̂ ′)(ω), we get

σ2
xσ

2
ω =

1

4π2

ˆ
|xf(x)|2 dx

ˆ
|f ′(x)|2 dx,

where we have used Plancherel for f̂ ′. Cauchy-Schwarz gives us

σ2
xσ

2
ω ≥

1

4π2

(ˆ
|xf(x)f ′(x)| dx

)
=

1

4π2

(ˆ
x

2
|2f ′(x)f(x)| dx

)2

=
1

16π2

(ˆ
x(|f(x)|2)′ dx

)2

Since
√
xf(x)→ 0, integration by parts gives

σ2
xσ

2
ω ≥

1

16π2

(ˆ
|f(x)|2 dx

)2

=
1

16π2
‖f‖22

=
1

16π2

Equality: The only inequality step is when we use Cauchy-Schwarz. Cauchy-Schwarz is an equality if the
two functions are linearly independent:

f ′(x) = cxf(x) ⇒ f(x) = ae−bx
2

gives σxσω = 1
4π , a, b > 0. If n 6= 0, ξ 6= 0, then we get equality if

f(x) = ae2πiξxe−b(x−u)2 .

8.2 Uncertainty Principle in Quantum Mechanics

Classical mechanics: the state of a system is completely determined by the position x and momentum ω of
the particle.

Quantum mechanics:

• Observables for position: multiplication operator (Xf)(x) = xf(x)

• Observables for momentum: momentum operator Pf = 1
2πi

df
dx (where we have ignored Planck’s con-

stant)
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If a particle is in the state f ∈ L2(R), ‖f‖2 = 1, then the expected position is

〈Xf, f〉 =

ˆ
x|f(x)|2 dx

where |f(x)|2 is the probability density for random variable x. Position uncertainty is the standard deviation
of x:

σx =

(ˆ
(x− q)2|f(x)|2 dx

)1/2

The particle is “most” likely located in the interval [q − σxx, q + σxx], where σx depends on f !

Expected momentum is 〈Pf, f〉 =
〈
Xf̂, f̂

〉
=
´
ω|f̂(ω)|2 dω, since P = F−1XF and by Parseval. The

momentum uncertainty is

σω = 〈(P − p)f, f〉1/2 =

(ˆ
(ω − p)2|f̂(ω)|2 dω

)1/2

σxσω ≥
1

4π

(x, ω) can be considered as a point in R×R̂, which is called phase space or the time-frequency plane. (Recall:
R↔ R̂, Z↔ T.)

We cannot assign a unique point (x, ω) in phase space to a particle.

Definition 8.2. Commutator

For two operators A,B, we define the commutator

[A,B] := AB −BA.

If the operators commute, the commutator is zero.

[X,P ] = XP − PX = − 1

2πi
I (8.1)

⇒ X and P do not commute. We could derive the uncertainty principle from (8.1).

Note:

d

dω
Mωf

∣∣∣∣
ω=0

= 2πiXf

d

dx
Txf

∣∣∣∣
x=0

= −2πiPf

8.3 Short-Time Fourier Transform (STFT)

Given a function f ∈ L2(R), we want a “local” time-frequency representation of f .
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Definition 8.3. Short-Time Fourier Transform (STFT)

Fix a function g 6= 0 (the window, atom, etc.). The short-time Fourier transform of a function f
w.r.t. g is

(Vgf)(x, ω) =

ˆ
R
f(t)g(t− x)e−2πiωt dt

for x, ω ∈ R× R. (The conjugate will allow us to interpret this as an inner product.)

Vg maps f on R into a function on R × R with time and frequency as coordinates (joint representation).
The properties of Vgf depend crucially on the choice of g.
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9 2-9-12

Next Tuesday, 2/14: Office Hours are 12-1 (instead of 3-4)

9.1 Short-Time Fourier Transform (Continued)

Recall:

Vgf(x, ω) =

ˆ
R
f(t)g(t− x)e−2πiωt dt,

(w,ω) ∈ R2.

Lemma 9.1.

If f, g ∈ L2(R), then

(Vgf)(x, ω) = f̂ · Txg(ω)

= 〈f,MωTxg〉

=
〈
f̂ , TωM−xĝ

〉
= e−2πixωVĝf̂(ω,−x)

Example 9.2.

For g(x) = f(x) = e−πx
2

〈φ,MωTxφ〉 = e−πixωφ(x) φ̂(ω)︸︷︷︸
=φ(ω)

⇒ Vφφ(w,ω) = e−πixωe−π(x2+ω2)

Figure 5: Vφφ is a 2-D Gaussian. It is focused at the origin and decays rapidly.
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Example 9.3.

If g = S, f ∈ S (Schwartz class), then

Vgf(x, ω) = e−2πixωf(x)

Example 9.4.

If g = 1, f ∈ L1, then

Vgf(x, ω) = f̂(ω)

9.2 STFT Orthogonality Relations

Let f1, f2, g1, g2 ∈ L2. Then

〈Vg1f1, Vg2f2〉 = 〈f1, f2〉 〈g1, g2〉

⇒ This implies the inversion of the STFT:

Let g, γ ∈ L2(R) and 〈g, γ〉 6= 0. Then for all f ∈ L2(R):

f =
1

〈g, γ〉

ˆ
R

ˆ
R
Vgf(x, ω)MωTxγ dω dx

in the weak sense:

〈f, h〉 =
1

〈g, γ〉

ˆ ˆ
Vgf(x, ω) 〈MωTxγ, h〉 dx dω

• g: analysis window

• γ: synthesis window

– Can choose γ = g

Remark 9.5. Isometry

If g ∈ L2(R) and ‖g‖2 = 1, then ‖f‖2 = ‖Vgf‖2.

⇒ The STFT is an isometry from L2(R) into L2(R).

9.3 Quadratic Time-Frequency Representations

Definition 9.6. Spectrogram

|Vgf(x, ω)|2 is known as a spectrogram (used in audio processing and music).
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Definition 9.7. Ambiguity Function

Af(x, ω) =

ˆ
f
(
t+

x

2

)
f
(
t− x

2

)
e−2πitω dt

= eπixωVff(x, ω)

Af does not depend on a window function g.

9.3.1 Ambiguity Function and Radar

We want to determine d and v. We send a pulse f(t) = g(t)e2πitω0 , where ω0 is the carrier frequency and
g(t) is the envelope signal. If supp ĝ = [−Ω,Ω], then supp f̂ ≈ [−Ω + ω0,Ω + ω0].

Narrowband assumption: 2Ω� ω0.

The antenna receives the echo with time delay ∆t = 2d
c , where c is the speed of light. The motion of the

target induces Doppler shift : at each frequency ω ∈ [ω0 − Ω, ω0 + Ω] is shifted by ∆ω = −2πivω
c ≈ −2πivω0

c ,
since Ω� ω0.

⇒ The received signal is
s(t) = αf(t−∆t)e2πit∆ω,

where α is the attenuation. From s(t) we need to estimate ∆t,∆ω. At the receiver, compute | 〈s,MωTxf〉 |
for all x, ω ∈ R.

Covariance property of the STFT (proved in HW):

|〈s,MωTxf〉| = |Vff(t−∆t, ω −∆ω)| = |Af(t−∆t, ω −∆ω)|

Lemma 9.8.

If f ∈ L2(R), f 6= 0, then

|Af(x, ω)| < Af(0, 0) = ‖f‖22

for all (x, ω) 6= (0, 0).
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This follows from

|Af(x, ω)| = | 〈f,MωTxf〉 | ≤ ‖f‖‖f‖

⇒ Simply compute max |Af(x, ω)| to find ∆t,∆ω.

9.3.2 Wigner Distribution

(Wigner, 1932)

Wf(x, ω) =

ˆ
f

(
x+

t

2

)
f

(
x− t

2

)
e−2πiωt dt

= 2e4πiωxVIff(2x, 2ω), where If(x) = f(−x)

9.4 Gabor Frames

The STFT is highly redundant. Do we have to take all 〈f,MωTxg〉 for (x, ω) ∈ R2?

By the inversion formula, we can write f as (assuming 〈g, γ〉 = 1)

f =

¨
R2

〈f,MωTxg〉MωTxγ dω dx

1. We could try to replace the integrals by Riemann sums over some lattice in R× R

f
?
=
∑
k∈Z

∑
l∈Z
〈f,MlbTkag〉MlbTkaγ

for a, b > 0; we need to find γ.

2. Or we could try to express f for a given γ as

f =
∑
k,l∈Z

cklMlbTkaγ,

where we need to find {ckl}.

3. Recall that ‖Vgf‖ = ‖f‖ for ‖g‖2 = 1. Try to sample Vgf(x, ω) dense enough so that

A‖f‖22 ≤
∑
|Vgf(ka, lb)|2 ≤ B‖f‖22

for some A,B > 0.
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All 3 problems are equivalent and solved via frame theory.

Denis Gabor (1948) wanted to represent a function f ∈ L2(R) as

f =
∑
k∈Z

∑
l∈Z

cklTkaMlbg

where g(x) = e−πx
2
, a = b = 1.

Definition 9.9. Gabor System

Let
gkl := TkaMlbg.

Then {gkl}k,l∈Z is called a Gabor system.

This is also known as a Weyl-Heisenberg system. In quantum physics, for g = Gaussian and
a = b = 1, then {gkl}k,l∈Z are known as (canonical) coherent states.
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10 2-14-12

10.1 Gabor Systems (Continued)

gkl = TkaMlbg, k, l ∈ Z

Definition 10.1. Gabor Frame

If the set {gkl}k,l∈Z is a frame, then it is called a Gabor frame.

Theorem 10.2.

If {gkl} is a (Gabor) frame for L2(R), then there exists a “dual window” γ ∈ L2(R) such that the
dual frame is {γkl}, where γkl = TkaMlbγ. Hence, every f ∈ L2(R) can be written as

f =
∑
k,l

〈f, TkaMlbg〉TkaMlbγ

and

f =
∑
k,l

〈f, TkaMlbγ〉TkaMlbg.

Proof. Show that the frame operator S commutes with TkaMlb.

(TkaMlb)
−1S(TkaMlb) =

∑
m,n

〈TkaMlbf, TmaMnbg〉 (TkaMlb)
−1TmaMnbg (10.1)

Recall:

(TkaMlb)
−1(TmaKnb) = e−2πiab(m−k)lTa(m−k)Mb(n−l)

The phase factor e−2πiab(m−k)l cancels in (10.1) and we get

(TkaMlb)
−1S(TkaMlb) =

∑
m,n

〈
f, Ta(m−k)Mb(n−l)g

〉
Ta(m−k)Mb(n−l)g

= Sf (by change of variables)

⇒ So S−1 also commutes with TkaMlb. What does this mean?

S−1(TkaMlbg)︸ ︷︷ ︸
γkl

= TkaMlb S
−1g︸ ︷︷ ︸
γ

⇒ This means that the dual frame is γkl = TkaMlbγ. The rest of the proof follows from the frame property.

The significance is that we need to compute only one dual window, e.g. γ = S−1g.
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We call the discretized STFT the Gabor transform.

What about Gabor’s choice: g(x) = e−πx
2
, a = b = 1? Is this a Gabor frame for L2(R)?

von Neumann conjectured that {gkl} with g(x) = e−πx
2
, a = b = 1 is complete in L2(R). (That is, the span

of {gkl} is dense in L2.)

Theorem 10.3.

If g(x) = e−πx
2

and a = b = 1, then {gkl}k,l∈Z is complete in L2(R). It stays complete complete
if we remove an arbitrary function from {gkl}, but it is incomplete if we remove any two functions
from {gkl}. However, it is not a frame for L2(R), since the lower frame bound A = 0. There exists
a dual system (not a frame) γkl = TkMlγ, γ /∈ L2, where γ looks like:

Theorem 10.4.

If g(x) = e−πx
2
, ab < 1, then {gkl} is a frame for L2(R). If ab > 1, there exists no g such that {gkl}

is a frame for L2(R).

(Rieffel, H. Landau, Daubechies)

Definition 10.5. Redundancy

We call ρ = 1
ab the redundancy of the Gabor system.

• ab = 1: “critical sampling” of the phase space

• ab < 1: oversampling, “nice” Gabor frames for L2(R) exist

• ab > 1: undersampling, no Gabor frames for L2(R) exist
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10.2 Gabor Duality Conditions

Consider the Gabor system {gkl} generated by (g, a, b) and another Gabor system {gmn} generated by
(g, 1

b ,
1
a). We have two time-frequency lattices: (ka, lb)k,l∈Z and (mb ,

n
a )m,n∈Z.

Theorem 10.6. (Jenssen, Daubechies)

Let g ∈ L2(R) and a, b > 0. Then the Gabor system {gkl} generated by (g, a, b) is a frame for
L2(R) if and only if {gmn} generated by (g, 1

b ,
1
a) is a Riesz basis for a subspace of L2(R).

In particular, (g, a, b) generates a tight frame for L2(R)⇔ (g, 1
b ,

1
a) generates an ONB for a subspace

of L2(R).
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11 2-16-12

11.1 Gabor Duality Conditions (Continued)

Gabor frames for `2(Z):

g ∈ `2(Z),

gkl(n) = g(n− ka)e2πinlb,

b = 1
M , M ∈ N+, a ∈ N+, k ∈ Z, l = 0, . . . ,M − 1. (Z FT−−→ T.)

Gabor frames on CN :
g ∈ CN ,

gkl(n) = g(n− ka)e2πinlb,

a, b divide N .

For example: N = 128, a = 8, b = 8, N
a = 16 time shifts, N

b = 16 frequency shifts. k = 0, . . . , Na − 1,
l = 0, . . . , Nb − 1. ⇒ We have 256 elements gkl.

11.1.1 Application: Filter Banks

Given a (sampled) function f ∈ `2(Z), we want to denoise, store, compress, etc... the signal.

Perfect reconstruction condition:
If dl,k = cl,k, then we want that f̂ ≡ f .
We can ensure perfect reconstruction if {glk} is a frame for `2(Z) (or L2(R)) and {γlk} is a dual frame.

• Linear independence of {glk} is not necessary, but (over) completeness is.

• Modulated Filter Bank: gl,k(t) = g(t− ka)e2πitlb, b = 1
M .

– If g = 1[0,a], then this is called a DFT-FB (DFT Filter Bank).

11.1.2 Application: Data Transmission

Given a discrete (possibly binary) sequence of coefficients that we need to transmit. Group the data into
blocks of size N : {cm,n}N−1

n=0 , m-time index. Form a continuous-time signal f(t) =
∑
m,n

cm,ngn(t−ma).
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Figure 6: Operator H models the communication channel (e.g. phone line).

Perfect reconstruction condition: dn,m = cn,m. Need: {gn,m} are linearly independent (no frames); we can
have incompleteness.

In DSL, we choose
gn,m(t) = g(t−ma)e2πitlb,

g(t) = 1[0,c], c < a.

OFDM (orthogonal frequency division multiplexing) uses Gabor-type systems.

Know: using g(x) = e−πx
2
, a = b = 1 “does not work” in practice; the dual is not in L2(R) (it is a distri-

bution).

Can use: g(x) = 1[0,1], a = b = 1. {gk,l} is a Gabor ONB for L2(R). But ĝ(ω) = sinπω
πω ⇒ no good frequency

localization.

Can we modify g = 1[0,1] to get a time-frequency well-localized g such that {gkl} is an ONB for L2(R)?
Answer: No.
Can we get a Riesz basis?
Answer: Still no.

Theorem 11.1. Balian-Low Theorem (also Coifamn, Daubechies,...)

If {gkl}k,l∈Z with a = b = 1 is an ONB for L2(R), then either

ˆ
|xg(x)|2 dx =∞ OR

ˆ
|ωĝ(ω)|2 dω =∞.

See Proposition (13.2).

Proof. Let X be the position operator Xf(x) = xf(x), and let P be the momentum operator Pf(x) =
1

2πif
′(x).

Recall:

1. (PX −XP )f = 1
2πif for f ∈ domain(XP ) ∩ domain(PX).

2. P̂ f = Xf̂
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The proof is done via contradiction. Assume that {gkl} is an ONB for L2(R), that Xg ∈ L2(R), and that
Pg ∈ L2(R). Then

〈Xg, Pg〉 =
∑
k,l

〈Xg, TkMlg〉 〈TkMlg, Pg〉

Since

XTkMlg(x) = (k + x− k)e2πilxg(x− k)

= kTkMlg(x) + TkMlXg(x)

So

〈Xg, TkMlg〉 = 〈g,XTkMlg〉

= k

=0 if (k,l)6=(0,0)︷ ︸︸ ︷
〈g, TkMlg〉︸ ︷︷ ︸

=0

+ 〈g, TkMlXg〉

= 〈T−kM−lg,Xg〉 (because k, l ∈ Z)

We also have

〈TkMlg, Pg〉 = 〈PTkMlg, g〉
= 〈XM−kTlĝ, ĝ〉
= l 〈M−kTlĝ, ĝ〉︸ ︷︷ ︸

=0

+ 〈M−kTlXĝ, ĝ〉

= 〈Pg, T−kM−lg〉

Using these formulas, we get

〈Xg, Pg〉 =
∑
k,l

〈Pg, T−kM−lg〉 〈T−kM−lg,Xg〉

= 〈Pg,Xg〉

⇒ For g ∈ dom(XP ) ∩ dom(PX), it follows that

〈Xg, Pg〉 − 〈Pg,Xg〉 = 0

= 〈PXg, g〉 − 〈XPg, g〉
= 〈(PX −XP )g, g〉

(uncertainty principle) =
1

2πi
〈g, g〉 6= 0 if g 6= 0 ⇒⇐

Now we need to get rid of our assumption that g ∈ dom(XP )∩dom(PX). If g /∈ dom(XP )∩dom(PX), we
can choose a sequence fn ∈ S(R) such that ‖fn− g‖2 → 0, ‖Xfn−Xg‖2 → 0, and ‖Pfn−Pg‖2 → 0. Then

lim
n→∞

(〈Xfn, Pfn〉 − 〈Pfn, Xfn〉) = 〈Xg, Pg〉 − 〈Pg,Xg〉 = 0.

But since fn ∈ S(R) ∈ dom(XP ) ∩ dom(PX), we also have

lim
n→∞

〈(PX −XP )fn, fn〉 =
1

2πi
lim
n→∞

‖fn‖22

=
1

2πi
‖g‖22

6= 0 ⇒⇐

This theorem can be generalized to Riesz bases, and to L2(Rd).
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12 2-21-12

12.1 Wavelets

Problems of STFT and Gabor Systems:

• If a window is too large, then it cannot localize sharp transitions in signal (for a fixed window size)

• If a window is too small, then it cannot detect low frequency oscillators (for a fixed window size)

• The Balian-Low Theorem: there do not exist “nice” Gabor ONB’s.

Key idea of waveletes: use translations and dilations (no modulations) of a single function to analyze a
signal at different “resolutions.”

Definition 12.1. Wavelet

A wavelet is a function (often called “mother wavelet”) Ψ ∈ L2(R) with

ˆ ∞
−∞

Ψ(x) dx = 0,

which is normalized to have ‖Ψ‖2 = 1, and it is centered around x = 0.

Let’s generate a family of time-frequency atoms (= window functions):

Ψa,b(x) =
1√
a

Ψ

(
x− b
a

)
, a > 0, b ∈ R

= TbDaΨ

Note: ‖Ψa,b‖2 = 1.

Also note:

TbDaψ(x) = DaTb/aψ(x)

DaTbψ(x) = TbaDaψ(x)
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Definition 12.2. Wavelet Transform

The wavelet transform (often called “continuous wavelet transform”) of f ∈ L2(R) is defined as

Wf(a, b) = WΨf(a, b) := 〈f,Ψa,b〉

=

ˆ ∞
−∞

f(x)TbDaΨ(x) dx

=

ˆ ∞
−∞

f(x)
1√
a

Ψ

(
x− b
a

)
dx

This can be viewed as a linear filtering:

ˆ ∞
−∞

f(x)
1√
a

Ψ

(
x− b
a

)
dx = f ∗ Ψ̃a(b)

Ψ̃a(x) : =
1√
a

Ψ
(
−x
a

)
F7→ ̂̃Ψa(ξ) =

√
aΨ̂(aξ) = D1/aΨ̂(ξ)

Types of wavelets:

• Real waveletes → good for edges

• Analytic (or complex) wavelets → can detect phases of a signal

For the time being, let’s focus on real wavelets.

Example 12.3. Mexican Hat Function, or Laplacian of Gaussian (LoG)

Ψ(x) =
2

π1/4
√

3σ

(
1− x2

σ2

)
e−x

2/2σ2
= − d2

dx2

(
2σ2

π1/4
√

3σ
· e−x2/2σ2

)
Ψ̂(ξ) = 8

√
2

3
π9/4σ5/2ξ2e−2π2σ2ξ2

Ψ̂(0) = 0, Ψ̂(ξ) ∼ ξ2 around ξ = 0 → approximates d2

dx2
.
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Theorem 12.4. Calderón-Grossman-Morlet

Let Ψ ∈ L2(R), Ψ ∈ R such that

CΨ :=

ˆ ∞
0

|Ψ̂(ξ)|2

ξ
dξ <∞.

Then any f ∈ L2(R) satisfies

f(x) =
1

CΨ

ˆ ∞
0

ˆ ∞
−∞

Wf(a, b)Ψa,b(x) db
da

a2
(12.1)

‖f‖22 =
1

CΨ

ˆ ∞
0

ˆ ∞
−∞
|Wf(a, b)|2 db da

a2

Proof.

Wf(a, b) = f ∗ Ψ̃a(b)

(RHS of 12.1) =
1

CΨ

ˆ ∞
0

(Wf(a, ·) ∗Ψa,·)(x)
da

a2

=
1

CΨ

ˆ ∞
0

(f ∗ Ψ̃a ∗Ψa)(x)
da

a2

(by F) =
1

CΨ

ˆ ∞
0

f̂(ξ)
√
aΨ̂(aξ)

√
aΨ̂(aξ)

da

a2

=
f̂(ξ)

CΨ

ˆ ∞
0

|Ψ̂(aξ)|2

a
da

=
f̂(ξ)

CΨ

ˆ ∞
0

|Ψ̂(η)|2

η
dη (η = aξ)

CΨ <∞ is called the admissibility condition, and (12.1) is called Calderón’s reproducing formula.

f(x) =
1

CΨ

ˆ ∞
0

f ∗ Ψ̃a ∗Ψa(x)
da

a2

This is also called the resolution of the identity .

To guarantee CΨ <∞, we need

Ψ̂(0) = 0 ⇔
ˆ ∞
−∞

Ψ(x) dx = 0

So, Ψ must be oscillatory with ± values. We also need decay on Ψ, e.g.

ˆ ∞
−∞

(1 + |x|)Ψ(x) dx <∞.

51



12.2 Reproducing Kernel

CWT (Continuous Wavelet Transform) = a redundant representation.

Wf(a, b) =

ˆ ∞
−∞

(
1

CΨ

ˆ ∞
0

ˆ ∞
−∞

Wf(a′, b′)Ψa′,b′(x) db′
da′

a′2

)
︸ ︷︷ ︸

=f(x)

·Ψa,b(x) dx (12.2)

=
1

CΨ

ˆ ∞
0

ˆ ∞
−∞

K(a, a′, b, b′)Wf(a′, b′) db′
da′

a′2

whereK(a, a′b, b′) :=
〈
Ψa,b,Ψa′,b′

〉
, which measures the correlation between Ψa,b and Ψa′,b′ . IfK(a, a′, b, b′) =

δ(a− a′)δ(b− b′), then there is no redundancy.

Proposition 12.5.

A function Φ(a, b) ∈ L2(R+×R) is a wavelet transform of some f ∈ L2(R)⇔ Φ(a, b) satisfies (12.2).

12.3 Scaling Function (Father Wavelet)

The reconstruction formula requires all values of scales 0 < a < ∞. If we only know Wf(a, b) for a < a0,
then we need complementary info for a > a0 provided by the scaling function (father wavelet).

|φ̂(ξ)|2 : =

ˆ ∞
1
|Ψ̂(aξ)|2 da

a

=

ˆ ∞
ξ

|Ψ̂(η)|2

η
dη

The phase of φ can be arbitrarily chosen.

• lim
ξ→0
|φ̂(ξ)|2 = CΨ

• ‖φ‖2 = 1 ← Exercise: use the definition. So the low frequency approximation of f at scale a can be
written as

Lf(a, x) : =

〈
f,Daφ︸︷︷︸

=φa

〉
= f ∗ φ̃a(x)

f(x) =
1

CΨ

ˆ a0

0
(Wf(a, ·) ∗Ψa)(x)

da

a2
+

1

CΨa0
(Lf(a0, ·) ∗ φa0) (x)
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Example 12.6. Mexican Hat Function

Ψ(x) =
2

π1/4
√

3σ

(
1− x2

σ2

)
e−x

2/2σ2

Ψ̂(ξ) = 8

√
2

3
π9/4σ5/2ξ2e−2π2σ2ξ2

⇒ |φ̂(ξ)|2 =
4σ

3
√
π

(
1 + 4π2σ2ξ2

)
e−4π2σ2ξ2

⇒ φ̂(ξ) = 2

√
σ

3
√
π

√
1 + 4π2σ2ξ2e−2π2σ2ξ2

→ Choose a simple phase factor.

12.4 Discrete Wavelet Transforms

How to sample Wf(a, b)?

Another great insight by J. Morlet: “regular hyperbolic grid”

(a, b) = (am0 , na
m
0 b0), m, n ∈ Z
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Theorem 12.7. Regular Sampling Theorem (Daubechies, 199)

Let Ψ be a real-valued L2-function. For fixed a0, b0, define

Ψm,n(x) : = a
−m/2
0 Ψ(a−m0 x− nb0)

=
1√
am0

Ψ

(
x− nam0 b0

am0

)
= Tnam0 b0Dam0

Ψ(x), m, n ∈ Z

1. If {Ψm,n}(m,n)∈Z2 is a frame in L2(R) with frame bounds A,B, then we must have

A ≤ 1

b0

∞∑
−∞
|Ψ̂(am0 ξ)|2 ≤ B

for ξ ∈ R a.e. In particular, Ψ satisfies the admissibility condition:

CΨ =

ˆ ∞
0
|Ψ̂(ξ)|2dξ

ξ
<∞

2. If for some ε > 0, Ψ satisfies |x|
1
2

+εΨ ∈ L2, |ξ|εΨ̂ ∈ L2, and
´

Ψ(x) dx = 0, then Ψ satisfies{
ess inf

∑
m∈Z |Ψ̂(am0 ξ)|2 > 0

ess sup
∑

m∈Z |Ψ̂(am0 ξ)|2 <∞
(12.3)

for any a0 close enough to 1. (i.e., there exists α = α(Ψ) > 1 such that (12.3) is satisfied for
any a0 ∈ (1, α).) Moreover, if b0 is close enough to 0 (i.e., there exists β = β(a0,Ψ) for a0

satisfying (12.3) such that b0 ∈ (0, β)), then {Ψm,n}(m,n)∈Z2 constitute a frame.

Example 12.8.

Let Ψ(x) be the Mexican hat function, a0 = 2, b0 = 1
4 . Then {Ψm,n}(m,n)∈Z2 forms a frame (called

a wavelet frame). A = 13.09, B = 14.18, i.e., it is almost tight!

Definition 12.9. Dual Frame

The wavelet frame operator S commutes with dilations Dam0
, but not with translations Tnam0 b0 .

⇒ The dual frame, S−1(Tnam0 b0Dam0
Ψ) is in general not a wavelet system (unlike for Gabor frames).
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13 2-28-12

13.1 Wavelet ONB for L2(R)

Definition 13.1. Haar Basis (Haar, 1909)

ψ(x) =


1 0 ≤ x < 1

2
−1 1

2 ≤ x < 1
0 otherwise

ψm,n(x) = 2−m/2ψ(2−mx− n)

= T2mnD2mψ(x), m ∈ N, n ∈ Z

⇒ {ψm,n} is an ONB for L2(R).

But the Haar Wavelet is not continuous, and therefore ψ̂ is not localized.

Proposition 13.2. Meyer (1985), Stromberg (1982)

There exists a wavelet ONB for L2(R), where ψ can have exponential decay and ψ ∈ Ck, k <∞.

⇒ There is no Balian-Low Theorem (11.1) for wavelets.

13.2 Multiresolution Analaysis and Wavelet ONB’s

Let V−1 be a subspace of L2(R) and f ∈ V−1. We want to decompress f into a “smooth” part (low-
frequency) and a “rough” part (or coarse, or edgy) (high frequency). We do this by projecting f onto
V0 ⊆ V−1 containing the smooth part of f , P0f , and project f onto W0 := V ⊥0 containing the rough part of
f , Q0f .

f = P0f +Q0f, V−1 = V0 ⊕W0

Leave Q0f and proceed with P0f by representing V0 as

V0 = V1︸︷︷︸
“smooth”

⊕ W1︸︷︷︸
“rough”

• Project onto V1: P1

• Project onto W1: Q1
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Since P1P0f = P1f and Q1Q0f = Q1f , we get

P0f = P1f +Q1f

f = P1f +Q1f +Q0f

We can split P1f into P2f and Q2f , ...

Definition 13.3. Multiresolution Analysis, Scaling Function

A multiresolution analysis (MRA) of L2(R) is an increasing sequence of closed subspaces Vm ∈
L2(R),

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ · · · ⊂ L2(R),

such that

1. ∪m∈ZVm = L2(R)

2. ∩m∈ZVm = {0}
3. f(·) ∈ Vm ⇔ f(2m·) ∈ V0

4. There exists a function φ ∈ L2(R) (not a wavelet) whose integer translates Tkφ, k ∈ Z, form
a Riesz basis for V0. φ is called the scaling function.

MRA is key to

• Constructing a wavelet ONB

• Fast Wavelet Transform

Remarks:

• V0 is invariant under integer translations: f ∈ V0 ⇔ Tkf ∈ V0

• MRA condition #3 implies that f ∈ Vm ⇔ T2mkf ∈ Vm ∀ k ∈ Z
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• MRA conditions #3 and #4 imply that Vm is spanned by the following functions:

φm,k(x) : = 2−m/2φ(2−mx− k)

= T2mD2mφ(x).

Lemma 13.4.

The scaling function φ satisfies a “scaling equation.” There exists a sequence {αk}k∈Z of real
numbers with the following property:

φ(x) =
√

2
∑
k∈Z

αkφ(2x− k)

=
∑
k∈Z

αkTk/2D1/2φ(x).

Proof. This result follows from the fact that φ ∈ V0 ⊂ V−1 = span
{√

2φ(2x− k), k ∈ Z
}

= span
{
Tk/2D1/2φ(x)

}
.

Note:

• Vm−1 = Vm ⊕Wm, Vm ⊥Wm

• Pm−1 = Pm +Qm, Qm = Pm−1 − Pm

– Averages lead to smoothing, differences lead to fine details.

• We have Vm = ⊕j≥m+1Wj , and so L2(R) = ⊕j∈ZWj

• Also, f(·) ∈Wm ⇔ f(2m·) ∈W0

f ∈ L2(R) can be decomposed as

f =
∑
j∈Z

Qjf =
∑

j≥m+1

Qjf +
∑

j<m+1

Qjf

= Pmf +
∑

j<m+1

Qjf.

Qjf contains the details of f which distinguish Pj−1 from Pj , since Qj = Pj−1 − Pj . We will see that for
every MRA there exists a wavelet ψ such that ψm,k(x) = 2−m/2ψ(2−mx − k), where {ψm,k}k∈Z is an ONB
for Wm for fixed m. ψ can be explicitly constructed from φ.
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14 3-1-12

14.1 MRA (Continued)

(Recall) MRA:

1. ∪Vm = L2(R)

2. ∩Vm = {0}

3. f(·) ∈ Vm ⇔ f(2m·) ∈ V0

4. {Tkφ} is a Riesz basis for V0

φ is the scaling function:

φ(x) =
√

2
∑

φkφ(2x− k)

Example 14.1. Haar Wavelet ONB

Set

φ(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

V0 consists of functions that are constant on [k, k + 1], k ∈ Z.

For general m:

Vm = span {φm,k, k ∈ Z}
= {f ∈ L2(R)

∣∣ f is constant on [2mk, 2m(k + 1)], k ∈ Z}

The family Vm generates a MRA.

In this example (but not in general), {φm,k}k∈Z is an ONB for Vm.

Pmf =
∑
k

〈Pmf, φm,k〉︸ ︷︷ ︸
=:cmk

φm,k

ckm = 〈Pmf, φm,k〉 = 〈f, Pmφm,k〉 = 〈f, φm,k〉

= 2−m/2
ˆ 2m(k+1)

2mk
f(x) dx

This is a local average. What is the difference between Pmf and the next coarser level, Pm+1f? The scaling
equation in our example is

φ(x) =
√

2

(
1√
2
φ(2x) +

1√
2
φ(2x− 1)

)
.

More generally:

φm+1,k =
1√
2

(φm,2k + φm,2k+1)
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Thus,

cm+1
k = 〈f, φm+1,k〉 =

1√
2

(cm2k + cm2k+1)

Pm+1f is an averaged version of Pmf .
Difference:

Pmf − Pm+1f =
∑
k

cmk φm,k −
∑
k

cm+1
k φm+1,k

=
∑
k

cmk φm,k︸ ︷︷ ︸
=
∑
k c
m
2kφm,2k+

∑
k c
m
2k+1φm,2k+1

−1

2

∑
k

(cm2k + cm2k+1)(φm,2k + φm,2k+1)

=
1

2

∑
k

(cm2k − cm2k+1)(φm,2k − φm,2k+1) (14.1)

The difference φm,2k − φm,2k+1 is:

1√
2

(φm,2k − φm,2k+1) =: ψm+1,k

where ψ(x) = φ(2x)− φ(2x− 1) =


1 0 ≤ x < 1

2
−1 1

2 ≤ x < 1
0 otherwise

The system of functions {ψm,k}k∈Z is an ONB for Wm. The projectors Qm fulfill

Qm+1f = Pm+1f − Pmf =
∑

dm+1
k ψm+1,k

with dm+1
k = 〈f, ψm+1,k〉︸ ︷︷ ︸ =

1√
2

(cm2k − cm2k+1)

where the underlined term gives the coefficients of the discrete wavelet transform of f with respect to
{ψm+1,k}k and scale m+ 1.

Theorem 14.2.

Let {Vm} be a MRA generated by the scaling function φ ∈ V0, where {Tkφ}k∈Z is an ONB for V0.
The function ψ ∈ V−1 defined by

ψ(x) =
√

2
∑
k

bkφ(2x− k) =
∑

bkφ−1,k(x),

where bk = (−1)kak and the ak are scaling coefficients, has the following properties:

1. {ψm,k(·) = 2−m/2ψ(2−m/2 · −k), k ∈ Z} forms an ONB for Wm.

2. {ψm,k}m,k∈Z is an ONB for L2(R).

3. ψ is a wavelet with Cψ = 2 ln 2.
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Note: if {Tkh}k∈Z is a Riesz basis for V0, then we can define a function φ = S−1/2h, where S is the frame
operator, and {Tkφ}k∈Z is an ONB for V0.

14.2 Fast Wavelet Transform

Given a wavelet ONB {ψm,k} for L2(R), the discrete wavelet transform (DWT) is Wf = {〈f, ψm,n〉}m,n∈Z.
We want to the compute the DWT with a fast algorithm.

Consider a function f ∈ V0. We know that

f(x) =
∑
k

c0
kφ(x− k), where c0

k = 〈f, Tkφ〉

Assume we have computed {c0
k}. (It is often assumed that c0

k“ = ”f(k), although c0
k = 〈f, Tkφ〉 does not

imply in general that c0
k = f(k).)

We use the following notation:

dmk = 〈f, ψm,k〉 , dm = {dmk }k∈Z
cmk = 〈f, φm,k〉 , cm = {cmk }k∈Z

We get via φ(x) =
√

2
∑

l alφ(2x− l) and ψ(x) =
∑

l blφ−1,l(x) that

dmk = 〈f, ψm,k〉 =
∑
l

bl 〈f, φm−1,2k+l〉︸ ︷︷ ︸
cm−1
2k+l

=
∑
l

bl−2kc
m−1
l

cmk = 〈f, φm,k〉 =
∑
l

al f, φm−1,2k+l︸ ︷︷ ︸
cm−1
2k+l

=
∑
l

al−2kc
m−1
l

⇒ We can compute cm, dm recursively from cm−1.

Input: {f(x)}“ = ”c0, M levels of decomposition.

Output: d1, d2, d3, . . . , dM , cM

14.2.1 Complexity of the Fast Wavelet Transform

Let c0 be a signal of length N = 2p, p ∈ N. Recall:

dmk =
∑
l

bl−2kc
m−1
l

cmk =
∑
l

al−2kc
m−1
l
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Assume that {ak}, {bk} have L nonzero coefficients. (L = 2 for a Haar basis.) With appropriate boundary
conditions (e.g. periodization, zero padding, etc.), each cm and dn has 2−mN samples. Then cm+1, dm+1

can be computed from cm with 2−mNL operations. ⇒ The total number of operations is O(NL).

14.3 Inverse Wavelet Transform

Goal: To reconstruct c0 from {d1, d2, . . . , dM , cM}.

Assume we already have computed c1, d1 and we need to compute c0. Using V0 = V1 ⊕W1, we have

f =
∑
k

c0
kφ0,k =

∑
k

c1
kφ1,k +

∑
k

d1
kψ1,k

=
∑
k

c1
k

∑
l

alφ0,2k+l +
∑
k

d1
k

∑
l

blφ0,2k+l

c0
j = 〈f, φ0,j〉 =

∑
l

c1
k 〈φ1,k, φ0,j〉+

∑
k

d1
k 〈ψ1,k, φ0,j〉

=
∑
k

c1
kaj−2k +

∑
k

d1
kbj−2k

Similarly, we can compute cm−1 from cm, dm:
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15 3-6-12

15.1 Wavelets in 2-D

There are two common approaches:

1. via tensor products. This leads to a separable MRA on L2(R). Given a 1-D MRA {Vj}, we get a 2-D
MRA via Vj ⊗ Vj . ⇒ Wavelets

ψ j1, j2︸ ︷︷ ︸
translations

,n1, n2︸ ︷︷ ︸
dilations

(x1, x2) = ψj1,n1(x1) · ψj2,n2(x2)

2. Three different wavelets:

• ψH has horizontal orientation

• ψV has vertical orientation

• ψD has diagonal orientation

⇒
(Vj−1 ⊗ Vj−1) = (Vj ⊗ Vj)︸ ︷︷ ︸

coarse approx.

⊕ (Vj ⊕Wj)︸ ︷︷ ︸
vertical details

⊕ (Wj ⊗ Vj)︸ ︷︷ ︸
horizontal details

⊕ (Wj ⊗Wj)︸ ︷︷ ︸
diagonal details

“Waveletes are good for representing point singularities, but not so good for line singularities.”
⇒ Wavelets are not that great for representing edges in images.

New constructions for 2-D: Curvelets, Shearlets

15.2 Comparison of Wavelets and Gabor Systems

Group-theoretical viewpoint:

Gabor: (TxMω)(Tx′Mω′) = e2πix′−ωTx+x′Mω+ω′

⇒ (reduced) Heisenberg group with group multiplication:

(x, ω, e2πiτ ) · (x′, ω′, e2πiτ ′) = (x+ x′, ω + ω′, e2πi(τ+τ ′) eπi(x
′ω−xω′)︸ ︷︷ ︸

symplectic form

)

Wavelets: (TbDa)(TxDs) = Tax+bDas, where b, x ∈ R and a, s > 0. The group multiplication on R×R+ is:

(b, a) · (x, s) = (ax+ b, as)

This generates the “ax+ b”-group, sometimes called the “affine group.”
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Gabor systems in the time-frequency plane:
Recall that gkl = TkaMlbg.

Wavelets:
Recall ψkl = TklDlsψ

Figure 7: Logarithmic tiling of the time-frequency plane.

15.3 Linear and Nonlinear Approximation

15.3.1 Linear Approximation

Assume we have a Hilbert spaceH and an ONB {gk}k∈N forH. Let f ∈ H, f =
∑∞

k=1 〈f, gk〉 gk. Approximate

f by using the first n vectors: g1, g2, . . . , gn. In other words, project onto the subspace Un = span {g1, . . . , gn}.

fn =
n∑
k=1

〈f, gk〉 gk

Error:

f − fn =

∞∑
k=n+1

〈f, gk〉 gk

‖f − fn‖22 =
∞∑

k=n+1

| 〈f, gk〉 |2

⇒ The approximation error depends on the decay of 〈f, gk〉 as n increases.

Example 15.1.

Consider the Fourier ONB {e2πint}n∈Z for L2[0, 1].

fn(t) =

n/2∑
k=−n/2

f̂(k)e2πikt

If f is s times differentiable then ‖f−fn‖2 = O(n−s) (Sobolev spaces). This is linear approximation.
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15.3.2 Nonlinear Approximation

Define Σn = {p ∈
∑

k∈I ckgk, |I| = n}. The best n-term approximation error σn(f) is

σn(f) := inf
p∈Σn

‖f − p‖2

We can find this optimal p easily if {gk} is an ONB. (Otherwise it is very hard!)

Compute ck = 〈f, gk〉 for all k and sort ck by magnitude in decreasing order: → cπ(k), where π is the
corresponding permutation of the index set. Then take the first n coefficients of {cπ(k)}nk=1 and form popt:

popt =

n∑
k=1

cπ(k)gπ(k).

(Compute all ck, take the n largest by magnitude, ignore the others.)

→ Nonlinear approximation: Σn is not a linear subspace, i.e. Σn + Σn 6= Σn, Σn + Σn = Σ2n.

We can characterize many function spaces in terms of the best n-term approximation error. If |
〈
f, gπ(k)

〉
| =

O(k−α), then σn(f) = O(n−α). For L2-Sobolev Wm
x

• Fourier: O(n−m)

• Smooth wavelet ONB: O(n−m)

Space of bounded variations: The total variation of f on [a, b] is V[a,b](f) = supp∈P
∑p

k=1 |f(xk+1)− f(xk)|,
where P = {x0, . . . , xp} is a partition of [a, b].

f ∈ BV [a, b] ⇔ V[a,b](f) <∞
(for differentiable f : V[a,b](f) =

´
[a,b] |f

′(x)| dx)
BV is useful to model “natural images.”

Wavelets (Haar or smooth): σn = O(n−1) for f ∈ BV

Fourier: O(n−1/2)
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16 3-8-12

16.1 Image Compression

Steps:

1. Acquire a high-resolution image, x, by measuring image values at many pixels. Say, 4096 × 4096 ⇒
224 = m pixels.

2. Compress this image by applying an orthogonal transform, such as the wavelet transform: y = Wx =
{〈x, ψm,n〉}m,n, y is an m× 1 vector.

3. Keep only the N largest wavelet coefficients, yk, and their corresponding indices. Throw away the rest.

4. Quantization: quantize the yk’s (i.e., represent them by binary numbers).

Reconstruct from the compressed image:
Apply the inverse wavelet transform to ỹ, where

ỹ =

{
yk k is a “surviving” index
0 otherwise

x̃ = W−1ỹ

x̃ is the best N -term approximation to x.

Typically, N � m. So we take m measurements and then throw most of them away. But these measure-
ments can be very expensive: battery life, acquisition time (e.g. MRI), time and money (e.g. biological
measurement).

Question: Can we take measurements in compressed form?
We don’t know a priori which are the N largest coefficients!
⇒ Compressive sensing shows that we can do this with minimal overhead.

16.2 Compressive Sensing

Wx = {〈x, ψm,n〉}m,n

Instead of taking the full wavelet transform, we do the following: L: Let A be of size n ×m, n � m, and
let it be a Gaussian random matrix (Akl ∼ N (0, 1)) and form a sensing matrix.

B︸︷︷︸
n×m

: = Aw

Compute y︸︷︷︸
n×1

= B︸︷︷︸
n×m

x︸︷︷︸
m×1

= AWx.

Question: Can we recover x from y?

Problem: This system is (highly) underdetermined. There are infinitely many solutions, so how do we get
the right one?

Note that Wx is “approximately sparse,” meaning that most of the coefficients 〈x, ψk,l〉 are small or zero.
Set z := Wx. Consider

Bx = y ⇔ AWx︸︷︷︸
z

= y ⇔ Az = y,
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where z is sparse. We try to solve Az = y, and get x from x = W−1z. But A is n × m, so Az = y is
also underdetermined. But we know something about the solution: z is sparse. So we look for the sparsest
solution.

Note: we are shifting the burden from the measurement part (hardware) to the reconstruction part (software).

Key: How can we find the sparsest solution to Az = y?

16.3 Redundancy of Frames Revisited

Let {fk}mk=1 be a frame for Cn, n ≤ m. Any f ∈ Cn can be written as f =
∑
ckfk for appropriate coefficients

ck. The coefficients are not unique.

Canonical choice: ck = 〈f, gk〉, where {gk} is the canonical dual frame.

Write F =
[
f1 f2 · · · fm

]
, F is an n×m matrix. Consider f =

∑
ckfk = Fc, c = {ck}mk=1. The system

Fc = f is underdetermined. We can try to enforce uniqueness by regularization: introduce constraints on c.

Standard constraint: minimize the “energy” of c ⇔ minimize ‖c‖2. That is,

min
c
‖c‖2 such that Fc = f

equivalent form: min ‖Fc− f‖2 + λ‖c‖2

This second form is called Tykhonov regularization. There is a λ such that both solutions coincide.

The canonical dual frame coefficients have minimal `2-norm.

Instead of min ‖c‖2 such that Fc = y, we can consider min ‖c‖p such that Fc = y.

16.3.1 Compressive Sensing Setup

Consider Ax = y, where A is n×m and n ≤ m (and possibly n� m). Given A and y, we want to find x.
Assumption: x has few nonzero entries. Problem: we don’t know the locations of these nonzero entries.

Definition 16.1. “Zero-Norm” (not really a norm)

‖x‖0 := nnz(x)
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Definition 16.2. `p-norm

‖x‖p =
(∑

|xk|p
)1/p

This is a norm for 1 ≤ p ≤ ∞.
Bp,α = {x ∈ Cn

∣∣ ‖x‖p ≤ α}
If α = 1, we write Bp.

Consider x =
[
1 0 0 · · · 0

]
∈ Cn. Then ‖x‖2 = 1, ‖x‖1 = 1.

Consider y =
[

1√
n

1√
n
· · · 1√

n

]
∈ Cn. Then ‖y‖2 = 1, ‖y‖1 =

√
n.

⇒ The `1-norm “favors” sparsity.
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Example 16.3.

A =
[
2 3

]
, x =

[
0 4

3

]
, y = Ax = 4

There are infinitely many solutions x =

[
x1

x2

]
. All solutions satisfy A

[
x1

x2

]
= 2x1 + 3x2 = 4.

Figure 8: All solutions to Ax = y lie on this subspace.

We can solve min ‖x‖p such that Ax = y for p ≥ 1. If we solve min ‖x‖1 such that Ax = y, then we
find the correct sparse solution. The “pointiness” of the B1 ball “promotes” sparsity. Furthermore,
the B1 ball becomes even more pointy in higher dimensions. Why not use the p = 1/2 ball? Because
it yields a non-convex problem.

Given Ax = y, where A is n×m, n ≤ m, and x is sparse. We could try to solve

min
x
‖x‖0 such that Ax = y ⇔ find the sparsest among all possible solutions

Problem: solving this problem is NP-hard.

Assume ‖x‖0 = k(= nnz(x)).

[
Â X

]

x̂

0
...
0

 = y

Âx̂ = y

There are
(
m
k

)
possibilities to place the k coefficients into a vector of length m.(

m

k

)
≈ em log(m/k)
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17 3-13-12

17.1 Compressive Sensing (Continued)

We are trying to find
min ‖x‖1 such that Ax = y.

We are considering the L1 norm as a convex relaxation of the L0 “norm.”

Example 17.1.

Let m = 100, n = 40, ‖x‖0 = 15. Solving

min ‖x‖0 such that Ax = y

on a 10 GHz computer takes 1 year. Solving

min ‖x‖1 such that Ax = y

takes 0.1 seconds.

Questions:

1. When does the solution of the L1 problem coincide with the solution of the L0 problem?

• There are problems when the L0 and L1 solutions do not coincide. This is due to properties of
A.

2. How can we solve the L1 problem fast?

Figure 9: Find the star in the night sky.

Taking measurements pixel by pixel, it will take on average n
2 measurements to find the pixel containing

the star. Taking “adaptive measurements” takes ∼ log2 n measurements. However, in many applications we
cannot take adaptive measurements. (For example, if we have two stars, one + and one −. We could miss
them completely due to cancellation. )

Consider x ∈ Cm which has only one nonzero entry at k∗:

x(k∗) = α

x(k) = 0, k 6= k∗.
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But we don’t know k∗. Can we find k∗ with less than O(m) nonadaptive measurements? Choose “sensing
matrix” A ∈ Cn×m with n < m (maybe n� m) and measure y = Ax, y ∈ Cn. Can we recover x from y?

Let
A =

[
a1 a2 · · · am

]
, ak ∈ Cn, ‖ak‖2 = 1 ∀ k.

Remember, this is a highly underdetermined system so we cannot invert A. Compute

z = A∗y = A∗Ax = A∗ak∗α = {〈ak, ak∗α〉}mk=1.

Look at

max
k
|zk| = max

k=1,...,m
| 〈ak, αak∗〉 | = α max

k=1,...,m
| 〈ak, ak∗〉 |

If

| 〈ak, akl〉 |
{

= 1 k = l
< 1 k 6= l

,

then max |A∗y| will be at k∗.

But...

• what if we have noise?

• what if there is more than 1 nonzero entry?

We look at the coherence of A:

µ(A) = max
k 6=l

| 〈ak, al〉 |
‖ak‖2‖al‖2

.

Theorem 17.2. Donahue (2001)

Suppose Ax = y, where A ∈ Cn×m, n < m, and rankA = n. If a solution x exists with ‖x‖0 <
1
2

(
1 + 1

µ(A)

)
, then x is the unique solution for the L0 problem and the L1 problem.

Example 17.3.

Let A =
[
In Fn

]
, where Fn is the n× n DFT matrix. Then

A∗A =

[
In
F ∗n

] [
In Fn

]
=

[
In Fn
F ∗n In

]
µ(A) =

1√
n

This is the smallest covariance we can have when we form a matrix from 2 orthonormal bases.

From the theorem, we can recover any x with sparsity ‖x‖0 < 1
2(1 +

√
n). So if n = 256, then

µ(A) = 1
16 and the allowed sparsity is ≤ 8.
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Examples of matrices with small µ: equiangular tight frames, MUB (mutually unbiased bases).

Simulations show that this L0-L1 equivalence holds way beyond the
√
n threshold for ‖x‖0. CVX-software:

easy to implement convex optimization problems in Matlab (Boyd).

min ‖x‖1 such that Ax = y, x ≥ 0

Definition 17.4. Restricted Isometry Property (RIP)

An n×m matrix A has the restricted isometry property (with constants δ, l) if every submatrix AI ,
I ⊂ {1, . . . ,m}, formed by at most l columns of A satisfies

‖z‖22(1− δ) ≤ ‖AIz‖22 ≤ (1 + δ)‖z‖22 ∀ z = {zk}k∈I

for some δ > 0. (An isometry would give us ‖AIz‖2 = ‖z‖2.)

For l = 2, this is equivalent to the coherence version.

Theorem 17.5. Condes, Tao (2004)

(δ ≥ 0.41) If a matrix A satisfies the RIP(0.41, 2k), then the L0 and L1 problems have identical and
unique solutions for all k-sparse x.

But how do we check the RIP property? Checking it directly:
(
m
2k

)
⇒ NP-hard.

Examples of matrices that satisfy the RIP with high probability:

• A is a Gaussian random matrix: Akl ∼ N (0, 1) (randn(n,m)). Then A satisfies the RIP (with high
probability) if k < c

(
1 + log m

n

)
· n, where c is a small constant. Or, if n ≥ ck log m

n , then A satisfies
the RIP.

• Choose F = DFT matrix, randomly choose n rows of F and put them into A. In this case, we need
n ≥ ck log4m.

Given x ∈ Cm, let xs be the best s-term approximation to x. That is, xs coincides with x at the s largest
entries of x and is zero elsewhere. We call x compressible if ‖x− xs‖ ≈ s−p for p > 1.

Consider y = Ax+ w, where w is noise.

Theorem 17.6. Condes (2008)

Assume A ∈ Cn×m satisfies the RIP with δ2k <
√

2− 1. Then the solution x∗ to

min ‖x‖1 such that ‖Ax− y‖ ≤ ε ≥ ‖w‖2 (Noisy L1 problem)

obeys

‖x∗ − x‖2 ≤
c0√
k
‖x− xk‖1 + c1ε,

where c0, c1 are numerical constants and xk is the best k-term approximation to x.

72



18 3-15-12

18.1 Greedy Algorithms

We are looking at problems of the form min ‖x‖0 such that Ax = b ⇒ min ‖x||1 such that Ax = b.

Greedy algorithms are recursive algorithms where in each iteration step we compute A∗bk, and we look for
the largest r entries of |A∗bk|. We “subtract” the corresponding nonzero entries in x from the RHS bk and
compute the new RHS bk+1. They are not as good as true L1 minimization.

LASSO: min ‖x‖1 + λ‖Ax− b‖22
L1-min: min ‖x‖1 such that ‖Ax− b‖2 ≤ ε

There exists λ such that LASSO and L1 minimization are equivalent.

In Matlab, the standard solvers for L1 minimization are based on

• Interior Point methods

• gradient descent methods

• augmented Lagrange multipliers

• primal-dual methods

Definition 18.1. Soft-Thresholding, Hard-Thresholding

For z ∈ Cn, the soft-thresholding operator, Sτ , is defined by:

Sτ (z) =

{ zk
|zk|(|zk| − τ) |zk| > τ

0 otherwise

The hard-thresholding operator is defined by

Hτ (z) =

{
zk |zk| > τ
0 otherwise

Figure 10: Soft-thresholding.

Figure 11: Hard-thresholding.
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Remark 18.2. Chamboille Algorithm

• Choose x0, ξ0 as initial guesses. Let θ ∈ [0, 1], τ, σ > 0 with τσ‖A‖op < 1.

• Compute iteratively:

ξn+1 = ξn + σ(Axn − y)

xn+1 = Sτ (xn − τA∗ξn+1)

xn+1 = xn+1 + θ(xn+1 − xn)

This solves min ‖x‖1 such that Ax = b.

18.2 Sparse Representations and Image Compression

Assumption: “natural” images consist of edges, contours, and texture.

• Edges/contours: modelled very well by wavelets or curvelets

• Texture: modelled very well by Gabor systems, block-DCT (JPEG)

Let A1 be an orthonormal basis consisting of wavelets.
Let A2 be an orthonormal basis consisting of an orthonormal Gabor system.

Classical image compression: pick one ONB, say A1, and compute y = A∗1x.

Instead: consider A =
[
A1 A2

]
. This is a tight frame, since it is the union of 2 ONB’s. We could compute

y = A∗x and threshold. We should solve:

min ‖y‖1 such that Ay = x. (18.1)

Let y =

[
y1

y2

]
. Then we can write (18.1) as

min

∥∥∥∥[y1

y2

]∥∥∥∥ such that
[
A1 A2

] [y1

y2

]
= x.

This will ideally force the edges and contours into y1 and the textures into y2.

If our image has more qualities, e.g. “pointy,” then we can add a 3rd ONB in order to capture it.

18.3 Matrix Completion

Given an n × n matrix X with rank(X) � n (X has low rank). Assume we know only a few entries of X:
Xkj for some (k, j) ⊂ {(1, 1), (1, 2), . . . , (n, n)}. Question: can we recover x from these xkj?

74



Example 18.3.

X =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


X has rank 1. In this case, we cannot recover X from Xkj for some (k, j) ⊂
{(1, 1), (1, 2), . . . , (n, n)}.

Example 18.4.

X =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


X has rank 1. In this case, we can recover X from Xkj for some (k, j) ⊂ {(1, 1), (1, 2), . . . , (n, n)}.

Assume we are given y = A(X), where A is a linear mapping from Cn×n → Cm, m� n2. We have m linear
measurements of the n× n matrix X, and X has low rank.

Goal: recover X.

We could do this by solving the following the optimization problem:

min rank(X) such that A(X) = y.

(Compare to min ‖x‖0 such that Ax = y ⇔ min ‖x‖1 such that Ax = y, from earlier.)
However, in practice this is impossible to solve (NP-hard). All known algorithms have double-exponential
complexity.

For example, Netflix movie rankings. Rows correspond to users, columns correspond to movies.

• Some users rate a lot of movies ⇒ dense rows.

• Some movies are rated a lot ⇒ dense columns.

• Most of the matrix is not filled in.
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Definition 18.5. Schatten-p-Norm, Nuclear Norm

Define the Schatten-p-norm of X as follows:
Let σk, k = 1, . . . , n, be the singular values of X.

‖X‖p =

(
n∑
k=1

|σk|p
)1/p

For p = 1, this is sometimes called the “nuclear norm” and is denoted ‖X‖∗ (= ‖X‖1). So

‖X‖∗ =

n∑
k=1

|σk|

‖X‖0 = rank(X)

Consider the convex relaxation of the rank minimization problem:

min ‖X‖∗ such that A(X) = y.

This is a semidefinite program. Many results from compressive sensing carry over to matrix completion.

Definition 18.6. Matrix-RIP

Let A : Rn×n → Rm. For every integer r with 1 ≤ r ≤ m, we define the restricted isometry property
as follows:

(1− δr)‖X‖F ≤ ‖A(X)‖F ≤ (1 + δr)‖X‖F,

where rank(X) ≤ r.
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low-pass filter, 13
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modulation operator, 3
mother wavelet, 49
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nuclear norm, 76

orthonormal basis, 16

phase space, 36
Poisson’s Summation Formula, 6

projection operator, 13

redundancy, 44
reproducing kernel, 13
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restricted isometry property, 72

scaling function, 52, 56
Schatten-p-norm, 76
shift operator, 3
short-time Fourier transform, 37
soft-thresholding, 73
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synthesis operator, 17

tight frame, 16, 19
time-frequency plane, 36
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