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1 9-22-11

1.1 Organizational Info

• TA’s Office Hours: Mondays 11-12, Wednesdays 10-11 at MSB 1117

• Office hours: Tues & Thurs 9-10 in MSB 4224

• First discussion section is on 10/4.

• No text (because nobody has written one).

• Midterm is theory.

• 7 labs ⇒ combination of theory and practice.

• Course website: http://www.stat.ucdavis.edu/~beran/s232a.html

1.2 Singular Value Decomposition and Moore-Penrose Pseudoinverse

Theorem 1.1. SVD in reduced form

Let A be an m× n matrix of rank r ≤ min(m,n). Then

A = U︸︷︷︸
m×r

L︸︷︷︸
r×r

V′︸︷︷︸
r×n

where U ′U = V ′V = Ir and L = diag{li}, l1 ≥ l2 ≥ . . . lr > 0.

Remark 1.2. Remark 1 about SVD

If U = (u1 u2 . . . ur), where the ui are m× 1, and V = (v1 v2 . . . vr) where the vi are n× 1,

A =

r∑
i=1

li ui︸︷︷︸
m×1

v′i︸︷︷︸
1×n

This says that the SVD is not a unique representation.

Remark 1.3. Remark 2 about SVD

U, V are not unique.

Remark 1.4. Remark 3 about SVD

There are numerically stable algorithms for the SVD. See Matrix Computations by Golub and Van
Loan.
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Remark 1.5. Remark 4 about SVD

We have software implementations of these stable algorithms in R, Matlab, etc.

Definition 1.6. Generalized Inverse

Let A be any m× n matrix. A generalized inverse of A is any matrix A− such that AA−A = A.

Remark 1.7. Remarks about the generalized inverse

1. A may have many generalized inverses.

2. If A is square and of full rank (i.e. invertible), then A−1 is the unique generalized inverse.

Theorem 1.8. Moore-Penrose Pseudoinverse

Let A be any m× n matrix. Then there exists a unique matrix A+ (n×m) satisfying the following
four properties:

1. AA+A = A (generalized inverse property)

2. A+AA+ = A+ (mirror of the generalized inverse property)

3. A+A is symmetric

4. AA+ is symmetric

Proof. Existence of A+:
SVD of A:

A = U︸︷︷︸
m×r

L︸︷︷︸
r×r

V ′︸︷︷︸
r×n

.

Define
A+ = V︸︷︷︸

n×r

L−1︸︷︷︸
r×r

U ′︸︷︷︸
r×m

.

Then

AA+A = ULV ′ · V L−1U ′ · ULV ′ = ULV ′ = A

A+AA+ = V L−1U ′ · ULV ′ · V L−1U ′ = V L−1U ′ = A+

A+A = V L−1U ′ · ULV ′ = V V ′

AA+ = ULV ′ · V L−1U ′ = UU ′

Uniqueness:
Let B be any m × n matrix with the Moore-Penrose pseudoinverse properties. Thus, we have ABA =
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A, BAB = B, BA and AB are symmetric. We want to show B = A+.

A+A = A+(ABA) = (A+A)︸ ︷︷ ︸
symm

(BA)︸ ︷︷ ︸
symm

= A′(A+)′ ·A′B′

= (AA+A)′B′ = A′B′ = BA

AA+ = (ABA)A+ = (AB)︸ ︷︷ ︸
symm

(AA+)︸ ︷︷ ︸
symm

= B′A′(A+)′A′ = B′ (AA+A)′︸ ︷︷ ︸
A

= B′A′ = AB

B = B AB︸︷︷︸
=AA+

= BA︸︷︷︸
=A+A

A+ = A+AA+ = A+

Thus, A+ is unique.

Remark 1.9. Construction of A+

Ideas:

1. Use the SVD and A+ = V L−1U ′

• You must typically threshold small li (set them to zero)

2. Use standard package functions.

• In R, ginv(·) in library(MASS).

• In Matlab, pinv

1.3 Solving Linear Equations

We are trying to solve
A︸︷︷︸
m×n

x︸︷︷︸
n×1

= b︸︷︷︸
m×1

.

where A, b are given and x is to be found (if it exists).

Definition 1.10. Consistent, Solution

The equation Ax = b is consistent iff there exists a solution x0 such that Ax0 = b. Note: the
solution is not necessarily unique.

Remark 1.11.

Consistency is equivalent to b ∈ R(A) (range space of A). The range is the subspace spanned by
the columns of A.
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Theorem 1.12.

The equation Ax = b is consistent iff AA+b = b.

Proof. Suppose the equation is consistent with solution x0. Then

b = Ax0

AA+b = AA+Ax0 = Ax0 = b.

Conversely, suppose AA+b = b. Let x0 = A+b. Then

Ax0 = AA+b = b

So x0 is a solution.

Remark 1.13.

The previous theorem is true with any pseudoinverse.

Theorem 1.14.

The solutions to the consistent equation Ax = b are of the form

x(c)︸︷︷︸
n×1

= A+︸︷︷︸
n×m

b︸︷︷︸
m×1

+(In −A+A)c, c ∈ Rn (1.1)

Proof. From the previous theorem, consistency entails that AA+b = b. Then

Ax(c) = AA+b+ (A−AA+A︸ ︷︷ ︸
A

)c

= b.

i.e. all such x(c) solve the equation.

Conversely, suppose x0 is any solution: Ax0 = b. Then A+Ax0 = A+b. Hence, plugging into (1.1) we get
that

x(x0) = A+b+ (In −A+A)x0 = A+b+ x0 −A+Ax0︸ ︷︷ ︸
A+b

= x0

7



Theorem 1.15.

The particular solution x(0) = A+b to the consistent equation Ax = b has the smallest Euclidean
norm among all solutions. That is, it is the solution closest to the origin.

Definition 1.16. Euclidean Norm

Let z = (z1, z2, . . . , zn)′. The Euclidean norm is

|z|2 = z′z =
n∑
i=1

z2
i

Proof.

|x(c)|2 = |A+b+ (In −A+A)c|2

= (A+b+ (In −A+A)c)′(A+b+ (In −A′A)c)

= |A+b|2 + |(In −A+A)c|2 + (A+b)′((In −A′A)c) + ((In −A+A)c)′A+b

= |A+b|2 + |(In −A+A)c|2 + 2 [(In −A+A)c]′A+b︸ ︷︷ ︸
cross-product

cross-product = c′(In −A+A)A+b = c′(A+ −A+AA+)b = 0

|x(c)|2 ≥ |A+b|2

1.4 General Linear Model

Definition 1.17. General Linear Model

y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, rank(X) = r ≤ p ≤ n

y is the observation vector (y1, y2, . . . , yn)′.
β is the regression coefficients (β1, β2, . . . , βn)′.
X is the design matrix {xij}.
e is the error vector (e1, e2, . . . , en)′.

8



Remark 1.18.

Note that y = Xβ + e ca be written as

yi =

p∑
j=1

xijβj + ei, 1 ≤ i ≤ n.

Remark 1.19. Standard Probability Models for e

1. Gaussian (or Normal) error model. The {ei} are i.i.d. N(0, σ2) random variables ⇔ en×1 ∼
N(0, σ2In), 0 < σ2 <∞

2. Gauss-Markov model. E(e) = 0, Cov(e) = σ2In, 0 < σ2 <∞
3. Strong Gauss-Markov model. The {ei} are i.i.d. random variables with E(ei) = 0, Var(ei) =
σ2, 0 < σ2 <∞, E(e4

i ) <∞
These models support the study of statistical properties of estimators for β, σ2.

1.5 Least Squares Estimation of β

We have our model
y = Xβ + e.

Ideas: We want to solve this equation approximately. “The” least squares estimator β̂ of β minimizes
|y −Xβ|2 over all possible β ∈ Rp.
Questions: existence and uniqueness of β̂.

Remark 1.20. Aside on Matrix Derivatives

Suppose f is a real-valued function of some matrix ym×n = {yij}. That is, f : Cm×n → R. We
define the partial derivative matrix

∂f(y)

∂y
=

{
∂f(y)

∂yij

}

=


∂f(y)
∂y11

· · · ∂f(y)
∂y1n

...
. . .

...
∂f(y)
∂ym1

· · · ∂f(y)
∂ymn


In particular, when Ym×1 = y (a vector),

(a) ∂(a′y)
∂y = ∂(y′a)

∂y = a for every a ∈ Cm×1

(b) ∂(y′y)
∂y = 2y

(c) ∂(y′Ay)
∂y = (A+A′)y, where A ∈ Cm×m, = 2Ay if A is symmetric

9



Remark 1.21.

∂(y′
︷︸︸︷
Az )

∂y
= Az

by part (a) from above.

Remark 1.22. Reference Book

H. Lütkepohl, Handbook of Matrices

Remark 1.23. Least Squares Criterion

T (β) = |y −Xβ|2 = (y −Xβ)′(y −Xβ)

= y′y + β′X ′Xβ − 2y′Xβ

From calculus, a necessary condition for a minimizer/maximizer of T (β) is that

∂T (β)

∂β
= 0

Using the matrix results we have, we see that

∂(β′X ′Xβ)

∂β
= 2X ′Xβ

∂(y′Xβ)

∂β
= (y′X)′ = X ′y

∂T (β)

∂β
= 2X ′Xβ − 2X ′β

Thus, X ′Xβ = X ′y is a necessary condition on β for minimizing T (β).

Definition 1.24. Normal Equation

The equation X ′Xβ = X ′y is the normal equation for least squares estimation of β in the linear
model y = Xβ + e.

Questions

1. Consistency of the normal equation? (Yes)

2. Solution set?

10



3. Do we have minimizers? (Yes)
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2 9-27-11

2.1 LSE’s and the Normal Equation

Proposition 2.1. Basic Facts & Inequalities

rank(AB) ≤ min(rank(A), rank(B))

tr(AB) = tr(BA)

tr(A+B) = tr(A) + tr(B)

A symmetric, idempotent matrix is an orthogonal projection, e.g. AA+, A+A.

Definition 2.2. Least Squares Estimator (LSE)

Model

y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, p ≤ n, r = rank(X) ≤ p

T (m) = |y −Xβ|2

Least Squares Estimator = arg min
m∈Rp

T (m)

Necessary condition: ∂T
∂β = 0↔ X ′Xβ = X ′y.

Definition 2.3. Normal Equation

The normal equation is
X ′Xβ = X ′y

for the LSE of β in the model y = Xβ + e.
Note: rank(X ′X) = rank(X) = r ≤ p.

Theorem 2.4.

1. |y −Xβ|2 is minimized of β ∈ Rp by any solution to the normal equation.

2. η̂ = Xβ̂ has the same value for every solution β̂ to the normal equation.

12



Proof. 1. Let β̂ be a solution: X ′Xβ̂ = X ′y. Then

|y −Xβ|2 = (y −Xβ)′(y −Xβ)

=
[
(y −Xβ̂) +X(β̂ − β)

]′ [
(y −Xβ̂) +X(β̂ − β)

]
= |y −Xβ̂|2 + (β̂ − β)′X ′X(β̂ − β) + 2(β̂ − β)′ X ′(y −Xβ̂)︸ ︷︷ ︸

=0 (Normal eq’n)

= |y −Xβ̂|2 + |X(β̂ − β)|2

≥ |y −Xβ̂|2

Thus, β̂ minimizes T (β).

2. Suppose β̂1, β̂2 both solve the normal equation.

|Xβ̂1 −Xβ̂2|2 = (Xβ̂1 −Xβ̂2)′(Xβ̂1 −Xβ̂2)

= (β̂1 − β̂2)′X ′(Xβ̂1 −Xβ̂2)

= (β̂1 − β̂2)(X ′Xβ̂1︸ ︷︷ ︸
=y

−X ′Xβ̂2︸ ︷︷ ︸
=y

)

= 0

Remark 2.5. Consistency of the normal equation

When is the normal equation consistent?

Geometrical heuristic: Let R(X) = range space of X = { X︸︷︷︸
n×p

a︸︷︷︸
p×1

∣∣ a ∈ Rp} = subspace of Rp

spanned by the columns of X.

Geometry says that y −Xβ̂ ⊥ every vector in R(X)
⇔ y −Xβ̂ ⊥ every column of X
⇔ X ′y = X ′Xβ̂.

This tells us that a solution (or solutions) exist, but it does not tell us how to find it.

Theorem 2.6. Algebraic Analysis of the Normal Equation

The normal equation X ′Xβ = X ′y is equivalent to the equation

Xβ = XX+y.

13



Proof.

X ′Xβ = X ′y

(X+)′X ′︸ ︷︷ ︸
(XX+)′=XX+

Xβ = (X+)′X ′︸ ︷︷ ︸
(XX+)′=XX+

y

XX+X︸ ︷︷ ︸
X

β = XX+y

Xβ = XX+y

Conversely,

Xβ = XX+y

X ′Xβ = X ′XX+y

= X ′(X+)′X ′y

= (XX+X)′y

= X ′y

Theorem 2.7.

The normal equation is consistent and the LSEs of β, i.e. the set of solutions of the normal equation,
are

β̂(c) = X+y + (Ip −X+X)c, c ∈ Rp.

The LSE of minimum Euclidean norm is

β̂(0) = X+y.

η̂ = Xβ̂(c) = XX+y ∀ c ∈ Rp.

Proof. Consistency: Xβ = XX+y has solution β̂0 = X+y. The solution set is

β̂(c) = X+(XX+y) + (Ip −X+X)c, c ∈ Rp

= X+y + (Ip −X+X)c

β̂(0) is the solution of minimum norm (see result from previous class). Finally,

η̂ = Xβ̂(c)

= XX+y + (X −XX+X︸ ︷︷ ︸
X

)c

= XX+y

14



Remark 2.8.

1. The LSEs coincide with the solutions to Xβ = y when the latter equation is consistent (it
is usually not). That is, least squares generalizes the problem of solving consistent linear
equations.

2. An alternative proof of the theorem using

X ′X︸ ︷︷ ︸
A

β︸︷︷︸
X

= X ′y︸︷︷︸
b

This is consistent iff
X ′X︸ ︷︷ ︸
A

β︸︷︷︸
X

= (X ′X)︸ ︷︷ ︸
A

(X ′X)+︸ ︷︷ ︸
A+

X ′y︸︷︷︸
b

which is true (use SVD of X). The solutions are

β̂(c) = (X ′X)+X ′y + [Ip − (X ′X)+(X ′X)]c, c ∈ Rp

= X+y︸ ︷︷ ︸
Lab 1

+ (Ip −X+X)c︸ ︷︷ ︸
use SVD

Theorem 2.9. Uniqueness of the Normal Equation Solution

X ∈ Cn×p, rank(X) = r ≤ p ≤ n

The normal equation has a unique solution iff rank(X) = p.

Proof. The solution set β̂(c) = X+y + (Ip −X+X)c is constant as a function of c if β̂(c) = β̂(0) for all c.
This means that

(Ip −X+X)c = 0 ∀ c ∈ Rn

(Ip −X+X) = 0

X+X = Ip

rank(X) = rank(X+X) = rank(Ip) = p

From linear algebra, rank(X ′X) = rank(X) = p, so (X ′X)−1 exists and (X ′X)+ = (X ′X)−1. Hence,
β̂ = β̂(0) = X+y = (X ′X)+X ′y = (X ′X)−1X ′y.

2.2 Linear Parametric Functions of β

Consider
ψ = λ′︸︷︷︸

1×p

β︸︷︷︸
p×1

,

where λ is specified. The LSEs of of ψ = λ′β are

ψ̂(c) = λ′β̂(c), c ∈ Rp

β̂(c) = X+y + (Ip −X+X)c

15



For which λ ∈ Rp is ψ̂(c) uniquely defined?

Theorem 2.10.

The following are equivalent:

1. The LSEs ψ̂(c) = λ′β̂(c), c ∈ Rp, of ψ = λ′β are all equal to λ′X+y = ψ̂(0).

2. X+Xλ = λ↔ λ′X+X = λ′

3. λ = X ′a↔ λ′ = a′X for some a ∈ Rn

4. ψ = λ′β = a′Xβ for all β ∈ Rp and some a ∈ Rn. Thus, ψ is a linear function of η = Xβ.

Proof. 1 ⇔ 2:

ψ̂(c) = λ′X+y + λ′(Ip −X+X)c ∀ c ∈ Rp

= ψ̂(0)

λ′(Ip −X+X)c = 0 ∀ c ∈ Rp

λ′(Ip −X+X) = 0

λ′X+X = λ′

2 ⇔ 3:
If λ′ = λ′X+X then λ′ = a′X with a′ = λ′X+. Conversely, if λ′ = a′X for some a ∈ Rn then λ′X+X =
a′XX+X = a′X = λ.
3 ⇒ 4:
Obvious.

Remark 2.11. Comments on previous proof

1. Criterion 2 can be checked (approximately) by a computer.

2. If rank(X) = p, then (X ′X)−1 exists, X+ = (X ′X)−1X ′, and the conditions hold for every
λ ∈ Rp.

3. Later we will link this theorem to the theory of unbiased linear estimation of ψ = λ′β.

2.3 Polynomial Regression with One Covariate

General one-way layout model on means:

yij = mi + eij , 1 ≤ i ≤ p, 1 ≤ j ≤ ni

i labels {mi

∣∣ 1 ≤ i ≤ p}
j labels replications
y =

{{
yij
∣∣ 1 ≤ j ≤ ni

}
, 1 ≤ i ≤ p

}
= dictionary order

16



Vectorize:

m =


m1

m2
...
mp


y =

{{
yij
∣∣ 1 ≤ j ≤ ni

}
, 1 ≤ i ≤ p

}
= dictionary order

n =

p∑
i=1

ni = total sample size

Let

C︸︷︷︸
n×p

=



1 0 · · · 0
...(n1 total)

... · · · 0
1 0 · · · 0
0 1 · · · 0
...

...(n2 total) · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

0 0 · · ·
...(np total)

0 0 · · · 1



= data-incidence matrix

The model says y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

.

e = {{eij
∣∣ 1 ≤ j ≤ ni}, 1 ≤ i ≤ p}

Note:

1. Columns of C are orthogonal, or rank(C) = p

2. C ′C = diag{n1, n2, . . . , np}

With no further information, this model is a one-way layout in which i labels the p factor levels. The LSE
of m is

m̂︸︷︷︸
p×1

= (C ′C)−1C ′y

= (y1, y2, . . . , yp)
′

where

yi. =
1

ni

ni∑
j=1

yij .

More generally:
Suppose each mi is a function of observed/known covariate with distinct values x1, x2, . . . , xp:

mi = µ(xi), 1 ≤ i ≤ p.

Here the function µ may be specified (at least in part) or completely unknown.

17



Example 2.12. µ unknown

Puts no restrictions on mi, so previous analysis pertains:

m̂ = (y1, . . . , yp).

2.4 Polynomial Regression

We postulate

µ(x) =

d∑
k=1

βkx
k−1 = polynomial of degree d− 1 with d ≤ p.

The {βk
∣∣ 1 ≤ k ≤ d} are unknown real values. The model is that

yij = µ(xi) + eij

=
d∑

k=1

βkx
k−1
i︸ ︷︷ ︸

=mi

+eij

We vectorize:

Let

F︸︷︷︸
p×d

=


1 x1 x2

1 · · · xd−1
1

1 x2 x2
2 · · · xd−1

2
...

...
...

. . .
...

1 xp x2
p · · · xd−1

p

 , β︸︷︷︸
d×1

=

β1
...
βd


The polynomial model says that

y︸︷︷︸
n×1

= C︸︷︷︸
n×p

F︸︷︷︸
p×d

β︸︷︷︸
d×1

+ e︸︷︷︸
n×1

For d ≤ p ≤ n, rank(F ) = rank(CF ) = d.

Implication: Design matrix X = CF has rank d

β̂ = (X ′X)−1X ′y

18



3 9-29-11

3.1 Announcement

TA Office Hours: Monday 11-12, Wednesday 1-2

3.2 Polynomial Regression (Continued)

Remark 3.1. Polynomial Regression

General Model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
m×1

+ e︸︷︷︸
n×1

where C = data-incidence matrix.

General One-Way Layout: m ∈ Rp

Polynomial Submodels: mi =
d∑

k=1

βkx
k−1
i , 1 ≤ i ≤ p, d ≤ p ↔ m = Fdβ, β = (β1 · · · βd)′,

Fd︸︷︷︸
p×1

=

1 x1 x2
1 · · · xd−1

1
...

...
...

. . .
...

1 xp x2
p · · · xd−1

p


The x1, x2, . . . , xp are distinct.

Theorem 3.2.

For d ≤ p, rank(Fd) = d = rank(CFd)

Proof. Suppose that rank(Fd) < d. Then
Fd︸︷︷︸
p×d

c︸︷︷︸
d×1

= 0

for some c ∈ Rd, c = (c1 · · · cd)′. Equivalently,

d∑
k=1

ckx
k−1
i = 0 for 1 ≤ i ≤ p

Thus, equation
d∑

k=1

ckx
k−1 = 0 has p distinct roots x1, x2, . . . , xp. ⇒⇐ because d − 1 < d ≤ p. Hence,

rank(Fd) = d.

rank(CFd) ≤ rank(Fd) = d

rank(Fd) = rank
[
(C ′C)−1C ′ · CFd

]
≤ rank(CFd) (rank(C) = p)

19



Hence, rank(CFd) = rank(Fd).

Remark 3.3.

1. Fp (p× p) has rank p. Thus, R(Fp) = Rp (R = range space).
If x ∈ Rp, then x = Fpa for a = F−1

p x, so Rp ⊂ R(Fp). Also R(Fp) = Rp.
This is telling us that the polynomial submodel of degree p−1 is equivalent to the model where
m ∈ Rp.

2. More generally, R(F1) ⊂ R(F2) ⊂ · · · ⊂ R(Fp) = Rp.
The polynomial regression submodels are

m ∈ R(F1)︸ ︷︷ ︸
constant

, m ∈ R(F2)︸ ︷︷ ︸
line

, · · · , m ∈ R(Fp) = Rp︸ ︷︷ ︸
one-way layout

3. We have the model y = CFdβ + e, with rank(CFd) = d, so X = CFd has full rank. So the
LSE of β is uniquely β̂ = (F ′dC

′CFd)
−1F ′dC

′y. This is mathematically correct but numerically

unstable. The Moore-Penrose version works better: β̂ = (CFd)
+y. The SVD formula is even

more accurate: β̂ = UU ′y, where CFd = ULV ′. Main point: there are varying degrees of
numerical instability when doing these fits.

3.3 Statistical Analysis under Random Error Models

Definition 3.4. Linear Estimability Model, Gauss-Markov Error Model

Linear Estimability Model:

y = X︸︷︷︸
n×p

β︸︷︷︸
p×1

+e, rank(X) = r ≤ p ≤ n

Gauss-Markov Error Model: e is a random vector such that E(e) = 0, Cov(e) = σ2In, 0 < σ2 <∞.

Definition 3.5. Linear Estimable, Unbiased Estimator

A linear parametric function ψ = λ′︸︷︷︸
1×p

β︸︷︷︸
p×1

is linearly estimable if there exists a ∈ Rn such that

ψ̃ = a′y is an unbiased estimator of ψ: E(ψ̃) = λ′β = ψ ∀ β ∈ Rp.
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Theorem 3.6.

The following are equivalent:

1. ψ = λ′β is linearly estimable

2. The LSEs ψ̂(c) = λ′β̂(c), c ∈ Rn, are all equal to ψ̂ = λ′X+y

3. X+Xλ = λ↔ λ′X+X = λ′

4. λ = X ′a↔ λ′ = a′X for some a ∈ Rn

Proof. From last time, we know that 2, 3, & 4 are equivalent. So it suffices to verify that 1 ↔ 4.

Linear estimability gives us that there exists a ∈ Rn such that E(a′y) = λ′β ∀ β ∈ Rp. Thus,

a′ Xβ︸︷︷︸
E(y)

= λ′β ∀ β ∈ Rp

a′X = λ′

Theorem 3.7. Gauss-Markov Theorem

Suppose ψ = λ′β is linearly estimable and the Gauss-Markov error model holds. The unique linear
unbiased estimator of ψ with smallest variance is the LSE: ψ̂ = λ′X+y.

We have:
linear estimators ⊂ unbiased estimators ⊂ all estimators

So this theorem only looks at a small subset of estimators.

Proof. (Sketch) ψ is linearly estimable ⇔ λ′ = a′X for some a ∈ Rn. So the LSE is

ψ̂ = λ′X+y = a′XX+y.

An arbitrary linear estimator ψ̃ = c′y is unbiased for ψ iff c′X = λ′. Hence,

c′X = a′X.

Var(ψ̃) = Var
[
ψ̂ + (ψ̃ − ψ̂)

]
= Var(ψ̂) + Var(ψ̃ − ψ̂) + 2 Cov(ψ̂, ψ̃ − ψ̂)

Note:

Var(ψ̃ − ψ̂) = Var(c′y − a′XX+y)

= Var
[
(c′ − a′XX+)y

]
= (c′ − a′XX+) Cov(y)︸ ︷︷ ︸

σ2In

(c−XX+︸ ︷︷ ︸
symm

a)

= σ2|c−XX+a|2

> 0 unless c = XX+a↔ ψ̃ = ψ̂
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Cov
[
ψ̂, ψ̃ − ψ̂

]
= Cov

[
a′XX+y, (c−XX+a)′y

]
= a′XX+ σ2In︸︷︷︸

Cov(y)

(c−XX+a)

= σ2

[
a′XX+c− a′XX

+XX+

XX+
a

]
= σ2a′XX+(c− a)

= σ2(c′ − a′)XX+a

= σ2 (c′X − a′X)︸ ︷︷ ︸
=0

X+a

= 0

3.4 SVD and Spectral Representation

Theorem 3.8.

Let A be an m× n matrix of rank r with singular value decomposition A = ULV ′, U ′U = V ′V =
Ir, L = diag{li}, l1 ≥ l2 ≥ · · · ≥ lr > 0.

Note that AA′ is symmetric positive definite.

(a) A spectral representation for matrix AA′ is

AA′︸︷︷︸
m×m

=
(
U U

)(L2 0
0 0

)(
U ′

U
′

)

where (U U) is an orthogonal matrix of eigenvectors of AA′ and L2 gives the nonzero eigenvalues
of AA′.

(b) A spectral representation of A′A is

A′A =

(
V︸︷︷︸
n×r

V︸︷︷︸
n×n−r

)(
L2 0
0 0

)(
V ′

V
′

)
where (V V ) is an orthogonal matrix of eigenvectors of A′A and L2 gives the nonzero eigenvalues
of A′A.

(c) UU ′ + UU
′
= Im, V V

′ + V V
′
= In

(d) U ′U = 0, V ′V = 0

Proof. (a) By the SVD,
AA′ = ULV ′ · V︸ ︷︷ ︸

I

LU ′ = UL2U ′

(b) By the SVD,
A′A = V LU ′ · U︸ ︷︷ ︸

I

LV ′ = V L2V ′
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(c)

Im =
(
U U

)(U ′
U
′

)
= UU ′ + UU

′

Similarly for V, V .

(d) Eigenvectors are mutually orthogonal.

Remark 3.9.

Use these identities for problem (h) in HW1.

3.5 Distribution Theory

Remark 3.10. Canonical Representation of Least Squares Estimators

Model: y = Xβ + e = η + e, η = Xβ, rank(X) = r ≤ p ≤ n.

Classical estimator of σ2: σ̂2 = 1
n−r |y − η̂|

2, where η̂ = XX+y is the LSE of η.

Theorem 3.11.

Suppose X has SVD X = ULV ′. Construct U so that (U U) is an orthogonal matrix (e.g. previous
theorem). Then

η̂ = UU ′y, σ̂2 =
1

n− r
|Uy|2.

Proof.

η̂ = XX+y = ULV ′ · V L−1U ′y = UU ′y

(n− r)σ̂2 = |y − η̂|2 = |y − UU ′y|2 = | (In − UU ′)︸ ︷︷ ︸
UU
′

y|2 I = UU ′ + UU
′

= | UU ′︸︷︷︸
symm

y|2 = y′ UU
′
UU

′︸ ︷︷ ︸
symm

y = y′UU
′
y

= |U ′y|2
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Theorem 3.12.

Suppose the Gauss-Markov error model holds. Obviously, E(y) = η = Xβ, Cov(y) = σ2In.

1. E(η̂) = η, Cov(η̂) = σ2XX+

2. E(σ̂2) = σ2

Proof. 1.

E(η̂) = E(XX+y) = XX+ Xβ︸︷︷︸
E(y)

= Xβ = η

Cov(η̂) = Cov(XX+y) = XX+ Cov(y)XX+

= σ2XX+XX+ = σ2XX+

Fact:
Cov(Ay) = ACov(y)A′

2.
(n− r)σ̂2 = |U ′y|2 = |U ′e|2

because, from the previous theorem,

U
′
y = U

′
(Xβ + e) = U

′
Xβ + U

′
e = U

′
U︸︷︷︸

=0

LV ′β + U
′
e.

E[(n− r)σ̂2] = E|U ′e|2 = E[e′UU
′
e] = E[tr(e′UU

′
e)]

= E[tr(UU
′
ee′)] = tr[E(UU

′
ee′)]

= tr[UU
′ E(ee′)︸ ︷︷ ︸
Cov(e)=σ2In

] = σ2 tr(UU
′
) = σ2 tr(U

′
U︸︷︷︸

In−r

)

= σ2 tr(In−r) = (n− r)σ2

Fact:
tr(AB) = tr(BA), tr(A+B) = tr(A) + tr(B)

Note: Var(σ̂2) depends on E(e4
i ) and more, which is not specified by the Gauss-Markov error model.

Theorem 3.13.

Suppose the Gaussian error model holds (e ∼ Nn(0, σ2In)). Obviously y ∼ Nn(η, σ2In), where
η = Xβ. Then

1. η̂ ∼ Nn(η, σ2XX+)

2. (n−r)σ̂2

σ2 ∼ χ2
n−r

3. η̂ and σ̂2 are independent random variables
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Proof. 1. η = XX+y = linear map of y ∼ Nn(E(η̂),Cov(η̂)) = N(n, σ2XX+) by the Gauss-Markov
calculation.

2. As in a previous proof,

(n− r)σ̂2 = |U ′e|2 = |z|2, where z = U
′︸︷︷︸

(n−r)×n

e︸︷︷︸
n×1

z ∼ Nn−r(E(z),Cov(z)) = Nn−r(0, σ
2 U
′
U︸︷︷︸

In−r

)

= Nn−r(0, σ
2In−r)

Thus,

(n− r)σ̂2

σ2
= |w|2 =

n−r∑
i=1

w2
i ∼ χ2

n−r

where w = z/σ ∼ Nn−r(0, In−r).

3.

η̂ = UU ′y = function of U ′y

σ̂2 =
1

n− r
|U ′y|2 = function of U

′
y

Observe that (
U ′y

U
′
y

)
=
(
U U

′
)
n×n, orthogonal

y

∼ Nn(∗, O · σ2I ·O′)
= Nn(∗, σ2OO′︸︷︷︸

In

)

= N(∗, σ2In)

U ′y, U
′
y are independent.

Theorem 3.14. Lehmann-Scheffe

Suppose ψ = λ′β is linearly estimable and the Gaussian error model holds. The
unique unbiased estimator of ψ with the smallest variance is the LSE: ψ̂ = λ′X+y. The

unique unbiased estimator of σ2 with the smallest variance is σ̂2 = 1
n−r |y − η̂|

2.

ψ̂, σ̂2 ∈ all unbiased estimators ⊂ all estimators
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4 10-4-11

4.1 Comparing Least Squares Fits

Remark 4.1. General Model

y = X︸︷︷︸
n×p

β︸︷︷︸
p×1

+e

rank(X) = r ≤ p ≤ n, e ∼ N(0, σ2In), 0 < σ2 <∞.
Under this model, η = E(y) = Xβ ∈ R(X).
LSE: η̂ = XX+y = Py. P = XX+ is symmetric and idempotent.

Remark 4.2. Submodel

y = X0︸︷︷︸
n×p0

β0︸︷︷︸
p0×1

+e

rank(X0) = r0 < r, R(X0) ⊂ R(X).
Under this model, η = E(y) = X0β0 ∈ R(X0).
LSE: η̂ = X0X

+y = P0y. P0 = X0X
+
0 is symmetric and idempotent.

Theorem 4.3.

Let P1 = P − P0. The following hold:

1. P is symmetric and idempotent with rank(P ) = tr(P ) = r.

2. P0 is symmetric and idempotent with rank(P0) = tr(P0) = r0.

3. PP0 = P0P = P0

4. P1 is symmetric and idempotent with rank(P1) = tr(P1) = r1 ≡ r − r0.

5. P1P0 = P0P1 = 0 (orthogonal)

Proof.

1. rank(P ) = rank(XX+) = tr(XX+) = rank(X) (HW 1 problem 1.i)

2. Likewise

3. Because R(X0) ⊂ R(X), each column in X0 is a linear combination of columns of X. That is,

X0︸︷︷︸
n×p0

= X︸︷︷︸
n×p

A︸︷︷︸
p×p0

for some A
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Hence, PP0 = XX+X0X
+
0 = XX+XAX+

0 = XA︸︷︷︸
X0

X+
0 = X0X

+
0 = P0. Also, P0P = P ′0P

′ = (PP0)′ =

P ′0 = P0.

4. Symmetry of P1 is obvious.

P 2
1 = (P − P0)(P − P0) = P 2 − P0P︸︷︷︸

P0

−PP0︸︷︷︸
P0

+P 2
0

= P − P0 − P0 + P0 = P − P0

= P1

rank(P1) = rank(P − P0) = tr(P )− tr(P0) = r − r0

5.

P1P0 = (P − P0)P0 = PP0 − P 2
0 = P0 − P0 = 0

Remark 4.4.

P = P0 + P1 decomposes the orthogonal projection P as the sum of two mutually orthogonal
orthogonal projections.

Theorem 4.5. Spectral Representations of P, P0, P1

Let
P0︸︷︷︸
n×n

= U0︸︷︷︸
n×r0

U ′0︸︷︷︸
r0×n

, P1︸︷︷︸
n×n

= U1︸︷︷︸
n×r1

U ′1︸︷︷︸
r1×n

be spectral representations of P0, P1. Let

U︸︷︷︸
n×r

=

 U0︸︷︷︸
n×r0

U1︸︷︷︸
n×r1

 , r = r0 + r1.

Then

1. U ′1U0 = U ′0U1 = 0

2. U ′U = Ir

3. P = UU ′ is a spectral representation, = U0U
′
0 + U1U

′
1 = P0 + P1

4. R(X) = R(P ) = R(U), R(X0) = R(P0) = R(U0)

Proof.
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1. We know P1P0 = 0 from the previous theorem. Hence,

U ′1U0 = U ′1U1︸ ︷︷ ︸
Ir1

U ′1U0 U
′
0U0︸ ︷︷ ︸
Ir0

= U ′1 U1U
′
1︸ ︷︷ ︸

P1

U0U
′
0︸ ︷︷ ︸

P0

U0

= 0

U ′0U1 = (U ′1U0)′ = 0

2.

UU ′ =

(
U ′0
U ′1

)(
U0 U1

)
=

(
U ′0U0 U ′0U1

U ′1U0 U ′1U1

)
=

(
Ir0 0
0 Ir1

)
= Ir

3.

UU ′ =
(
U0 U1

)(U ′0
U ′1

)
= U0U

′
0 + U1U

′
1 = P0 + P1 = P

4.

Xa = XX+Xa = XX+(Xa) (4.1)

XX+b = X(X+b)

Thus, R(X) = R(X+). XX+ = P = UU ′ implies that R(XX+) = R(UU ′). Then R(UU ′) = R(U)
by (4.1) with U instead of X. Note U ′ = U+. Hence, R(X) = R(XX+) = R(UU ′) = R(U).

4.2 Hypothesis Testing

Remark 4.6.

Model: y = η + e, η = X︸︷︷︸
n×p

β︸︷︷︸
p×1

, rank(X) = r ≤ p ≤ n, e ∼ Nn(0, σ2In), 0 < σ2 <∞. To test:

H : η ∈ R(X0) ⊂ R(X), 0 < σ2 <∞
K : η /∈ R(X0), η ∈ R(X), 0 < σ2 <∞
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Remark 4.7. The F-test for H versus K

Rejects H for sufficiently large values of the F-statistic:

T =
(|y − η0|2 − |y − η̂|2)/r1

σ̂2

where

η̂0 = X0X
+
0 y = P0y

η̂ = XX+y = Py

r0 = rank(X0), r = rank(X), r1 = r − r0,

σ̂2 =
1

n− r
|y − η̂|2 = est. of σ2 under general model.

Note: this can be derived as a likelihood ratio test.

Theorem 4.8.

1. The F-statistic has two equivalent forms:

T =
(|y − η0|2 − |y − η̂|2)/r1

σ̂2
=
|η̂ − η̂0|2/r1

σ̂2

2. Under H, the distribution of T is Fr,n−r.

Proof. By the previous theorem, η̂ = Py = UU ′y, η̂0 = P0y = U0U
′
0y.

1.

|y − η̂|2 = |y − Py|2 = |(In − P )y|2

= y′(In − P )2y = y′(In − P )y

because In − P is symmetric and idempotent:

(In − P )2 = In − 2P + P 2︸︷︷︸
=P

= In − P

Similarly,

|y − η̂0|2 = |y − P0y|2 = . . .

= y′(In − P0)y

Thus,

|y − η̂0|2 − |y − η̂|2 = y′(In − P0)y − y′(In − P )y

= y′ [(In − P0)− (In − P )] y

= y′(P − P0)y = y′P1y

= |P1y|2

P1 is symmetric and idempotent.
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2. Under H, η ∈ R(X0) = R(U0) ↔ η = U0a for some a. Thus,

U ′1η = U ′1U0︸ ︷︷ ︸
0

a = 0

|η̂ − η̂0|2 = |P1y|2 = |U1U
′
1y|2 = y′U1U

′
1U1U

′
1y

= |U ′1y|2

U ′1y ∼ Nr1( U ′1η︸︷︷︸
E(U ′1y)

, U ′1σ
2InU1︸ ︷︷ ︸

Cov(U ′y)

) = Nr1(0, σ2Ir1)

Hence, under H,
|η̂ − η̂0|2

σ2
∼ X2r1.

From earlier,
(n− r)σ̂2

σ2
∼ X2

n−r

under the general model and therefore under H. η̂, σ̂2 are independent. Thus, under H

T ∼
X2
r1/r1

X2
n−r/(n− r)

∼ Fr,n−r
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5 10-6-11

5.1 Confidence Intervals for an Estimable Linear Parametric Function

Model: y ∼ Nn(η, σ2In), η = X︸︷︷︸
n×p

β, rank(X) = r ≤ p ≤ n.

The LSE of η: η̂ = XX+y ∼ N(n, σ2XX+)

Theorem 5.1.

Suppose that ψ = λ′︸︷︷︸
1×p

β︸︷︷︸
p×1

is a linearly estimable parametric function of (i.e. λ′ = λ′X+X) and

the model is as specified above.

1. The LSE of ψ is
ψ̂︸︷︷︸

1×1

= λ′X+β = λ′X+η̂ ∼ N(ψ, σ2λ′(X ′X)+λ)

2. The pivot
ψ̂ − ψ

σ̂
√
λ′(X ′X)+λ

∼ tn−r

Proof. (sketch)

ψ̂ = λ′X+y = λ′X+XX+y︸ ︷︷ ︸
η̂

= λ′X+η

η̂ ∼ Nn(n, σ2XX+)

ψ̂ ∼ N(E(ψ̂),Cov(ψ̂))

Cov(ψ̂) = (λ′X+) Cov(η̂)(λ′X+)′

= λ′X+ · σ2XX+(X+)′λ

= σ2λ′X+(X+)′λ = σ2λ′(X ′X)+λ

Notes:

1. Use this result to get confidence intervals for ψ

2. Invert the confidence intervals to test (for example)

H : ψ = ψ0, 0 < σ2 <∞
K : ψ 6= ψ0, 0σ2 <∞
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5.2 Risk and Estimated Risk of a Submodel Fit

Remark 5.2.

As before for the F-test, we have our general model:

y = η + e, η = X︸︷︷︸
n×p

β︸︷︷︸
p×1

, rank(X) = r ≤ p ≤ n

The LSE of η is η̂ = Py for P = XX+.

Submodel:
y = η0 + e, η0 = X0︸︷︷︸

n×p0

β0︸︷︷︸
p0×1

, rank(X0) = r0 < r, R(X0) ⊂ R(X)

e ∼ Nn(0, σ2In). The LSE of η0 is η̂0 = P0y, where P0 = X0X
+
0 .

Remark 5.3. Estimation Approach to Comparing Fits

1. The general model is taken to be true (unlike in testing).

2. We assess an estimator η̃ of η through its (quadratic) risk

r−1 E|η̃ − η|2︸ ︷︷ ︸
(under general model)

:= R(η̃, η, σ2)

3. Ideally, minimize risk by choice of η̃.

Theorem 5.4. Mallows (1973)

1. R(η̂, η, σ2) = σ2

2. R(η̂0, η, σ
2) = r−1

[
r0σ

2 + |η − P0η|2
]

= r−1
[
r0σ

2 + tr{(In − P0)ηη′}
]

Proof. 1.

rR(η̂, η, σ2) = E|η̂ − η|2 = E tr[(η̂ − η)(η̂ − η)′]

= tr(Cov(η̂)) = tr[σ2P ] = σ2 tr(P )

= rσ2
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2.

rR(η̂0, η, σ
2) = E| η̂0︸︷︷︸

=Py

−η|2 = E |(P0y − P0η)− (In − P0)η|2

= E|P0(y − η)|2 + |(In − P0)η|2 − E

(η − P0η)′ P0(y − η)︸ ︷︷ ︸
EP0(y−η)=0


E|P0(y − η)|2 = E tr

[
P0(y − η)(y − η)′P0

]
P0 is symmetric & idempotent

= tr [P0 Cov(y)P0] = σ2 tr(P0)

= σ2r0

Notice:

|(In − P0)η|2 = tr
[
(In − P0)ηη′(In − P0)

]
= tr

[
(In − P0)2ηη′

]
= tr[(In − P0)ηη′]

Note: R(η̂0, η, σ
2) depends on σ2 and ηη′ which are unknown. We therefore estimate σ2 by σ̂2 and ηη′ by

yy′ − σ̂2In.

Remark 5.5. Mallows’ idea (1973)

Justify their estimation through E(σ̂2) = σ2 (recall: σ̂2 = 1
n−r |y − η̂|

2) and E[yy′ − σ̂2In] = ηη′

because

E(yy′) = E(η + e)(η + e)′ = E[ηη′ + eη′ + ηe′ + ee′]

= ηη′ + 0 + 0 + σ2In = ηη′ + σ2In

Theorem 5.6.

1. The estimated risk of η̂0 is

R̂(η̂0) = r−1
[
σ̂2r + tr[(In − P0)(yy′ − σ̂2In)]

]
and it satisfies E[R̂(η̂0)] = R(η̂0, η, σ

2), i.e. R̂(η̂0) is an unbiased risk estimator.

2. R̂(η̂0) = r−1[|y − η̂0|2 + (2r0 − n)σ̂2]

Proof. 1. By substituting σ̂2, yy′ − σ̂2In for σ2, ηη′ in R(η̂0, η, σ
2).

2.

rR̂(η̂0) = r0σ̂
2 − tr(In − P0)σ̂2 + tr[(In − P0)yy′]

− tr(In − P0)σ̂2 = −(n− r0)σ̂2 because tr(P0) = r0

tr[(In − P0)yy′] = y′(In − P0)y = y′(In − P0)′(In − P0)y = |y − P0y|2 = |y − η̂0|2
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Notes:

1. Mallows Cp criterion (1973) is

Cp = |y − η̂0|2 + 2r0σ̂
2 = one-to-one transform of R̂(η̂0)

2. There exists asymptotic theory under which R̂(η̂0)
p→R(η̂0, η, σ

2).

5.3 Specifying Submodels for Means

Remark 5.7.

Model: y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, e ∼ Nn(0, σ2In), where C is the data-incidence matrix (see polyno-

mial regression example) which records the replication pattern.

C ′C = diag{ni},

where ni is the number of observations of mi.

Submodel: Add the restriction that m ∈ F is a subspace of Rp, with dim(F) = r < p. For now,
assume that rank(C) = p, i.e. each ni is nonzero (we have at least one observation for each mean;
this is called complete design).

Theorem 5.8.

Suppose that F = range( F︸︷︷︸
p×t

), where rank(F) = r. Let Q︸︷︷︸
p×p

= FF+ have spectral representation

Q︸︷︷︸
p×p

= V︸︷︷︸
p×r

V ′︸︷︷︸
r×p

, where V ′V = In. The following are equivalent:

1. m ∈ F
2. m = F︸︷︷︸

p×t

α︸︷︷︸
t×1

for some α ∈ Rt

3. m = Qm

4. m = Q β︸︷︷︸
p×1

for some β ∈ Rp

5. m = V γ for some γ ∈ Rr

Proof. 1⇔ 2: By definition.
2⇔ 3: The relation m = Fα is consistent iff FF+m = m ⇔ Qm = m.
3⇒ 4: for β = m
4⇒ 3: m = Qβ = QQβ = Qm
4⇔ 5: The relation m = γj is consistent iff V V +m = m⇔ UU ′m = m (because U ′ = U+)⇔ Qm = m.
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Notes: Submodels on m have multiple equivalent expressions which lead to multiple expressions for least
squares estimators under the submodels.

Theorem 5.9.

Under the submodel m ∈ F , the LSE of ηF = Cm is

η̂F = CQ(CQ)+y = C(CQ)+y = CU(CU)+y = CF (CF )+y

Proof.
m = Qβ ⇒ y = CQ︸︷︷︸

X

β + e. The LSE of CQβ is XX+y = CQ(CQ)+y = C(CQ)+y (by HW 1 Problem

1.m). m = V γ ⇒ y = CV︸︷︷︸
X

γ + e. The LSE of CV γ is now CV (CV )+y. m = Fα ⇒ y = CFα + e. The

LSE of CFα is CF (CF )+y.

Note that (CQ)+ = (C V V ′︸︷︷︸
Q

)+ = V (CU)+ (by HW1 Problem 1.l).

Note: we assume that rank( C︸︷︷︸
n×p

) = p. Then

1. The LSE m̂F of mF (the submodel restricted to m) is

m̂F = C+η̂F = (C ′C)−1C ′ηF

= Q(CQ)+y = (Ca)+y = V (CV )+y = F (CF )+y

2. By HW 1 Problem 1.g, we get that

η̂F = CV (CV )+y = CV (V ′C ′CV )+V ′C ′

= CV (V ′C ′CV )−1V ′C ′ because rank(CV ) = rank(V ) = r, rank(C) = p

and rank[(CV )′CV ] = rank(CV ). This is a Moore-Penrose-free expression!

5.4 Projection Form of One-Way ANOVA

Remark 5.10. One-Way Layout of Means

Model: yij = mi + eij , 1 ≤ i ≤ p, 1 ≤ j ≤ ni. The eij are i.i.d. ∼ N(0, σ2).
Vectorize:

y = Cm+ e

y =
(
y1 y2 · · · yn

)′
mi =

(
m1 m2 · · · mp

)′
C = data incidence matrix

n =

p∑
i=1

ni
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Remark 5.11. Basic ANOVA Decomposition

Classically, mi = µ+ αi, 1 ≤ i ≤ p, α0 = 0.

α. =
1

p

p∑
i=1

αi = average over dotted subscript


m1

m2
...
mp

 =


m.
m.
...
m.

+


m1 −m.
m2 −m.

...
mp −m.


This is the vector form of ANOVA decomposition.

Theorem 5.12. Projection Form

Let u︸︷︷︸
p×1

= p−1/2(1, . . . , 1). U ′U = 1. Let P0︸︷︷︸
p×p

= UU ′, P1 = Ip − P0. Then

1. P0, P1 are each symmetric and idempotent.

2. P0P1 = P1P0 = 0

3. Ip = P0 + P1

Proof. In particular, m = P0m+ P1m is the ANOVA decomposition because

P0m = U(U ′m) =
1

p
e(e′m)

=
1

p

1
...
1

 p∑
i=1

mi =

m....
m.


P1m = m− P0m =

m1 −m.

m2 −m.
...

mp −m.


The submodels {mi} are all equal ⇔ {αi} are all 0 ⇔ P1m = 0 ⇔ P0m = m ⇔ mi = P0β for some β ∈ Rp.

Here the submodel is y = η0 + e, η0 = CP0β. The LSE η̂0 = CP0(CP0)+y = C(CP0)+y.

General model is y = η + e, η = Cm, m ∈ Rp. The LSE η̂ = C+y = C(C ′C)−1C ′y, m̂ = (C ′C)−1C ′y.

Next time we will address the relation to classical simple formulas.
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6 10-11-11

6.1 Models for Means

Remark 6.1. Submodels

General Model: y = Cm+ e
Submodels restrict m, e.g.

m = Q︸︷︷︸
p×p

β, β ∈ Rp, Q symmetric & idempotent

with rank(Q) = tr(Q) = r. Equivalently,

m = V︸︷︷︸
n×r

γ︸︷︷︸
r×1

, γ ∈ Rp, Q = V V ′ = spectral representation
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6.1.1 One-Way Layout of Means

Remark 6.2. One-Way Layout

General Model (classical form)

yij = mi + eij , 1 ≤ i ≤ p, 1 ≤ j ≤ ni (6.1)

where {eij} are i.i.d. N(0, σ2), σ2 > 0. Vectorize:

m︸︷︷︸
p×1

= (m1, . . . ,mp)
′

y︸︷︷︸
n×1

=
{
{yij

∣∣ 1 ≤ j ≤ ni}, 1 ≤ i ≤ p
}
, n =

p∑
i=1

ni

C︸︷︷︸
n×p

= data incidence matrix

C ′C =


n1 0 · · · 0
0 n2 · · · 0
...

. . .
. . .

...
0 0 · · · np


Thus, the general model (6.1) can be written as: y = Cm+ e. The LSE of m is:

m̂ = C+y = (C ′C)−1C ′y = (y1., y2., · · · , yp.)′

yi =
1

ni

ni∑
j=1

yij

The LSE of η = Cm is
η̂ = Cm̂.
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Remark 6.3. Projection Form of Basic ANOVA

Classical form: mi = µ+ αi, 1 ≤ i ≤ p, where α. = 0.
This is a one-to-one map of {mi} to µ, {αi} in which µ = m., αi = mi −m..

Projection Form

Let P0 = uu′, u︸︷︷︸
p×1

= p−1/2(1, 1, . . . , 1)′.

P1 = Ip − P0 = I − uu′

Note:

1. P0, P1 are symmetric & idempotent

2. P0P1 = P1P0 = 0

3. Ip = P0 + P1

The ANOVA decomposition is
m = P0m+ P1m

which is equivalent to mi = µ+ αi, α. = 0, because

uu′m = u(u′m)

= (m.,m., · · · ,m.)
′

P1m = m− P0m =


m1 −m.

m2 −m.
...

mp −m.



Remark 6.4. Classical Submodel

{mi} equal ⇔ {α.} all 0 ⇔ m = P0β, β ∈ Rp (m = P0m).
So y = CP0β + e is the submodel, with e ∼ Nn(0, σ2In).

The LSE of η0 = CP0β is
η̂0 = CP0(CP0)+y = C(CP0)+y.

the LSE of m0 = P0β is
m̂0 = (CP0)+y.

We have assumed that ni > 0, 1 ≤ i ≤ p, so rank(C) = p.
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Remark 6.5. Reduction to Elementary Form

m̂0 = (CP0)+y = (C uu′︸︷︷︸
P0

)+y = u(Cu)+y by lab 1, problem 1.l (S = I, T = u)

(Cu)+ = ( u′︸︷︷︸
1×p

C ′︸︷︷︸
p×p

C︸︷︷︸
p×p

u︸︷︷︸
p×1

)+u′C ′ =

(
n

p

)+

u′C ′ by lab 1, problem 1.g

m̂0 =
( p
n

)
uu′C ′y =


y..
y..
...
y..



Remark 6.6. Ranks of General Model and Submodel Deisgn Matrices

Both have the form QCβ.
Q = Ip (General Model)

with r = rank(C) = p. So C is of full rank.

Q = P0 (Submodel)

with r0 = rank(CP0) = rank(P0) = tr(P0) = tr(uu′) = tr(u′u) = tr(1) = 1.

Consequences

1. F-test for H: submodel m = P0β holds
vs. K: not so, general model holds
refers

T =
|η̂ − η̂0|2/(p− 1)

σ̂2
with σ̂2 =

1

n− p
|y − η̂|2

to Fp−1,n−p.

2. Estimated risks of η̂, η̂0 as competing estimators for η = Cm under the general model are:

R̂(η̂) = σ̂2

R̂(η̂0) = p−1︸︷︷︸
r−1

|y − η̂0|2 + ( 2︸︷︷︸
2r0

−n)σ̂2


because r = p, r0 = 1.

6.1.2 Two-Way Layout of Means

(complete layout = at least 1 observation for every mean)

General Model (classical form):

yijk = mij + eijk, 1 ≤ i ≤ p1, 1 ≤ j ≤ p2︸ ︷︷ ︸
label levels of factors

, 1 ≤ k ≤ nij︸ ︷︷ ︸
labels replications
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where {eijk} are i.i.d. N(0, σ2), σ2 > 0.
Vectorize:
Set p = p1p2. Let

m︸︷︷︸
p×1

=
{
{mij

∣∣ 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2

}
= mirror dictionary order

= stack columns of matrix {mij}
= special case of array order

y︸︷︷︸
n×1

= {{{yijk
∣∣ 1 ≤ k ≤ nij}1 ≤ i ≤ p1}, 1 ≤ j ≤ p2}

n =

p1∑
i=1

p2∑
j=1

nij

e is similar.

C︸︷︷︸
n×p

=



1 0 · · · 0
...n11 total

...
. . .

...
1 0 · · · 0
0 1 · · · 0

0
...n21 total

. . .
...

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...np1p2 total

0 0 · · · 1


Remark 6.7. General Model

y = Cm+ e, e ∼ Nn(0, σ2In). LSE of m is

m̂ = C+y = (C ′C)−1C ′y = {{yij
∣∣ 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2}

yij. =
1

nij

nij∑
k=1

yijk

The LSE of η is
η̂ = Cm̂.

Remark 6.8. Classical ANOVA Decomposition

mij = µ+ αi + βj + γij

α. = β. = γi. = γ.j = 0

l one-to-one

µ = m.., αi = mi. −m.., βj = m.j −m.., γij = mij −mi. −m.j +m..
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7 10-13-11

7.1 The Kronecker Product and vec

Definition 7.1. Kronecker Product

The Kronecker product of A (m× n) and B (r × s) is

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB



Definition 7.2. vec

If X︸︷︷︸
n×p

=
(
x(1) x(2) · · · x(p)

)
= {xij}, where each x(i) is n× 1, then

vec(X) =


x(1)

x(2)
...

x(p)


Thus, it takes: stacked columns of X ↔ {{xij

∣∣ 1 ≤ i ≤ n}, 1 ≤ j ≤ p}.

Note: we can reverse vec(X) given n, p, “unvec.”

Basic Properties (of Mardia, Kent, Bibby)

1. For scalar c, c(A⊗B) = (CA)⊗B = A⊗ (cB). We can write cA⊗B.

2. A⊗ (B ⊗ C) = (A⊗B)⊗ C. We can write A⊗B ⊗ C.

3. (A⊗B)′ = A′ ⊗B′.

4. (A⊗B)(F ⊗G) = (AF )⊗ (BG)

5. (A⊗B)−1 = A−1 ⊗B−1 for A,B nonsingular.

6. (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

7. A⊗ (B + C) = (A⊗B) + (A⊗ C)

8. (A1 +A2)⊗ (B1 +B2) = (A1 ⊗B1) + (A1 ⊗B2) + (A2 ⊗B1) + (A2 ⊗B2)

9. vec(AXB) = (B′ ⊗A) vec(X)

10. tr(A⊗B) = tr(A) tr(B)
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7.2 ANOVA Decomposition for Two-Way Layout

Remark 7.3. Classical Form

mij = µ+ αi + βj + γij , 1 ≤ i ≤ p1

α. = β. = γi. = γ.j = 0

mij = m.. + (mi. −m..) + (m.j −m..) + (mij −mi. −m.j +m..)

In order to put this in projection form, we set

M︸︷︷︸
p1×p2

= {mij}

m︸︷︷︸
p×1

= vec(M) = mirror dictionary vectorization of {mij}

p = p1p2

k = 1, 2

Let

uk︸︷︷︸
pk×1

= p
−1/2
k (1, 1, . . . , 1)′

Jk = uu′k

Hk = Ipk − Jk

Note:

1. Jk, Hk are symmetric & idempotent

2. HkJk = JkHk = 0 (because Hkuk = (Ipk − uku′k)uk = uk − uk = 0, since u′kuk = I)

Thus

Ip = Ip1 ⊗ Ip2 = (H2J2)⊗ (H1 + J1)

= (J2 ⊗ J1) + (J2 ⊗H1) + (H2 ⊗ J1) + (H2 ⊗H1)

Definition 7.4. Two-Way Layout Projections

P0 = J2 ⊗ J1

P1 = (J2 ⊗H1)

P2 = (H2 ⊗ J1)

P12 = (H2 ⊗H1)

H-subscripts induce P subscripts.

Note:
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1. P0, P1, P2, P12 are each symmetric & idempotent

2. Thse 4 projections are mutually orthogonal. e.g. P1P2 = P1P12 = · · · = 0

Remark 7.5. Projection Form of the ANOVA Decomposition

m = P0m+ P1m+ P2m+ P12m

This is equivalent to the classical ANOVA decomposition because

P0︸︷︷︸
p×p

m︸︷︷︸
p×1

= {m.., 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2} = (J2 ⊗ J1)m

P1m = {{mi. −m.., 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2} = (J2 ⊗H1)m

P2m = {{m.j −m.., 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2} = (H2 ⊗ J1)m

P12m = {{mij −mi. −m.j +m.., 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2} = (H2 ⊗H1)m

This says

mij = m.. − (mi. −m..) + (m.j −m..) + (mij −mi. −m.j +m..), 1 ≤ i ≤ p1, 1 ≤ j ≤ p2

Method of Checking the four equations above

P0m = (J2 ⊗ J1)m = vec(J1MJ2)

P1m = (J2 ⊗H1)m = vec(H1MJ2) = vec[(Ip1 − J1)MJ2] = vec(MJ2)− vec(J1MJ2)

P2m = (H2 ⊗ J1)m = vec(J1MH2) = vec[J1M(Ip2 − J2)] = vec(J1M)− vec(J1MJ2)

P12m = vec(H1MH2) = vec(M)− vec(MJ2)− vec(J1M) + vec(J1MJ2)

Thus,

unvec(P0m) = J1MJ2︸ ︷︷ ︸
p1×p2

=

m.. m.. · · · m..
...

...
. . . · · ·

m.. m.. · · · m..


unvec(P1m) = MJ2 − J1MJ2 =

m1. −m.. · · · m1. −m..
...

. . .
...

mp1. −m.. · · · mp1. −m..


Remark 7.6. Some Standard ANOVA Submodels for 2-Way Layout

Form is m = Q︸︷︷︸
p×p

β︸︷︷︸
p×1

, β ∈ Rp, Q symmetric & idempotent.

Q = Ip = P0 + P1 + P2 + P12 (General Model)

Q = P0 + P1 + P2 ↔ {γij} all 0 (Additive Submodels)

Q = P0 + P1 ↔ {βj}, {γij} all 0 (Factor 1 effects)

Q = P0 + P2 ↔ {αi}, {γij} all 0 (Factor 2 effects)

Q = P0 ↔ {αi}, {βj}, {γij} all 0 (No effects)
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7.3 Least Squares Analysis

Model
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, rank(C) = p ≤ n

Note: It is not assumed that nij = n0, 1 ≤ i ≤ p1, 1 ≤ j ≤ p2. Thus, C ′C 6= n0Ip for some n0 (because
C ′C = diag{nij}).

Under the general model: y = Cm+ e, m ∈ Rp. The LSEs of m, η = Cm are

m̂ = C+y = (C ′C)−1C ′y

η̂ = CC+y = C(C ′C)−1C ′y

These have elementary forms, as in 1-way layout.

Under submodel (Q), the LSEs of m, η are

m̂0 = (CQ)+y

η̂0 = C(CQ)+y (= CQ(CQ)+y)

F-test
H: submodel Q holds
K: not so, general model holds

The test statistic is

T =
|η̂ − η̂0|2/r1

σ̂2

where σ̂2 = 1
n−r |y − η̂|

2, with r = rank(C) = p (← C is the design matrix in the general model).

r1 = r − r0 = p− tr(Q)

r0 = rank(CQ) = rank(Q) = tr(Q)

where CQ is the design matrix in the submodel y = CQβ + e and n =
p1∑
i=1

p2∑
j=1

nij .

The Null distribution is Fp−tr(Q),n−p.

Estimated Risks
of η̂ and η̂0 as competing estimators of η = Cm in the general model:

R̂(η̂) = σ̂2

R̂(η̂0) = p−1︸︷︷︸
r

[|y − η̂0|2 + (2 tr(Q)︸ ︷︷ ︸
r0

−n)σ̂2]

Note: Calculating r0 = tr(Q) is easy algebraically in 2-way ANOVA models.
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Example 7.7.

Q = P0 + P1 + P2.

tr(Q) = tr(P0) + tr(P1) + tr(P2)

tr(P0) = tr(J2 ⊗ J1) = tr(J2) tr(J1) = 1 · 1 = 1

where we have used that tr(Jk) = tr(uku
′
k) = tr(u′kuk︸ ︷︷ ︸

=1

) = 1.

tr(P1) = tr(J2 ⊗H1) = tr(J2) tr(H1) = tr(J2)[tr(Ip − J1)]

= tr(J2)︸ ︷︷ ︸= 1[tr(Ip1)− tr(J1)︸ ︷︷ ︸
=1

]

= p1 − 1

tr(P2) = p2 − 1 (by similar analysis)

r0 = rank(CQ) = rank(Q) = tr(Q) = 1 + (p1 − 1) + (p2 − 1)

where we used that C is of full rank. For the F-test:

r1 = r − r0 = p︸︷︷︸
p1p2

−[1 + (p1 − 1) + (p2 − 1)] = p1p2 − p1 − p2 + 1

= (p1 − 1)(p2 − 1)

The d.f. (degrees of freedom) are (p1 − 1)(p2 − 1), n− p.

Note: This analysis of 2-way layouts works whatever the {nij} may be, i.e. in unbalanced complete layouts
as well as in balanced complete layouts.

Definition 7.8. Complete Layout, Balanced Complete Layout, Unbalanced Complete Layout

A complete layout has nij ≥ 1, 1 ≤ i ≤ p1, 1 ≤ j ≤ p2.
A balanced complete layout has nij = n. ≥ 1 ∀ i, j.
An unbalanced complete layout has {nij} are not equal but nij ≥ 1 ∀ i, j.

Comments:

• Balanced complete layout is classical & elementary

• Unbalanced complete layout is very difficult classically and not elementary

Recall:
Submodel m = CQβ, β ∈ Rp, Q symmetric & idempotent and of rank r0.
l
Submodel m = CV γ, γ ∈ Rr0 , Q = V︸︷︷︸

p×r0

V ′︸︷︷︸
r0×p

is the spectral representation of Q.
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Example 7.9. Spectral Forms of Projections for One-Way Layout

Consider P0 = uu′, P1 = Ip − uu′ = Ip − P0, u︸︷︷︸
p×1

= p−1/2(1, 1, . . . , 1)′. Let ( u︸︷︷︸
p×1

U︸︷︷︸
p×(p−1)

) be an

orthogonal matrix. This implies that u′u+ U ′U = uu′ + UU ′ = Ip. The spectral representations of
P0 and P1 are

P0 = v0v
′
0, where v0 = u

P1 = v1v
′
1, where v1 = U

Notes:

1. The columns of U are mutually orthogonal and are orthogonal to u, i.e. the columns of U are mutually
orthogonal contrasts

2. Construction of U from Helmert contrasts:

H︸︷︷︸
p×(p−1)

=



1 1 1 · · · 1
−1 1 1 · · · 1
0 −2 1 · · · 1
0 0 −3 · · · 1
0 0 0 · · · 1
...

...
...

. . .
...

0 0 0 · · · −(p− 1)


Define U = H︸︷︷︸

p×(p−1)

( H ′H︸ ︷︷ ︸
diagonal matrix

)−1/2. Then

U ′U = Ip−1

u′U = 0

So (u U) is an orthogonal matrix.

3. Take U to have columns that are orthogonal polynomials of degrees 1 to (p− 1). poly(·) → U .

Remark 7.10. LSE’s for the One-Way Layout Submodel

Submodel Model Fit in One-Way Layout

m̂0 = V0(CV0)+y, V0 = uu′

η̂0 = CV0(CV0)+y
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Example 7.11. Two-Way Layout: Spectral Representations of P0, P1, P2, P12

Let ( uk︸︷︷︸
pk×1

Uk︸︷︷︸
pk×(pk−1)

) be orthogonal matrices, k = 1, 2, uk = p
−1/2
k (1, 1, . . . , 1)′. Then

Ip =
(
uk Uk

)(u′k
U ′k

)
= uku

′
k︸ ︷︷ ︸

Jk

+UkU
′
k︸ ︷︷ ︸

Hk

= Jk +Hk.

Then we get the spectral representation

P0 = J2 ⊗ J1 = u2u
′
2 = V0V

′
0 for V0︸︷︷︸

p×1

= u2︸︷︷︸
p2×1

⊗ u1︸︷︷︸
p1×1

P1 = J2 ⊗H1 = u2u
′
2 ⊗ U1U

′
1 = V1V

′
1 for V1 = u2 ⊗ U1

P2 = V2V
′

2 for V2 = U2 ⊗ u1

P12 = H2 ⊗H1 = U2U
′
2 ⊗ U1U

′
1 = V12V

′
12 for V12 = U2 ⊗ U ′1

These yield spectral representations for standard submodels Q in the 2-way layout.

Example 7.12.

Q = P0 + P1 + P2 = V0V
′

0 + V1V
′

1 + V2V
′

2

= V V ′ for V =
(
V0 V1 V2

)
and the columns of V are mutually orthogonal.

7.4 Review for Midterm

• Lab 1 material

• Existence and uniqueness of LSEs

• Algebraic stuff
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8 10-18-11

8.1 Midterm Info

• Closed book. Can bring 2 double-sided sheets of notes.

• Coverage:

– SVD, Moore-Penrose pseudoinverse

– Least squares: normal equation, solution sets, distribution theory, linear estimability, optimality
properties (Gauss-Markov, Scheffe), polynomial regression

– Cutoff is just before F-test or estimated risk

– Study labs 1 & 2

• 3 problems, relatively short, each with a nice solution

8.2 r & r0

General Model: y = C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e

Submodel Q: m = Q︸︷︷︸
p×p

β︸︷︷︸
p×1

, β ∈ Rp, where Q is symmetric & idempotent.

y = CQβ︸ ︷︷ ︸
X0

+e

So

r = rank(X) = rank(C)

r0 = rank(X0) = rank(CQ)

Useful for complete layouts
When C︸︷︷︸

n×p

is of full rank, rank(C) = p, then

r = p

r0 = rank(CQ) = rank(Q) = tr(Q)

8.3 Spectral Representations of P0, P1, P2, P12

Let O = ( uk︸︷︷︸
pk×1

Uk︸︷︷︸
pk×(pk−1)

), k = 1, 2, be a p× p orthogonal matrix: O′O = OO′ = Ipk ⇔ O−1 = O′. Then

Ipk =
(
uk Uk

)(u′k
U ′k

)
= uku

′
k︸ ︷︷ ︸

Jk

+ UkU
′
k︸ ︷︷ ︸

Ipk−Jk

= Jk +Hk

The columns of Uk are mutually orthonormal contrasts.

P0 = J2 ⊗ J1 = u2u
′
2 ⊗ u1u

′
1 = V0V

′
0

for V0︸︷︷︸
p×1

= u2︸︷︷︸
p2×1

⊗ u1︸︷︷︸
p1×1

, p = p1p2. Similarly,

P1 = J2 ⊗H1 = u2u
′
2 ⊗ U1U

′
1 = V1V

′
1
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for V1︸︷︷︸
p×(p1−1)

= u2 ⊗ U1.

P2 = H2 ⊗ J1 = U2U
′
2 ⊗ u1u

′
1 = V2V

′
2

for V2︸︷︷︸
p×(p2−1)

= U2 ⊗ u1.

P12 = H2 ⊗H1 = U2U
′
2 ⊗ U1U

′
1 = V12V

′
12

for V12︸︷︷︸
p×(p1−1)(p2−1)

= U2 ⊗ U1.

Moreover, (V0 V1 V2 V12) is an orthogonal matrix.

Example 8.1.

Suppose Q = P0 +P1 +P2 = V0V
′

0 +V1V
′

1 +V2V
′

2 = V V ′ for V = (V0 V1 V2) = spectral representation
of Q. Note that V ′V = I. Hence,

m = CQβ, β ∈ Rp ↔ m = CV γ, γ ∈ Rp1+p2−1

In the case that rank(C) = p, the LSEs for model Q are

m̂0 = (CQ)+y = V (CV )+y

η̂0 = Cm̂0 = C(CQ)+y = CV (CV )+y

8.4 Special Case: Balanced Complete Design

General model: y = C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e, rank(C) = p (because it is complete), C ′C = n0Ip (because it is balanced

⇔ same number of observations for each mean). The LSEs are

m̂ = (C ′C)−1C ′y = n−1
0 C ′y

η̂ = Cm̂ = n−1
0 CC ′y

Submodel Q: y = CQβ + e for β ∈ Rp, i.e. m = Qβ. The LSEs are

m̂0 = (CQ)+y

η̂0 = C(CQ)+y

Theorem 8.2.

Suppose C ′C = n0Ip, n0 ≥ 1 (i.e. complete balanced design). Then

m̂0 = n−1
0 QC ′y = Qm̂

η̂0 = n−1
0 CQC ′ = CQm̂
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Proof. Q︸︷︷︸
p×p

= V︸︷︷︸
p×r0

V ′︸︷︷︸
r0×p

spectral representation. r0 = rank(Q) = tr(Q).

(CQ)+ = (C V V ′︸︷︷︸
Q

)+ = V (CV )+ Lab 1, 1e

(CV )+ = (V ′C ′CV︸ ︷︷ ︸
n0Ip

)+V ′C ′ Lab 1

= (n0 V
′V︸︷︷︸
Ir0

)+V ′C ′ = n−1
0 Ir0V

′C ′ = n−1
0 V ′C ′

(CQ)+ = V (CV )+ = n−1
0 V V ′︸︷︷︸

Q

C ′ = n−1
0 QC ′

Thus,

m̂0 = n−1
0 QC ′y = Qm̂ because m̂ = n−1

0 C ′y

η̂0 = Cm̂0 = CQm̂

Note: This explains nice formulas for balanced, complete designs.

8.5 Three-Way Layouts - Complete Layout

General model in classical form: yijkl = mijk + eijkl. Factor levels:

1 ≤ i ≤ p1, 1 ≤ j ≤ p2, 1 ≤ k ≤ p3

Replications are labeled by
1 ≤ l ≤ nijk

Vectorize:
m︸︷︷︸
p×1

= {{{mijk

∣∣ 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2}, 1 ≤ k ≤ p3}

This is called mirror dictionary order or array order.

y = {{{{yijkl
∣∣ 1 ≤ l ≤ nijk}, 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2}, 1 ≤ k ≤ p3}

n =

p1∑
i=1

p2∑
j=1

p3∑
k=1

nijk

e is defined similar to y.
C = data-incidence matrix of 1’s and 0’s

8.5.1 Simple ANOVA Decomposition of Means

Classical Form:

mijk = µ+ α
(1)
i + α

(2)
j + α

(3)
k + α

(12)
ij + α

(13)
ik + α

(23)
jk + α

(123)
ijk

where

α(1)
. = α(2)

. = α(3)
. = 0

α
(12)
i. = α

(12)
.j = α

(13)
.k = α

(23)
.k = α

(23)
j. = 0

α
(123)
ij. = α

(123)
i.k = α

(123)
.kj = 0
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This form gives a one-to-one mapping of {mijk} into µ, {α(1)
i }, {α

(2)
j }, . . .

µ = m..., α
(1)
i = mi.. −m..., α

(2)
j = m.j. −m...

α
(12)
ij = mij. −mi.. −m.j. +m...

α
(12)
jk = m.jk −m.j. −m..k +m...

α
(13)
ik = mi.k −mi.. −m..k +m...

α
(123)
ijk = mijk −mij. −mi.k −m.jk +mi.. +m.j. +m..k −m...
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9 10-20-11

9.1 Projection Form of ANOVA Decomposition for 3-Way Layout

As earlier, let uk = p
−1/2
k (1, 1, . . . , 1)′, Jk = uku

′
k, Hk = Ipk−Jk, 1 ≤ k ≤ 3, p = p1p2p3 = # of means {mijk}.

Let

P0 = J3 ⊗ J2 ⊗ J1

P1 = J3 ⊗ J2 ⊗H1

P2 = J3 ⊗H2 ⊗ J1

P3 = H3 ⊗ J2 ⊗ J1

P12 = J3 ⊗H2 ⊗H1

P13 = H3 ⊗ J2 ⊗H1

P23 = H3 ⊗H2 ⊗ J1

P123 = H3 ⊗H2 ⊗H1

The subscripts on the LHS indicate the H-factors on the RHS.

Note:

1. These P ’s are symmetric & idempotent, and they are mutually orthogonal

2. Ip = Ip3 ⊗ Ip2 ⊗ Ip1 = (J3 +H3)⊗ (J2 +H2)⊗ (J1 +H1) = P0 +P1 +P2 +P3 +P12 +P13 +P23 +P123.
The ANOVA decomposition of m in the 3-way layout:

m = P0m︸︷︷︸
overall mean

+P1m+ P2m+ P3m︸ ︷︷ ︸
main effects

+P12m+ P13m+ P23m︸ ︷︷ ︸
2-way interactions

+ P123m︸ ︷︷ ︸
3-way interactions

9.2 Standard ANOVA Submodels

The form is: m︸︷︷︸
p×1

= Q︸︷︷︸
p×p

β, β ∈ Rp, Q is an orthogonal projection.

• Q = Ip (general model) ⇒ 1

• Q = P0 + P1 + P2 + P3 + P12 + P13 + P23 (no 3-way interactions) ⇒ 1

• Q = P0 + P1 + P2 + P3 + P12 + P13 (no 3-way and no 2-3-way interactions) ⇒ 1

– + two more 2 × 2-way, no 3-way interactions ⇒ 2

• Q = P0 + P1 + P2 + P3 + P12 (no 3-way interactions, only the 1-2 2-way interaction) ⇒ 3

• Q = P0 + P1 + P2 + P3 (additive) ⇒ 1

• Q = P0 + P1 + P2 (+ 2 more) (subadditive, no factor 3 effect) ⇒ 3

• Q = P0 + P1 (+ 2 more) (only factor 1 matters) ⇒ 3

• Q = P0 (no effects) ⇒ 1

Total = 16 submodels (more exist...)
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9.3 LSE’s under the General Model and Submodel

Under the general model, y = C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e, the LSE’s are:

m̂ = C+y = (C ′C)−1C ′y = {mijk.} in mirror dictionary order

η̂ = CC+y = Cm̂ = C(C ′C)−1C ′y

We assume that it is a complete layout (1 observation for every cell, i.e. nijk ≥ 1), so

r = rank(C) = p

Under submodel Q, the model is y = CQβ + e, β ∈ Rp, m = Qβ. The LSE’s are

m̂0 = (CQ)+y

η̂0 = CQ(CQ)+y
Lab 1

= C(CQ)+y

Note: η0 = Cm0 = Ey under the submodel. Thus, m0 = (C ′C)−1C ′η0, so m0 is linearly estimable.

r0 = rank(CQ) = rank(Q) = tr(Q)

Special Case: Balanced Complete Design (i.e. C ′C = n0Ip, n0 ≥ 1)
As for the 2-way layout,

m̂0 = Qm̂

m̂ = (C ′C)−1C ′y

η̂0 = CQm̂

9.4 Spectral Representations for the Projections P0, P1, P2, . . . , P123

Let (uk Uk) be a pk × pk orthogonal matrix. (The columns of Uk are orthonormal contrasts.)

Ipk =
(
uk Uk

)(u′k
U ′k

)
= uku

′
k︸ ︷︷ ︸

Jk

+UkU
′
k︸ ︷︷ ︸

Hk

, k = 1, 2, 3

Jk = uku
′
k by definition

Hk = Ip − Jk = UkU
′
k

P0 = J3 ⊗ J2 ⊗ J1 = V0V
′

0 with V0 = u3 ⊗ u2 ⊗ u1

P1 = J3 ⊗ J2 ⊗H1 = V1V
′

1 with V1 = u3 ⊗ u2 ⊗ U1

similarly for P2, P3

P12 = J3 ⊗H2 ⊗H1 = V12V
′

12 with V12 = u3 ⊗ U2 ⊗ U1

similarly for P13, P23

P123 = H3 ⊗H2 ⊗H1 = V123V
′

123 with V123 = U3 ⊗ U2 ⊗ U1

Note:

1. The matrix
V︸︷︷︸
p×p

=
(
V0 V1 V2 V3 V12 V13 V23 V123

)
is orthogonal: V ′V = V V ′ = Ip.

2. Submodel Q can be expressed in terms of V . For example, let Q = P0 +P1 +P12 +P13 = VQV
′
Q, where

V1 = (V0 V1 V12 V13). This is a spectral representation of Q.
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9.5 Other Projection Decompositions

The ANOVA projections are designed for nominal covariates: the levels (values) of the covariates are only
labels.

For ordinal covariates (the values are real numbers whose order and particular values matter), we may
want other projections.

Example 9.1. Ordinate Covariates Example: vineyard.dat

Vineyard data in Lab #2.

yij = mij + eij , 1 ≤ i ≤ 52 = p1, 1 ≤ j ≤ 3 = p2

i labels the vineyard row (← ordinal covariates).
j labels the year (‘ nominal covariates).
yij = the year from row i in year j.

We conjecture that mij varies “slowly” in i for a given j. E.g. polynomial regression for each year?

We can replace ANOVA projections by alternative projections that implement polynomial regression as
follows:

1. Let U1(d)︸ ︷︷ ︸
p1×d

= orthogonal polynomial of degree d− 1.

2. Define J1(d)︸ ︷︷ ︸
p1×p1

= U1(d)U ′1(d), H1(d)︸ ︷︷ ︸
p1×p1

= Ip1 − U1(d).

3. Define J2 = u2u
′
2 (where u2 = p

−1/2
2 (1, 1, . . . , 1)′), H2 = Ip2 − J2 as earlier.

4. Then Ip = Ip2 ⊗ Ip1 = P0(d) + P1(d) + P2(d) + P12(d)

P0(d) = J2 ⊗ J1(d)

P1(d) = J2 ⊗H1(d)

P2(d) = H2 ⊗ J1(d)

P12(d) = H2 ⊗H1(d)

m = P0(d)m+ P1(d)m+ P2(d)m+ P12(d)m

This gives a projection decomposition of m that extends the ANOVA decomposition ↔ d = 1.

Idea: Extend the ANOVA fits to d = 2, 3, . . . , 6. Compare these least squares fits via estimated risk.

9.6 Incomplete Designs

Of interest is the mean vector m︸︷︷︸
p×1

. We have one or more observations only on a subvector mD︸︷︷︸
q×1

of m, where

q ≤ p. We get this subvector by deleting components of m. Thus, mD︸︷︷︸
q×1

= D︸︷︷︸
q×p

m︸︷︷︸
p×1

.
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Note: D is obtained by deleting suitable rows of Ip. The rows of D are therefore orthonormal: D︸︷︷︸
q×p

D′︸︷︷︸
p×q

=

Iq. We call D the deletion matrix .

Example 9.2. Deletion Matrix Example

m =


m1

m2

m3

m4

 , mD =

(
m1

m4

)
, D2 =

(
1 0 0 0
0 0 0 1

)
, p = 4, q = 2

Note that D is I4 with rows 2 and 3 deleted.

DD′ = I2, mD = Dm

Remark 9.3. General Model for the Incomplete Design

y︸︷︷︸
n×1

= C︸︷︷︸
n×q

mD︸︷︷︸
q×1

+e, rank(C) = q = rank(D) = rank(CD) = r

= CDm+ e

m̂D = C+y = (C ′C)−1C ′y

η̂ = C(C ′C)−1C ′y = CC+y

m̂ = (CD)+y + [Ip − CD(CD)+]c, c ∈ Rp

Question: How do we make an intelligent choice of c?

Question: Dm̂
?
=m̂D. Yes.

• Lab 1.l: (CD)+ = D′C+ because DD′ = Iq.

• Hence

Dm̂ = D(CD)+y + [D −D(CD)+CD]c

=
′

DD′︸︷︷︸
Iq

C+y + [D −DD′︸︷︷︸
Iq

C+CD]c

= C+y + [D − (C ′C)−1C ′CD︸ ︷︷ ︸
I

]c

= C+y = m̂D

9.7 Submodel Q for mD

If mD is a subvector of m, which is a vectorized array of means, submodel specification is often obscure.

Proposed Idea: Start with the submodel Q for m: m = Qβ, β ∈ Rp, Q is symmetric & idempotent. This
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implies that mD = DQβ, β ∈ Rp. So the model is y = C︸︷︷︸
n×q

D︸︷︷︸
q×p

Q︸︷︷︸
p×p

β︸︷︷︸
p×1

+e.

Let m̂D,0 = LSE of mD under the submodel. Then

m̂D,0 = DQ(CDQ)+y = D(CDQ)+y

Let η̂ = LSE of η = CDQβ under the submodel. Then

η̂ = CDQ(CDQ)+y = CD(CDQ)+y = unique

Because mD = (C ′C)−1C ′η0, it is linearly estimable.

9.8 Midterm Comments

• Recommended: have Lab 1 results on cheat sheets, also major results from in class

– Can cite any lab 1 results or results we proved in class

• 3 problems, about an hour’s worth of work

• Material Covered

– SVD, Moore-Penrose pseudoinverse

– Solutions to consistent linear equations (including how to test for consistency)

– Least squares (whatever the rank of X ⇒ normal equation and its solutions)

– Linear parametric functions of β (y = Xβ + e)

∗ Linear estimability ↔ unique LSE’s of linear parametric functions

∗ Ψ = λ′β

1. Is Ψ̂ = λ′β̂ unique for every LSE β̂?

2. Link to linear unbiased estimators of Ψ

· Boils down to 2 theorems we wrote down: uniqueness and something about λ′β̂ being
unique

– Gauss-Markov/Lehmann-Scheffé theorems

• The algebra is simple, but it requires understanding

• 2 problems are statistical in nature, the 3rd is algebraic
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10 10-27-11

10.1 General Model for Incomplete Design

y︸︷︷︸
n×1

= C︸︷︷︸
n×q

mD︸︷︷︸
q×1

+e = C︸︷︷︸
n×q

D︸︷︷︸
q×p

m︸︷︷︸
p×1

+e

rank(C) = q ≤ p ≤ n
D = depletion matrix

DD′ = Iq

Unique LSE’s

• The LSE of η is η̂ = CC+y = C(C ′C)−1C ′y

– r = rank(CD) = rank(D) = q

• The LSE of mD is m̂D = (C ′C)−1C ′y.

Not Unique LSE

• The LSEs of m are m̂ = (CD)+y + [Ip − (CD)+(CD)]c, where c ∈ Rp

10.2 Submodels for the Incomplete Design

Start with the submodel m︸︷︷︸
p×1

= Q︸︷︷︸
p×p

β︸︷︷︸
p×1

(where Q is symmetric & idempotent) for the associated complete

design. This induces submodel Q for mD:

mD,0 = DQβ, β ∈ Rp.

y = C DQβ︸ ︷︷ ︸
mD,0

+e

The LSE of η0 = E(y) in this submodel is

η̂0 = CDQ(CDQ)+y = CD(CDQ)+y Lab 1, 1.m

r0 = rank(CDQ) = rank(DQ)

The LSE of mD,0 is
m̂D,0 = (C ′C)−1C ′η̂0 = DQ(CDQ)+y = D(CDQ)+y

because mD,0 = DQβ = (C ′C)−1C ′η0; i.e. mD,0 is linearly estimable.

10.3 Balanced Incomplete Design

Here, in addition, C ′︸︷︷︸
q×p

C︸︷︷︸
p×q

= n0Iq, n0 ≥ 1.

Simplifications:

CDQ(CDQ)+ = CDQ(QD′C ′C︸︷︷︸
n0Ip

DQ)+QD′C ′

= n−1
0 CD(QD′DQ)+D′C ′
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Let

m̂D = (C ′C)−1C ′y = general model LSE of mD

= n−1
0 C ′y

Hence, in the submodel Q

η̂0 = CDQ(CDQ)+y

= n−1
0 CD(QD′DQ)+D′C ′y

= CD(QD′DQ)+D′m̂D

= CDQ(DQ)+m̂D

i.e.

η̂0 = CDQ(DQ)+m̂D

m̂D,0 = (C ′C)−1C ′η̂0 = DQ(DQ)+m̂D

10.4 Interpolating Among Submodel Fits in Complete Balanced Designs

General model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, C ′C = n0Ip, n0 ≥ 1

Consider the projection decomposition
s∑

k=1

Pk = Ip

where {Pk} are symmetric and idempotent: PkPj = 0 if j 6= k. For example, the ANOVA decomposition.

Let dq ⊂ {1, 2, . . . , s}. Let Q =
∑
k∈dQ

Pk. Q is symmetric & idempotent. The submodel m = Qβ has

LSE’s

m̂0 = Qm̂

η̂0 = CDm̂

m̂ = n−1
0 C ′y = general model LSE of m.

Note: m̂D =
∑
k∈dQ

Pkm̂. Thus, m̂D =
s∑

k=1

akPkm̂, where

ak =

{
1 k ∈ dQ
0 k /∈ dQ

New idea: Consider the class of multiple shrinkage estimators

m̂(a) =
s∑

k=1

akPkm̂

for m in the general model y = Cm+ e, C ′C = n0Ip (where a = (a1, a2, . . . , as), ak ∈ [0, 1]).

Note: In this discussion, the general model is balanced and complete.
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Aim: Choose the {ak} to minimize risk and estimated risk of η̂(a) = Cm̂(a).

Formally:
General model y = Cm+ e, C ′C = n0Ip (balanced, complete design).
Strong Gauss-Markov model on e: the components {ei} are i.i.d. with E(ei) = 0, Var(ei) = σ2, 0 < σ2 <∞.

Definition 10.1. Quadratic Risk

The quadratic risk of any estimator η̃ for η is

R(η̃, η, σ2) = p−1E|η̃ − n|2

Remark 10.2. References

• Stein (1966)

• Beran (2008) AISM

We will calculate the risk of η̂(a) = Cm̂(a) and then minimize it by choice of a = (a1, a2, . . . , as).

Theorem 10.3.

R(η̂(a), η, σ2) =
s∑

k=1

r(ak, τk, wk)

where

τk = p−1σ2 tr(Pk)

wk = p−1n0|Pkm|2

r(ak, τk, wk) = τka
2
k + (1− ak)2wk = (ak − ãk)2(τk + wk) + τkãk

ãk =
wk

τk + wk
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Proof.

R(η̂(a), η, σ2) = p−1E|η̂(a)− n|2

E|η̂(a)− η|2 = |C(m̂(a)−m)|2 = (m̂(a)−m)′ C ′C︸︷︷︸
=n0Ip

(m̂(a)−m)

= n0|m̂(a)−m(a)|2 = n0

∣∣∣∣∣
s∑

k=1

(akPkm̂− Pkm)

∣∣∣∣∣
2

= n0

s∑
k=1

|akPkm̂− Pkm|2

= n0

s∑
k=1

|akPk(m̂−m)− (1− ak)Pkm|2

R(η̂(a), η, σ2) = p−1η0

s∑
k=1

E|ak(m̂−m)− (1− ak)Pkm|2

= p−1n0

s∑
k=1

E tr
[
{akPk(m̂−m)− (1− ak)Pkm} {akPk(m̂−m)− (1− ak)Pkm}′

]
= p−1n0

s∑
k=1

trE
[
{akPk(m̂−m)− (1− ak)Pkm} {akPk(m̂−m)− (1− ak)Pkm}′

]
= p−1n0

s∑
k=1

tr

[
a2
kPk

(
σ2

n0
Ip

)
Pk + (1− ak)2Pkm(Pkm)′

]

=

s∑
k=1

[τka
2
k + (1− ak)2wk︸ ︷︷ ︸
r(ak,τk,wk)

]

where we got the last line by using

E(m̂) = m

E
[
(m̂−m)(m̂−m)′

]
= Cov(m̂) =

(
σ2

n0

)
Ip

To complete the argument:

ãk =
wk

τk + wk
(ak − ãk)2(τk + wk + τkãk = a2

k(τk + wk)− 2akãk(τk + wk) + ã2
k(τk + wk) + τkãk

= τka
2
k + a2

kwk − 2akwk +
w2
k

τk + wk
+

τkwk
τk + wk

= τka
2
k + a2

kwk − 2akwk + wk︸ ︷︷ ︸
quadratic

= τka
2
k + (1− ak)2wk

10.5 Oracle Estimation

Oracle Estimation (not fully realizable)
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Definition 10.4. Oracle Shrinkage Estimator

The oracle shrinkage estimator m̃shr is the candidate shrinkage estimator m̂(a) that minimizes risk
over all a ∈ [0, 1]s.

Theorem 10.5.

m̃shr =
s∑

k=1

ãkPkm̂ =
s∑

k=1

(
wk

τk + wk

)
Pkm̂

where m̂ = n−1
0 C ′y is the LSE of m in the general model. Moreover, for η̃shr = Cm̃shr, the risk is

R(η̃shr, η, σ
2) =

s∑
k=1

τkãk =

s∑
k=1

(
τkwk
τk + wk

)

Proof. Taking ak = ãk minimizes r(ak, τk, wk) (i.e. the summand).

Definition 10.6. Oracle Projection Estimator

The oracle projection estimator m̃pro is the candidate shrinkage estimator m̂(a) that minimizes risk
over all a ∈ {0, 1}s ⇔ each ak = 0 or 1.

If not unique, pick the one with the smallest {ak}.

Note: This identifies the submodel fit(s) that minimizes risk.

Theorem 10.7.

m̃pro =

s∑
k:ãk>1/2

Pkm̂ =
∑

k:wk>τk

Pkm̂

R(η̃pro, η, σ
2) =

s∑
k=1

min{τk, wk}

Proof.

R(η̂(a), η, σ2) =
s∑

k=1

r(ak, τk, wk)

r(ak, τk, wk) = (ak − ãk)2(τk + wk) + τkãk
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The minimizing choice of ak = 0 or 1 is

ak = 1 if ãk >
1

2

ak = 1 if ãk ≤
1

2

Either choice will do if ãk = 1
2 , but we take ak = 0 by convention to simplify the summation. This gives the

first form of m̃pro.

Next, ãk >
1
2 ⇔

wk
τk+wk

> 1
2 ⇔ wk > τk.

Finally, to simplify the risk:

If wk > τk, then ak = 1 and so r(ak, τk, wk) = τk = min(τk, wk). If wk ≤ τk, then ak = 0 and so
r(ak, τk, wk) = wk = min(τk, wk).

10.6 Comparison of the Oracle Estimators and the LSE

For the LSE, a = 1, and

m̂ =


s∑

k=1

Pk︸ ︷︷ ︸
=Ip

 m̂ =
s∑

k=1

1 · Pkm̂ = m̂(1)

where 1 = (1, 1, . . . , 1)′.

Its risk is

R(η̂(1), η, σ2) =
s∑

k=1

r(1, τk, wk)

=

s∑
k=1

τk

=

s∑
k=1

p−1σ2 tr(Pk)︸ ︷︷ ︸
τk

= p−1σ2 tr(
∑

Pk︸ ︷︷ ︸
Ip

)

= σ2

Theorem 10.8.

1

2
R(η̃pro, η, σ

2)
1
≤R(η̃shr, η, σ

2)
2
≤R(η̃pro, η, σ

2)
3
≤R(η̂, η, σ2)︸ ︷︷ ︸

risk of LSE

= σ2
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Proof. We already know 3 to be true. The kth summand in R(η̃shr, η, σ
2) and in R(η̃pro, η, σ

2) are, respec-
tively, τkwk

τk+wk
and min{τk, wk}. Obviously τkwk

τk+wk
≤ τk and ≤ wk and so ≤ min{τk, wk}.

τk

(
wk

τk + wk

)
︸ ︷︷ ︸

≤1

, wk

(
τk

τk + wk

)
︸ ︷︷ ︸

≤1

On the other hand,

• if τk ≤ wk, then τkwk
τk+wk

≥ τkwk
2wk

= 1
2τk = 1

2 min{τk, wk}.

• if wk ≤ τk, then τkwk
τk+wk

≥ τkwk
2τk

= 1
2wk = 1

2 min{τk, wk}.

Note: The oracle estimators are unrealizable because the risk function and so {wk}, {τk} depend on m and
σ2, which are unkown.

The next step is to devise trustworthy estimators of the risk function.
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11 11-1-11

11.1 Estimators

Model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

where E(e) = 0, Cov(e) = σ2In, {ei} are i.i.d., η = E(y) = Cm, C ′C = n0Ip with n0 ≥ 1 ⇒ complete
balanced design.

Candidate estimators:

m̂(a) =

s∑
k=1

akPkm ⇔ η̂(a) = Cm̂(a)

where {Pk} are mutually orthogonal projections and
s∑

k=1

Pk = In.

Risk:

R(η̂(a), η, σ2) = p−1E|η̂(a)− η|2

=
s∑

k=1

r(ak, τk, wk)

τk = p−1σ2 tr(Pk)

wk = p−1n0|Pkm|2

r(ak, τk, wk) = τka
2
k + (1− ak)2wk

= (ak − ãk)2(τk + wk) + τkãk

ãk =
wk

τk + wk

11.2 Adaptive Estimators

Let σ̂2 be an asymptotically (as p→∞) consistent estimator of σ2. Estimate τk by

τ̂k = p−1σ̂2 tr(Pk).

The naive estimator of wk is
ŵk = p−1n0|Pkm̂|2

where m̂ = n−1
0 C ′y.

Know:

E(m̂) = m, Cov(m̂) = n−1
0 σ2Ip

E(m̂m̂′) = mm′ + n−1
0 σ2Ip

Hence

n0E|Pkm̂|2 = n0E(m̂′Pkm̂)

= n0E tr(Pkm̂m̂
′)

= n0 tr[PkE(m̂m̂′)]

= n0|Pkm|2 + σ2 tr(Pk)
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Thus,

E[p−1n0|Pkm̂|2] = p−1n0|Pkm|2 + p−1σ2 tr(Pk)

= wk + Ik

This suggests estimating wk by
w̌k = p−1n0|Pkm̂|2 − τ̂k

(cf. Mallows 1973 adjustment)
More convenient is

ŵk = w̌k+ =

{
w̌k w̌k ≥ 0

0 otherwise

Evidently
|ŵk − wk| ≤ |w̌k − wk|

because ŵk ≥ 0, as is wk.

Definition 11.1. Estimated Risk

The estimated risk is

R̂(η̂(a)) =
s∑

k=1

r(ak, τ̂k, ŵk)

τ̂k = p−1σ̂2 tr(Pk)

ŵk = [p−1n0|Pkm̂|2 − τ̂k]+
r(ak, τk, wk) = τka

2
k + (1− ak)2wk

= (ak − ãk)2(τk + wk) + τkãk

ãk =
wk

τk + wk

By analogy with the oracle estimator:

Definition 11.2. Adaptive Shrinkage Estimator

The adaptive shrinkage estimator m̂shr is the candidate shrinkage estimator that minimizes the
estimated risk over all a ∈ [0, 1]s (or over all a ∈ Rs).

Theorem 11.3.

m̂shr =

s∑
k=1

âkPkm̂ =

s∑
k=1

(
ŵk

τ̂k + ŵk

)
Pkm̂

where

m̂ = n−1
0 C ′y

âk =
ŵk

τ̂k + ŵk
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Moreover, for η̂shr = Cm̂shr, the estimated risk of the adaptive shrinkage estimator is

R̂(η̂shr) =
s∑

k=1

τ̂kâk =
s∑

k=1

τ̂kŵk
τ̂k + ŵk

Definition 11.4. Adaptive Projection Estimator

The adaptive projection estimator , m̂pro, is the candidate shrinkage estimator that minimizes
estimated risk over all ak ∈ {0, 1}.

Theorem 11.5.

m̂pro =
∑
k

âk>1/2

Pkm̂ =
∑
k

ŵk>τ̂k

Pkm̂

For η̂pro = Cm̂pro, the corresponding estimated risk is

R̂(η̂pro) =
s∑

k=1

min{τ̂k, ŵk}

Theorem 11.6.

1

2
R̂(η̂pro) ≤ R̂(η̂shr) ≤ R̂(η̂pro) ≤ σ̂2 = R̂(η̂)

11.3 Link to Stein Shrinkage (1956, 1961, 1966)

ŵk = [p−1n0|Pkm̂|2 − τ̂k]+

=

{
p−1n0|Pkm̂|2 − τ̂k p−1n0|Pkm̂|2 ≥ τ̂k

0 otherwise

τ̂k + ŵk =

{
p−1n0|Pkm̂|2 p−1n0|Pkm̂|2 ≥ τ̂k

τ̂k otherwise

ak =
ŵk

τ̂k + ŵk

=

{
1− τ̂k

p−1n0|Pkm̂|2
p−1n0|Pkm̂|2 ≥ τ̂k

0 otherwise

=

[
1− τ̂k

p−1n0|Pkm̂|2

]
+

m̂shr =

s∑
k=1

[
1− Pkτ̂k

n0|Pkm̂|2

]
+

Pkm̂
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Notes:

• Apart from small p refinements in the Gaussian error model on e, m̂shr applies James-Stein (1961)
positive-part to each Pkm̂.

• Stein (1966) gave an exact treatment under the Gaussian error model with an independent estimate
σ̂2 of σ2.

• Our approach supports an asymptotic rationale under the strong Gauss-Markov error model. It also
motivates further developments such as penalized least squares.

11.4 Estimating σ2 in Complete Balanced Designs

Balanced complete design ⇒ C ′C = n0Ip

1. When n0 > 1 (replication), the LSE of σ2 is

σ̂2 =
1

n− p
|y − Cm̂|2

wheren = n0p, m̂ = n−1
0 C ′y. This works well if n� p

2. When n − p = 0 ⇔ n0 = 1, we might use the estimator of σ2 associated with a submodel m = Qβ
(where Q is symmetric & idempotent):

σ̂2
0 =

1

n− tr(Q)
|y − CQm̂|2

because

• rank(CQ) = rank(Q) = tr(Q)

• Qm̂ = LSE of Qβ

in a complete balanced layout. Note: σ̂2
0 is usually biased upwards.

11.5 Section: Lab #5 Comments

11.5.1 Part a

PGD is a projection ⇒ symmetric & idempotent

σ̂2 =
|PGDy|2

tr(PGD)
= ?

E(σ̂2) =
E|PGDy|2

tr(PGD)
=

E(y′PGDy)

tr(PGD)

E(y′PGDy) = E[tr(y′PGDy)]

= E[tr(PGDyy
′)]

= tr[PGDE(yy′)]

tr(AB) = tr(BA)

y = m+ e, e ∼ N(0, σ2I)

E(y) = m

E(y′y) = ?
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11.5.2 Parts f & g

perspective plot ⇒ function persp(·)
Use arguments “phi” and “theta” in persp to adjust the angle of the graphs

11.6 Section: Lab #3 Comments

t =
|η̂ − η̂Q|/(p− rQ)

σ̂2

T ∼ Fp−rQ,n−p
p-value = p(T > t)
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12 11-3-11

12.1 General Problem of Estimating σ2

Model:
y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ e︸︷︷︸
n×1

rank(X) = r ≤ p ≤ n. The {ei} are i.i.d. E(ei) = 0, Var(ei) = σ2 <∞.

Case 1:
n > p, n− r not small. LSE:

σ̂2 =
1

n− r
|y − η̂|2

η̂ = XX+y = Py with P = XX+

tr(P ) = rank(P ) = r

Case 2:
n − r not small, or even zero. Strategy: fit a submodel to the data and construct the associated σ2

estimator.
Submodel:

y = X0β0 + e

rank(X0) = r0 < r

R(X0) ⊂ R(X)

The LSE of η0 = E(y) is now η̂ = X0X
+
0 y = P0y, where P0 = X0X

+
0 . tr(P0) = rank(X0) = r0. The

associated estimator of σ2 in the submodel is

σ̂2
0 =

1

n− r0
|y − η̂0|2.

Question: Is σ̂2
0 a sensible estimator of σ2 under the general model?

Theorem 12.1.

Under the general model:

E(σ̂2
0) = σ2 +

|η − P0η|2

n− r0︸ ︷︷ ︸
bias

where η = Xβ.
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Proof.

E|y − η̂0|2 = E|y − P0y|2 (P0 = X0X
+
0 )

= E|(In − P0)y|2

= E tr[y′ (In − P0)︸ ︷︷ ︸
symmetric
idempotent

y] (trace trick)

= E tr[(In − P0)yy′]

= tr[(In − P0)E(yy′)]

= tr[(In − P0)(ηη′ + σ2In)]

= σ2 tr(In − P0) + tr[(In − P0)ηη′]

= (n− r0)σ2 + |(In − P0)η|2

Note:

1. Further analysis yields
σ̂2

0 → E(σ̂2
0) as n− r0 →∞

2. In practice we construct σ̂2
0 for several of the larger submodels and use the smallest value obtained.

We want n− r0 ≥ 30 to control the variability of σ̂2
0.

3. σ̂2
0 quantifies the level of variability in y that is deemed unimportant.

4. In the complete balanced design setting,

X = C︸︷︷︸
n×p

, r = p

X0 = CQ (because m = Qβ describes the submodel)

r0 = rank(X0) = tr(Q)

n = n0p (balanced design)

n = Cm

P0 = X0X
+
0

= CQ(QC ′C︸︷︷︸
n0I

Q)+Q′C ′

= n−1
0 CQ Q+︸︷︷︸

=Q

QC ′

= n−1
0 CQC ′

P0η = n−1
0 CQC ′CM︸︷︷︸

η

= CQm as expected.

(Ey under the submodel where m = Qβ ⇔ m = Qm)

E(σ̂2
0) = σ2 +

|Cm− CQm|2

n− tr(Q)
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12.2 Penalized Least Squares

Model:
y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, rank(X) = r ≤ p ≤ n

Goal: To estimate η = Xβ and, if possible, β.

Definition 12.2. Penalized Least Squares

The penalized least squares criterion is

T (β) = |y −Xβ|2 + β′︸︷︷︸
1×p

W︸︷︷︸
p×p

β︸︷︷︸
p×1

where W is symmetric positive semi-definite.

We consider β values that minimize T (β) over β ∈ Rp.

Note:

1. W = 0 gives classical least squares.

2. Existence and uniqueness of minimizers has to be resolved.

3. The strategy is to transform the penalized least squares (PLS) problem to the least squares (LS)
problem.

Theorem 12.3.

Let β̂0 = (X ′X +W )+X ′y. Then

1. The minimizers of T (β) as β ranges over Rp are

β̂(c) = β̂0 + [Ip − (X ′X +W )+(X ′X +W )]c, c ∈ Rp

(This formula reduces to the classical LS formula when W = 0.)

2. Xβ̂(c) = Xβ̂0 and W 1/2β̂(c) = W 1/2β̂0 for all c ∈ Rp.
3. β̂(c) = β̂0 for every c ∈ Rp iff rank(X ′X +W ) = p, in which case the Moore-Penrose pseudoin-

verse is the regular inverse. (i.e. rank(X) = p or rank(W ) = p or both)

Proof. Key idea: Let

ỹ︸︷︷︸
(n+p)×1

=

(
y
0p

)
, X̃︸︷︷︸

(n+p)×p

=

(
X

W 1/2

)
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Then

|ỹ − X̃β|2 =

∣∣∣∣( y −Xβ−W 1/2β

)∣∣∣∣2
= |y −Xβ|2 + | −W 1/2β|2

= |y −Xβ|2 + β′Wβ

= T (β).

Thus, the PLS criterion is also an LS criterion! So by LS theory:

1. The minimizing values of β are

β̂(c) = X̃+ỹ︸ ︷︷ ︸
β̂0

+(Ip − X̃+X̃)c c ∈ Rp

Using Lab 1 results, we get

X̃+ = (X̃ ′X̃)+X̃ ′ =

[(
X ′ W 1/2

)( X

W 1/2

)]+ (
X ′ W 1/2

)(y
0

)
= (X ′X +W )+X ′y

and

X̃+X̃ = (X̃ ′X̃)+X̃ ′︸ ︷︷ ︸
X̃+

X̃

= (X ′X +W )+(X ′X +W )

2. LS theory says that X̃β̂(c) is unique for all c ∈ Rp. In particular,

X̃β̂(c) = X̃β̂0 = X̃X̃+y

=

(
X

W 1/2

)
β̂(c) =

(
Xβ̂(c)

W 1/2β̂(c)

)
=

(
X

W 1/2

)
β̂0 =

(
Xβ̂0

W 1/2β̂0

)

3. The LS form of T (β) has a unique minimizer iff rank(X̃) = p, in which case the minimizer is
(X̃ ′X̃)−1X̃ ′y = X̃+y = β̂0. i.e.

p = rank( X̃︸︷︷︸
(n+p)×p

) = rank(X̃ ′X̃︸ ︷︷ ︸
p×p

) = rank(X ′X +W )

Both X ′X and W are positive semi-definite (x′Wx ≥ 0 ∀ x 6= 0 ⇒ all eigenvalues are nonnegative).
So X ′X + W is positive semi-definite. X ′X + W is positive definite iff at least one of X ′X or W is
positive definite. Equivalently, either rank(X ′X) = rank(X) = p or rank(W ) = p.

74



12.3 Interpolating Among Submodel Fits Using PLS in Complete Balanced Designs

General Model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, C ′C = n0Ip, n0 ≥ 1

Consider again the projection decomposition
s∑

k=1

Pk = Ip, where the {Pk} are symmetric and idempotent

and mutually orthogonal. Let lQ ⊂ {1, 2, . . . , s} and let Q =
∑
k∈lQ

Pk. The submodel is m = Qβ, β ∈ Rp. To

interpolate among LS fits to such submodels, consider the penalty matrix :

Q(t) =

s∑
k=1

tkPk where tk ≥ 0, 1 ≤ k ≤ s.

(Q and Q(t) are not the same.) Note that Q(t) is a symmetric positive semi-definite matrix. Consider the
PLS criterion:

T (m) = |y − Cm|2 +m′Q(t)m.

Note:

m′Q(t)m =
s∑

k=1

tkm
′Pkm =

s∑
k=1

tk|Pkm|2.

Since rank(C) = p, by the previous theorem T (m) has a unique minimizer,

m̂(t) = arg min
m∈Rp

T (m) = [C ′C +Q(t)]−1C ′y

(where t = (t1, t2, . . . , ts) ∈ [0,∞)s). This simplifies greatly because C ′C = n0Ip, and so

m̂(t) =
[
n0 Ip︸︷︷︸

s∑
k=1

Pk

+

s∑
k=1

tkPk

]−1
C ′y =

[ s∑
k=1

(n0 + tk)Pk

]−1
C ′y

=
s∑

k=1

(n0 + tk)
−1PkC

′y

=
s∑

k=1

akPkm̂

where ak = n0
n0+tk

, m̂ = n−1
0 C ′y = LSE of m in y = Cm+ e. Observe that ak ∈ (0, 1].

Note:

1. By adding the values ak = 0, 1 ≤ k ≤ s, we obtain the candidate shrinkage estimators considered
earlier as a slight extension of the candidate PLS estimators.

2. The PLS estimator m̂(t) is defined for unbalanced complete layouts:

m̂(t) = arg min
m∈Rp

T (m) = [C ′C +Q(t)]−1C ′y

by the previous theorem. t = (t1, t2, . . . , ts) ∈ [0,∞)s. Now C ′C = diag{ni}, where ni is the number
of observations on mi.

3. As in the balanced subcase, we seek to find t̂ ∈ [0,∞)s that minimizes the estimated risk of m̂(t).
Unfortunately, simplification of [C ′C +Q(t)]−1 is not obvious.

4. Other penalty matrices can be considered usefully beyond Q(t).
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13 11-8-11

13.1 PLS Estimators in Possibly Unbalanced Layouts

Model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e, C ′C = diag{ni}, ni ≥ 1 ∀ i

e satisfies the strong Gauss-Markov model. The PLS estimator of m is

m̂(t) = arg min
m∈Rp

[|y − Cm|2 +m′ Q(t)︸︷︷︸
penalty
matrix

m]

{Pk} are orthogonal projections (symmetric & idempotent), with
s∑

k=1

Pk = Ip. For example, ANOVA

projections.

Q(t)m =
s∑

k=1

tk |Pkm|2︸ ︷︷ ︸
=m′P 2

km

= m′

(
s∑

k=1

tkPk

)
m

Q(t) =
s∑

k=1

tkPk = spectral representation

m̂(t) = [C ′C +Q(t)]−1C ′y, t ∈ [0,∞)s

η̂(t) = Cm̂(t) = C[C ′C +Q(t)]−1C ′y

13.2 Numerical Issues in Computing m̂(t)

13.2.1 Aside from numerical analysis

Suppose A (m × m) is a nonsingular square matrix with SVD A = ULV ′, where U ′U = V ′V = Im and
L = diag{li}, l1 ≥ l2 ≥ . . . ≥ lm.

Definition 13.1. Matrix Norm

‖A‖ = sup
x 6=0

|Ax|
|x|

where | · | is the Euclidean norm. (spectral norm, 2-norm)

Definition 13.2. Condition Number

The condition number of A is

κ(A) =
l1
lm

= ‖A‖‖A−1‖.
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Theorem 13.3.

lim
ε→0

sup
‖∆A‖≤ε‖A‖

‖(A+ ∆A)−1 −A−1‖
ε

= ‖A−1‖κ(A)

Notes

1. Results like this are cited in Matrix Computations (Golub & van Loan), 3rd Edition, page 80.

2. Large κ(A) entails relatively large errors in (A+ ∆A)−1 versus A−1.

3. When A is symmetric,

κ2(A) =
l21
l2m

=
λmax(A)

λmin(A)

13.2.2 Apply This Aside to PLS Estimation

m̂(t) = [C ′C +Q(t)]−1C ′y

= A−1C ′y

for A = C ′C +Q(t).

Theorem 13.4.

κ2[C ′C +Q(t)] ≥ tmax

nmax + tmin

where tmax = max
1≤k≤s

tk, tmin = min
1≤k≤s

tk, nmax = max
1≤i≤p

ni.

Proof.

λmax(C ′C +Q(t)) = max
|a|=1

a′[C ′C +Q(t)]a

= max
|a|=1

[a′C ′Ca︸ ︷︷ ︸
≥0

+a′Q(t)a]

≥ max
|a|=1

a′Q(t)a

= λmax(Q(t)) = tmax

because {tk} are the eigenvalues of Q(t).
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On the other hand,

λmin = min
|a|=1

a′[ C ′C︸︷︷︸
=diag{ni}

+Q(t)]a

= min

[
p∑
i=1

nia
2
i + a′Q(t)a

]
≤ min
|a|=1

[nmax|a|2 + a′Q(t)a]

= nmax + min
|a|=1

a′Q(t)a

≤ nmax + λmin

Thus, for A = [C ′C +Q(t)]

κ2(A) =
λmax(A)

λmin(A)
≥ tmax

nmax + tmin

Notes

1. Thus, κ[C ′C +Q(t)] can be very large as t wanders through [0,∞)s. e.g. tmax large and other tk ≈ 0
makes κ[C ′C +Q(t)] very large.

2. In the balanced design, where C ′C = n0In, we have re-expressed the PLS estimator as a shrinkage
estimator by computing [C ′C + Q(t)]−1 algebraically. We seek an analogous strategy for all C such
that C ′C = diag{ni}.

13.3 Reparameterizing PLS Estimators in the General Unbalanced Case

m̂(t) = [C ′C +Q(t)]−1C ′y

Q(t) =
s∑

k=1

tkPk,
s∑

k=1

Pk = Ip

{Pk} are mutually orthogonal, symmetric & idempotent. t ∈ [0,∞). Let

d2
k =

1

1 + tk
, 1 ≤ k ≤ n, dk ∈ (0, 1].

This is a one-to-one reparameterization:

1− d2
k =

tk
1 + tk

tk =
1− d2

k

d2
k

Hence,

Q(t) =
s∑

k=1

tkPk =
s∑

k=1

(
1− d2

k

d2
k

)
Pk = Q−1(d)Q(1− d2)Q−1d, where

d = (d1, d2, . . . , dk)
T

1− d2 = (1− d1, 1− d2, . . . , 1− dk)T

Q−1(d) =

∞∑
k=1

d−1
k Pk = Q(d−1)
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d−1
k is positive definite because 1

dk
≥ 1. Thus,

[C ′C +Q(t)]−1 = [C ′C +Q−1(d)Q(1− d2)Q−1(d)]−1

= Q(d)[Q(d)C ′CQ(d) +Q(1− d2)]−1Q(d)

= Q(d)[Q(d)

PSD︷ ︸︸ ︷
(C ′C − Ip)Q(d)︸ ︷︷ ︸

PSD

+Ip]
−1Q(d)

using

Q(1− d2) =

s∑
k=1

(1− d2
k)Pn

=
s∑

k=1

Pk︸ ︷︷ ︸
Ip

−
s∑

k=1

d2
kPk︸ ︷︷ ︸

Q2(d)

Definition 13.5. Hypercubed

The hypercubed PLS estimators are

m̂(d) = Q(d)[Q(d)(C ′C − Ip)Q(d) + Ip]
−1Q(d)C ′y

= Q(d)[Q(d)C ′CQ(d) +Q(1− d2)]−1Q(d)C ′y

where d ∈ [0, 1]s

Theorem 13.6.

The PLS estimators are the subclass where d ∈ (0, 1]s.

13.4 Numerical Issues for Hypercubed PLS Estimators

Theorem 13.7.

κ2[Q(d)C ′CQ(d) +Q(1− d2)] ≤ nmax for d ∈ [0, 1]k

where nmax = max
1≤i≤p

ni. i.e., the matrix Q(d)C ′CQ(d) +D(1− d2) should invert stably.

13.5 Section 11-8-11: Lab 6 Comments

For parts (a)-(d), use matrix results about rank and trace.
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For parts (e)-(i), use the results from (a)-(d) to perform data analysis.

For part (h), the fourth difference matrix is

D =

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
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14 11-10-11

14.1 Penalized Least Squares

Recall:

1. y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e

2. C ′C = diag{ni}, ni ≥ 1, where C is the data-incidence matrix

3. n =
p∑
i=1

ni

4. Q(t) =
s∑

k=1

tkPk

5. Ip =
s∑

k=1

Pk, where the Pk’s are mutually orthogonal projections (e.g. ANOVA)

PLS Estimator

1.

m̂PLS(t) = arg min
m∈Rp

[
|y − Cm|2 +m′Q(t)m

]
Q(t) =

s∑
k=1

tkPk

so m′Q(t)m =
s∑

k=1

tk|Pkm|2

2.
m̂PLS(t) = [C ′C +Q(t)]−1C ′y, t ∈ [0,∞)s

14.2 Hypercubed Penalized Least Squares Estimator (HPLS)

m̂HPLS = Q(d)[Q(d)C ′CQ(d) +Q(1− d2)]−1Q(d)C ′y

= Q(d)[Q(d)(C ′C − Ip)Q(d) + Ip]
−1Q(d)C ′y, d ∈ [0, 1]s

HPLS estimators contain PLS estimates, but should promote numerical stability.

14.2.1 Numerical Conditioning of HPLS

Question: Is the matrix inversion well-conditioned?

Theorem 14.1.

κ2[Q(d)C ′CQ(d) +Q(1− d2)] ≤ nmax, nmax = max
1≤i≤p

ni, d ∈ [0, 1]s

(where d2 means coordinate-wise squaring)
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Remark 14.2.

Inversion should be stable for all d.

Proof.

κ2(A) =
λmax(A)

λmin(A)
, where A is symmetric

A = Q(d) [C ′C − Ip]︸ ︷︷ ︸
B

Q(d) + Ip

Let B = CC ′ − Ip = diag{ni − 1}.

λmax = max
|a|=1

a′Aa

= max
|a|=1

[a′Q(d)BQ(d)a+ a′a︸︷︷︸
1

]

= max
|a|=1

a′Q(d)BQ(d) + 1

Note:
|Q(d)a|2 = a′Q2(d)a = a′Q(d2)a ≤ λmax(Q(d2)) |a|2︸︷︷︸

1

= d2
max.

Hence

λmax(A) ≤ max
|b|≤1

b′Bb+ 1

= max
|b|=1

p∑
i=1

(ni − 1)b2i + 1

= (nmax − 1) + 1 = nmax

Note: λmax(A) does not depend on d!

λmin(A) = min
|a|=1

[a′ Q(d)BQ(d)︸ ︷︷ ︸
≥0 b/c

B is pos. semi-def.
b/c ni − 1

a+ a′a]

≥ 0 + 1 = 1

14.3 HPLS Estimators Include Submodel Fits

Model: y = Cm+ e.

Let lQ ⊂ {1, 2, . . . , s} and Q︸︷︷︸
p×p

=
∑
k∈lQ

Pk. Q is symmetric and idempotent and defines the submodel

m = Qβ, β ∈ Rp.

Recall: In submodel Q, the LSE of m is m̂0 = (CQ)+y.
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Theorem 14.3.

Suppose

dk =

{
1 k ∈ lQ
0 otherwise

Then
m̂HPLS(d) = (CQ)+y.

Proof.

m̂(d) = Q(d)[Q(d)C ′CQ(d) +Q(1− d)2]−1Q(d)C ′y

by the choice of d

Q(d) = Q

Q(1− d2) =

s∑
k=1

(1− dk)2Pk = Ip −Q

Q(I −Q) = 0

m̂(d) = Q[QC ′CQ︸ ︷︷ ︸
A

+ (Ip −Q)︸ ︷︷ ︸
B

]−1QC ′y

A and B are symmetric with AB = 0 (think of the midterm problem). Hence

(A+B)−1 = (A+B)+ = A+ +B+

m̂(d) = Q [(CQ)′(CQ)]+︸ ︷︷ ︸
A+

QC ′y +Q (Ip −Q)+︸ ︷︷ ︸
B+

QC ′y

= C(CQ)+y + 0 because (Ip −Q)+ = Ip −Q
= (CQ)+y by Lab 1 part l

14.4 Symmetric Linear Estimators

Linear model of full rank:
y = X︸︷︷︸

n×p

β︸︷︷︸
p×1

+e

1. Assume rank(X) = p ≤ n ⇔ full rank

2. Assume Gauss-Markov error model: the ei are i.i.d. and E(ei) = 0, Var(ei) = σ2 <∞, E[e4
i ] <∞.

Definition 14.4. Linear Estimator

A linear estimator of η = E(y) = Xβ has the form Ay, where A does not depend on y, and A is an
n× n matrix.

Loss of Ay is p−1|Ay − η|2.

Risk of Ay is R(Ay, η, σ2) = E[p−1|Ay − η|2] = p−1E[|Ay − η|2].
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Theorem 14.5.

1. The risk of Ay is

R(Ay, η, σ2) = p−1[σ2 tr(A′A) + η′(In −A)′(In −A)η]

= p−1[σ2|A|2 + |η −Aη|2]

= p−1
[
σ2 tr(A′A)︸ ︷︷ ︸

Frobenius norm

+ tr[(In −A)′(In −A)ηη′]
]

2. The oracle Ã that minimizes this risk is

Ã = In − (In + σ−2ηη′)−1

= (σ2 + |η|2)−1ηη′

Ã is a symmetric positive semi-definite n× n matrix.

3. The canonical form of Ã. Let H = X ′X, U = XH−1/2. Then

η = Uξ, ξ = H1/2β

U ′U = Ip

Ã = US̃U, S̃ = (σ2 + |ξ|2)−1ξξ′

Here S̃ is symmetric with eigenvalues in [0, 1].

Proof. (Sketch)

1.

R(Ay, η, σ2) = p−1E[|Ay − η|2] = p−1E[|A(y − η) + (In −A)η|2]

= p−1[σ2 tr(A′A) + η′(In −A)′(In −A)η︸ ︷︷ ︸
η′η−2η′Aη+η′A′Aη

]

= variance + bias

= convex functions of A

2. We use matrix derivatives to minimize the risk (c.f. Rao & Toutenberg (1995) or “Matrix Codebook”
online)

∂ tr(A′A)

∂A
= 2A

∂η′Aη

2A
= ηη′

∂η′A′Aη

∂A
= 2Aηη′

Hence,
∂R(Ay, η, σ2)

∂A
= p−1[2σ2A− 2ηη′ + 2Aηη′]
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Set ∂R(Ay,η,σ2)
∂A = 0 and solve for Ã.

Ã[σ2In + ηη′] = ηη′

Ã = ηη′(σ2In + ηη′)−1

=
ηη′

σ2

(
In +

ηη′

σ2

)−1

= W (In +W )−1, where W =
ηη′

σ2
.

Thus, Ã = In − (In +W )−1 = symmetric matrix because

In = (In +W )(In +W )−1

= (In +W )−1 +W (In +W )−1

This is the first formula for Ã. To get the second formula, we use the identity (see Schott page 10)

(In + c︸︷︷︸
n×1

d′︸︷︷︸
1×n

)−1 = In −
cd′

1 + d′c
.

Set c = d = σ−1η to get

(In + σ2ηη′) = In −
σ−2ηη′

1 + σ−2|η|2

= In − (σ2 + |η|2)−1ηη′

Thus, Ã = (σ2 + |η|2)−1ηη′, a symmetric positive semi-definite matrix.

3. Canonical form of Ã. Since η = Uξ, with U ′U = Ip,

|η|2 = ξ′U ′Uξ = |ξ|2

ηη′ = Uξξ′U ′

Ã = (σ2 + |ξ|2)−1Uξξ′U ′ = US̃U ′, S̃ = (σ2 + |ξ|2)−1ξξ′

λmin(S̃) ≥ 0 because S̃ is p.s.d.

λmax(S̃) = max
|a|=1

a′S̃a = max
|a|=1

a′ξξ′a

σ2 + |ξ|2

=

max
|a|=1

|a′ξ|2

σ2 + |ξ|2
C.S.
≤ |ξ|2

σ2 + |ξ|2
< 1

Note

(a) This motivates interest in studying symmetric linear estimates, Ay, where A = USU ′ with U con-
structed from X as discussed and S symmetric with eigenvalues in [0, 1].

(b) Symmetric linear estimators with this structure arise naturally.
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Example 14.6.

In the model y = Xβ + e, rank(X) = p ≤ n, the LSE of η = Xβ is

η̂ = U H1/2H−1H1/2︸ ︷︷ ︸
I

U ′y

= UU ′y

= U S︸︷︷︸
=Ip

U ′y

We have shrinkage when we replace eigenvalues less than 1.

Example 14.7.

PLS estimators in y = Cm+ e, where C is the data-incidence matrix, C ′C︸︷︷︸
p×p

= diag{ni}, ni ≥ 1.

Penalty matrix from earlier:

Q(t) =
s∑

k=1

tkPk, etc.

η̂PLS = C[C ′C +Q(t)]−1C ′︸ ︷︷ ︸
symmetric

y

So η̂PLS is a symmetric linear estimator.

14.4.1 Canonical Structure

Let H = C ′C, U = CH−1/2 ⇔ C = UH1/2. Then

C[C ′C +Q(t)]−1C ′ = UH1/2[H +Q(t)]−1H1/2U

= U [Ip +H−1/2Q(t)H−1/2︸ ︷︷ ︸
S(t)

]−1U ′

S(t) is symmetric, and

min
|a|=1

a′[Ip +H−1/2Q(t)H−1/2]a = smallest eigenvalue of S−1(t)

≥ 1

Thus, the larges eigenvalues of S(t) are ≤ 1. The smallest eigenvalues of S(t) are ≥ 0 because S(t) is positive
semi-definite.

14.5 Discussion

If canonical structure, we reduce numerical error.

• HPLS are numerically stable.

• HPLS has canonical form.
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15 11-15-11

15.1 Last Time

Last time: y = Xβ+e. Found oracle linear estimator Ãy that minimizes risk. Motivates symmetric linear estimators
of the form Ay, where

A = U︸︷︷︸
n×p

S︸︷︷︸
p×p

U ′︸︷︷︸
p×n

U = X(X ′X)−1/2

R(U) = R(X)

U ′U = Ip

where S is symmetric with eigenvalues in [0, 1].

15.2 Actual Examples

1. LSE of η is
η̂LS = X(X ′X)−1X ′y = UU ′y = U Ip︸︷︷︸

S

U ′y

2. PLS in y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

with penalty matrix Q(t) =
s∑

k=1

tkPk, with
s∑

k=1

Pk = Ip, tk ≥ 0, P 2
k = Pk,

PkPj = 0 if j 6= k.
η̂PLS(t) = C[C ′C +Q(t)]−1C ′y

Let H = C ′C, U = CH−1/2.

η̂PLS(t) = UH1/2[H +Q(t)]−1H1/2U ′y

= U [Ip +H−1/2Q(t)H−1/2]−1U ′y

= US(t)U ′y

with
S(t)︸︷︷︸
symm

= [Ip +H−1/2Q(t)H−1/2]−1.

Note:
a′S−1(t)a = a′[Ip +H−1/2Q(t)H−1/2︸ ︷︷ ︸

psd

]a ≥ 1 if |a| = 1,

so the eigenvalues of S−1(t) are ≥ 1 (because they are the reciprocals of the eigenvalues of S(t), which
lie in [0, 1]).

Bujua, Hastie, Tibshirani (1989) discussed through examples symmetric linear estimators.

3. Hypercubed PLS can also be put into the form US(d)U ′y, where d ∈ [0, 1]s.
PLS ⇔ HPLS when d ∈ (0, 1]s.
The eigenvalues of S(d) are in [0, 1] for d ∈ [0, 1]k.
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15.3 Risk and Estimated Risk of a Symmetric Linear Estimator

Theorem 15.1.

Model: y = Xβ + e, rank(X) = p, η = Xβ. Let A be an n× n symmetric matrix.

1. The risk of Ay as an estimator of η is

R(Ay, η, σ2) = p−1E|Ay − η|2

= p−1
[
σ2 tr(A2) + tr

(
(In −A)2ηη′

)]
= p−1[σ2|A|2 + |η −Aη|2]

2. Suppose σ̂2 is the LSE of σ2 (assume n > p). Then the estimated risk is

R̂(A) = p−1
[
σ̂2 tr(A2) + tr

(
(In −A)(yy′ − σ̂2In)

)]
(15.1)

= p−1
[
|y −Ay|2 +

(
2 tr(A)− n

)
σ̂2
]

(15.2)

is unbiased for R(Ay, η, σ2).

Proof. 1. Follows by specializing the risk of a linear estimator, using A′ = A.

2. Consider

E|y −Ay|2 = E| (In −A)︸ ︷︷ ︸
symm

y|2

= E[y′(In −A)2y]

= E tr[(In −A)2yy′]

= tr[(In −A)2 (ηη′ + σ2In)︸ ︷︷ ︸
E(yy′)

]

= tr[(In −A)2ηη′] + σ2 tr[(In −A)2]

= tr[(In −A)2ηη′] + σ2[n− 2 tr(A) + tr(A2)]

p−1E|y −Ay|2 = R(Ay, η, σ2) + (n− 2 tr(A))σ2

i.e. (15.2) is an unbiased estimator for risk. For (15.1), note that E(σ̂2) = σ2 and

E[yy′ − σ̂2In] = (ηη′ + σ2In)− σ2In = ηη′.

Note:

1. This result generalizes the Mallows (1973) argument for the estimated risk of submodel fits.

2. The Cp-criterion for η̂ = Ay is |y −Ay|2 + 2 tr(A)σ̂2

15.4 Specialization for Canonical Symmetric Linear Estimators USU ′y

Model: y = Xβ + e, rank(X) = p ≤ n. Let U (n× p) be such that R(U) = R(X) and U ′U = Ip.

η̂ = USU ′y = Ay
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where A = USU ′.

Definition 15.2. Canonical

A symmetric linear estimator Ay is canonical iff A = USU ′ (as above).

Theorem 15.3.

Suppose Ay is a canonical symmetric estimator.

1. The risk of Ay is

R(Ay, η, σ2) = p−1
[
σ2 tr(S2) + tr

(
(Ip − S)2ξξ′

)]
= p−1[σ2|S|2 + |ξ − Sξ|2]

where ξ = U ′η.

2. Suppose σ̂2 = 1
n−p |y − UU

′y|2 is the LSE of σ2 (n > p). Then

R̂(A) = p−1
[
σ̂2 tr(S2) + tr

(
(Ip − S)2(zz′ − σ̂2Ip)

)]
= p−1

[
|z − Sz|2 +

(
2 tr(S)− p

)
σ̂2
]

where z = U ′︸︷︷︸
p×n

y︸︷︷︸
n×1

is unbiased for R(Ay, ησ2).

15.5 Section 11-15-11

Construct Vd. The first d columns of Vd are the normalized orthogonal polynomials supported on 1 to p of
degrees 0 to d− 1.
v2 = poly(x, degree) → d− 1 vectors from degree 1 to d− 1

x = 1 : p
degree = d− 1
v1 = rep(1,p)/

√
p

cbind(v1, v2)
For part (c), under what condition on m in the model will lim

p→∞
E|σ̂2

H − σ2|︸ ︷︷ ︸
mean square error

= 0? Don’t need rigorous

argument, just perception.

For part (h), explain in terms of your findings. Look for a seasonal pattern and at sales on holidays.
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16 11-17-11

16.1 Comments on Lab 7

For part (c), assume that the errors are Gaussian. This simplifies things because then the z’s are Gaussian.
The estimator is clearly biased, but what is the nature of the bias and when is it manageable? When is the
estimator useful?

16.2 Symmetric Linear Estimators (Continued)

y = X︸︷︷︸
n×p

β︸︷︷︸
p×1

+e, rank(X) = p ≤ n, e strong Gauss-Markov

η̂ = Ay, where A is symmetric, is a candidate linear symmetric estimator.

We saw that the risk of Ay is

R(Ay, ησ2) = p−1[σ2 tr(A2) + tr[(In −A)2ηη′]

= p−1[σ2|A|2 + |η −Aη|2]

The estimated risk is

R̂(A) =
[
σ̂2 tr(A2) + tr

(
(In −A)(yy′ − σ̂2In)

)]
= p−1

[
|y −Ay|2 +

(
2 tr(A)− n

)
σ̂2
]

(Mallows)

where σ̂2 is the LSE of σ2 (i.e. n > p).

16.3 Canonical Symmetric Linear Estimators

Let U︸︷︷︸
n×p

be such that R(U) = R(X) and U ′U = Ip (e.g. U = X(X ′X)−1/2 OR X = U︸︷︷︸LV ′ SVD). Since

R(U) = R(X), η ∈ R(X) has the form η = Uξ for ξ ∈ Rp ⇒ ξ = U ′η.

Definition 16.1. Canonical

The symmetric linear estimator Ay is canonical iff A = USU ′ for some symmetric p × p matrix S
whose eigenvalues lie in [0, 1].
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Theorem 16.2. Simplified Risk & Estimated Risk Formulas for Canonical Symmetric Linear
Estimators

Suppose that AY is a canonical symmetric linear estimator and σ̂2 is the LSE of σ2 (n > p). Then

1.

R(Ay, η, σ2) = p−1
[
σ2 tr(S2) + tr

(
(Ip − S)2ξξ′

)]
= p−1[σ2|S|2 + |ξ − Sξ|2]

2. Also, for z = U ′y

R̂(A) = p−1
[
σ̂2 tr(S2) + tr

(
(Ip − S)2(zz′ − σ̂2Ip)

)]
= p−1

[
|z − Sz|2 +

(
2 tr(S)− p

)
σ̂2
]

is an unbiased estimator of R(Ay, η, σ2).

Proof. Second risk formula (which implies the first form):

|A|2 = tr(A2) = tr[US U ′ · U︸ ︷︷ ︸
Ip

SU ′]

= tr[S2 U ′U︸︷︷︸
Ip

] = tr(S2) = |S|2

|η −Aη| = (η −Aη)′(η −Aη) use Aη = US U ′ · U︸ ︷︷ ︸
Ip

ξ = USξ

= (Uξ − USξ)′(Uξ − USξ) = (ξ − Sξ)′ U ′U︸︷︷︸
Ip

(ξ − Sξ)

= |ξ − Sξ|2

The second estimated risk formula:

|y −Ay|2 = |UU ′y + (In − UU ′)y︸ ︷︷ ︸
y

−USU ′︸ ︷︷ ︸
A

y|2

= |UU ′y − USU ′y + (In − UU ′)y|2 = |UU ′y − US U ′y︸︷︷︸
z

|2 + |(In − UU ′)y|2 (cross-product = 0)

= |U(z − Sz)|2 + |y − UU ′y︸ ︷︷ ︸
LSE of η

|2

= |z − Sz|2 + (n− p)σ̂2 where σ̂2 = LSE of σ2

Also, (
2 tr( A︸︷︷︸

USU ′

)− n
)
σ2 =

(
2 tr(S)− n

)
σ̂2

R̂(A) = |z − Sz|2 + (�n− p)σ̂2 +
(
2 tr(S)−�n

)
σ̂2

= |z − Sz|2 +
(

tr(S)− p
)
σ̂2
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Notes

1. The S-form uses smaller p× p matrices than the n× n A-form.

2. The S-form does not identically match the A-form when σ̂2 is not the LSE of σ2.

• However, both forms of the estimated risk still converge correctly to risk if σ̂2 is suitably consistent.

3. To avoid negative estimated risks, we might also consider the modified formula

R̂+(A) = p−1
[
σ̂2 tr(S2) +

(
tr[(Ip − S)(zz′ − σ̂2Ip)]

)
+

]
Remark: feel free to use the uncorrected estimated risk formulas in the final project. Smaller is better,
even if it means negative.

16.4 Applications to PLS

16.4.1 Interpolating Among Submodel Fits (Complete Design)

Model:
y = C︸︷︷︸

n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

where C is the data-incidence matrix, C ′C = diag{ni}, ni ≥ 1. {Pk
∣∣ 1 ≤ k ≤ s} are mutually orthogonal

projections with
s∑

k=1

Pk = Ip. (e.g. ANOVA decomposition) {Pk} are symmetric & idempotent: PkPj = 0 if

j 6= k. Let

Q(t) =

s∑
k=1

tkPk, tk ≥ 0.

The candidate PLS estimator of m is

m̂PLS(t) = [C ′C +Q(t)]−1C ′y.

The hypercubed PLS estimator of m is

m̂HPLS(d) = Q(d)
[
Q(d)(C ′C − Ip)Q(d) + Ip

]−1
Q(d)C ′y, d ∈ [0, 1]s

Put H = C ′C. Let U = CH−1/2 ⇔ C = UH1/2. Then

η̂(d) = Cm̂(d) = US(d)U ′y

with S(d) = H1/2Q(d) [Q(d)(H − Ip)Q(d) + Ip]
−1Q(d)H1/2

Note:

1. When d ∈ (0, 1]s, the eigenvalues of S(d) lie in [0, 1]. Then

η̂(d) = U H1/2 [H +Q(t)]−1H1/2︸ ︷︷ ︸
S(d) in t-parameterization

Uy

2. This property is preserved if we let dk → 0.

Hence, US(d)U ′y is a canonical symmetric linear estimator for every d ∈ [0, 1]s.

The estimated risk of HPLS estimator η̂(d) (or m̂(d)) is now

R̂(d) = p−1
[
σ̂2 tr

(
S2(d)

)
+ tr

(
(Ip − S(d))2(zz′ − σ̂2Ip)

)]
= p−1

[
|z − S(d)z|2 + 2 tr

(
S(d)− p

)
σ̂2
]
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where z = U ′y, U = C (C ′C)−1/2︸ ︷︷ ︸
H−1/2

, σ̂2 = LSE of σ2 if n > p or another consistent estimator of σ2. We now

minimize estimated risk by choice of d ∈ [0, 1]s.

Note

1. If we restrict each dk to be either 0 or 1, this method identifies the submodel fit with smallest estimated
risk.

2. This is computationally efficient because all of these submodel fits are treated simultaneously.

3. Moreover, minimizing estimated risk over all d ∈ [0, 1]s may be reduce risk substantially.

16.4.2 Ordinary PLS with One Covariate (Complete Design)

Model:

y = C︸︷︷︸
n×p

m︸︷︷︸
p×1

+e, C ′C = diag{ni}, ni ≥ 1

mi = µ(xi)

WLOG, assume x1 < x2 < · · · < xp are distinct values of a covariate. µ is an unknown function. Either

1. The covariate is ordinal: the values and order of the covariate matter. Example: Canadian earnings
data.

2. The covariate is nominal: it is just a label; permutation of labels is harmless. Example: rat litter data.

PLS candidate estimators – general strategy

Let A︸︷︷︸
?×p

be an annihilator matrix: Au = 0 for u︸︷︷︸
p×1

= p−1/2(1, 1, . . . , 1)′. Let

m̂(ν) = arg min
m∈Rp

[
|y − Cm|2 + ν|Am|2

]
= arg min

m∈Rp

|y − Cm|2 + νm′ B︸︷︷︸
A′A

m


From earlier, we know that

m̂(ν) = [C ′C + νB]−1C ′y

(In Lab 6, A = 4th difference matrix.) Can we hypercube the parameterization to stabilize computation of
m̂(ν) for large ν?

Since B︸︷︷︸
p×p

= A′A is positive semi-definite, it has spectral representation

B =

s∑
k=1

λkPk

where Pk is the eigenprojection for eigenvalue λk. Order the eigenvalues as

0 ≤ λ1 < λ2 < · · · < λs, s ≤ p(b/c of possible multiplicities)

PkPj = 0 if j 6= k. P 2
k = Pk.

s∑
k=1

Pk = Ip. Thus,

νB =

s∑
k=1

(νλk)Pk =

s∑
k=1

tkQk
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where t = (νλ1, νλ2, . . . , νλs). i.e. t ∈ something = {(νλ1, νλ2, . . . , νλs)
∣∣ ν ≥ 0} ⊂ [0,∞)s. The candidate

PLS estimators amount to the estimators

m̂(t) = [C ′C +Q(t)]−1C ′y for t ∈ something.

The hypercubed PLS estimators are:

m̂(d) = Q(d)
[
Q(d)C ′CQ(d) +Q(1− d2)

]
Q(d)C ′y

= Q(d)
[
Q(d)(C ′C − Ip)Q(d) + Ip

]−1
Q(d)C ′y

where d2
i = 1

1+ti
, d ∈ D is a restricted subset of [0, 1]s. Let

D0 = {(1 + νλ1)−1/2, (1 + νλ2)−1/2, . . . , (1 + νλs)
−1/2}

Cases:

1. Suppose λi = 0. Then D = D0 ∪ (1, 0, 0, . . . , 0). ← Adds the fit to the submodel m = P1β, β ∈ Rp, to
the candidate class.

2. Suppose λ1 > 0. Then D = D0 ∪ (0, 0, . . . , 0). (Think of Lab 4.)

Numerical Stability when tk = νλk

From earlier, the condition number for PLS satisfies

κ2[C ′C +Q(t)] ≥ νλmax

nmax + νλmin

which can be large; for example, if λmin = 0 and ν is large. The condition number for HPLS satisfies

κ2[Q(d)C ′CQ(d) +Q(1− d2)] ≤ nmax

which does not depend on ν.
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17 11-22-11

17.1 Simple PLS for One Covariate ⇔ One-Way Layout

Candidate PLS:

m̂(ν) = arg min
m∈Rp

[|y − Cm|2 + ν|Am|2], ν ≥ 0

= [C ′C + νm′Bm]

where B = A′A, A is an annihilialtor: Au = 0, u = p−1/2(1, 1, . . . , 1)′. Candidate HPLS extension...

17.1.1 Constructions of A

The rows of A are contrasts (meaning they sum up to zero). m = µ(xi), 1 ≤ i ≤ p. x1 < x2 < · · · < xp are
distinct values of the covariate. µ is unknown.

1. Ordinal Covariate. Suppose the {xi} are equally-spaced. To penalize departures in m from a local
polynomial of degree h0 − 1 in the {xi}, we take A (?× p) to be the h0th difference matrix.

Explicitly, define

∆︸︷︷︸
(g−1)×g

(g) = {δu,w}, δu,u = 1, δu,u+1 = −1, all other δu,w = 0

=


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −1


Define recursively

1st difference D(1, p)︸ ︷︷ ︸
(p−1)×p

= ∆(p)

2nd difference D(2, p)︸ ︷︷ ︸
(p−2)×p

= ∆(p− 1)D(1, p)

...

hth difference D(h, p)︸ ︷︷ ︸
(p−h+1)×p

= ∆(p− h+ 1)D(h− 1, p), 2 ≤ h ≤ p− 1

Set
A︸︷︷︸

(p−h0)×p

= D(h0, p)

to achieve the goal of penalizing departures from a local polynomial of degree h0 − 1.

Let c = (x1, x2, . . . , xp)
′. Write ch = (xh1 , x

h
2 , . . . , x

h
p)′. Then Ach = 0 for 0 ≤ h ≤ h0 − 1. u ↔ c0.

More generally, if the elements of c (the distinct covariate values) are not equally spaced, we have to
generalize the concept of differencing. We construct A to satisfy three conditions:

(i) For every possible i, the elements in row i of A that are not in columns i, i+1, . . . , i+h0 are zero.
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(ii) Ach = 0 for 0 ≤ h ≤ h0 − 1.

(iii) Each row vector in A has length 1.

These 3 conditions are achieved by putting the nonzero elements in row i to be the basis vector of degree
h0 in the orthonormal polynomial (MATLAB: orth) on the h0 + 1 design points (xi, xi+1, . . . , xi+h0).

Note: When the {xi} are equally spaced, this general construction of A yields a multiple of D(h0, p).

2. Nominal Covariate. The values of a nominal covariate are merely labels that can be permuted without
loss of information. (e.g. one-way ANOVA.) The candidate PLS estimators should also be invariant
under permutation of nominal covariates. This motivates setting A = Ip−uu′ ≡ H (from the ANOVA
discussion), with u = p−1/2(1, 1, . . . , 1)′. (Remark: think of the final project as an extension of this to
two-way ANOVA.)

17.2 Simple PLS with Two Covariates ⇔ Two-Way Layout

(complete design)
Model: y = C︸︷︷︸

n×p

m︸︷︷︸
p×1

+e

Covariate k (k = 1, 2) has pk distinct values, xk1 < xk2 < · · · < xk,pk .
Let I be all pairs i = (i1, i2) such that 1 ≤ ik ≤ pk for k = 1, 2. WLOG, order the p = p1p2 elements of I
in mirrored dictionary order. Let xi = (x1i1 , x2i2).

Assume that m is such that mi = µ(xi), where µ is unknown.

17.3 Comments on the Final Project

If you get stuck, look at what we did for the rat litter data and the hypercubed LS and how setting d = 0
or d = 1 leads to submodel fits.

Each part gets equal value, 9 points (except the last part, which gets 8).

17.4 Section 11-22-11

17.4.1 Lab 6 Comments

(b)

X(d) =


1 x1 x2

1 · · · xd1
1 x2 x2

2 · · · xd2
...

...
...

. . .
...

1 xp x2
p · · · xdp


p×(d+1)

rank(X(d))
?
=d + 1. If rank(X(d)) < d + 1, then there exists γ ∈ Rd+1 such that X(d)γ = 0. ⇒

polynomial
d∑
j=0

γjx
j = 0 has p roots, x1, . . . , xp. But it should have at most d roots ⇒⇐.
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(d)

min
m
|y − Cm|2 + λ|Dm|2︸ ︷︷ ︸

S(m)

S(m) = y′y − 2y′Cm+m′(C ′C + λD′D)m

∂S(m)

∂m
= −2C ′y + 2(C ′C + λD′D)m = 0

C ′C︸︷︷︸
pos. def.

+ λ︸︷︷︸
≥0

D′D︸︷︷︸
pos. def.

is invertible.

17.4.2 Lab 7 Comments

(c) V4 = [V1:79 V80:p], z = [z′1:79 z
′
80:p]

′. Then

p∑
i=80

z2
i = |z80:p|2 = |V ′80:py|2

E

(
p∑

i=80

z2
i

)
= E|V ′80:py|2 = E(y′V80:pV

′
80:p y︸︷︷︸

m+e

)

= m′V80:pV
′

80:pm+ E(e′V80:pV
′

80:pe)

E(e′V80:pV
′

80:pe) = E(tr(e′V80:pV
′

80:pe)) = tr(E(ee′)︸ ︷︷ ︸
σ2I

V80:pV
′

80:p)

= σ2 tr(V ′80:pV80:p) = (p− 79)σ2

⇒ E(σ̂2
H) = σ2 +

m′V80:pV
′

80:pm

p− 79

Claim: when lim
p→∞

m′V80:pV ′80:pm

p−79 = 0, we have E|σ̂2
H − σ2| → 0.

Proof. First, Cov(z80:p) = Cov(V ′80:py) = σ2Ip−79. This means the zi’s are uncorrelated, so

Var(σ̂2
H) =

∑p
i=80 Var(z2

i )

(p− 79)2
≤ k

p− 79
→ 0

where k = max
i

Var(z2
i ) <∞ because of the finite fourth moment assumption

Var(x) = Ex2 − (Ex)2 = E|x|2 − (Ex)2

⇒ E|σ̂2
H − σ2| = (E(σ̂2

H − σ2))2︸ ︷︷ ︸
→0

+ Var(σ̂2
H)︸ ︷︷ ︸

→0

So E|σ̂2
H − σ2| is satisfied.
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18 11-29-11

18.1 (Simple) PLS with 2 Covariates

Model:
y︸︷︷︸
n×1

= C︸︷︷︸
n×p

m︸︷︷︸
p×1

+ e︸︷︷︸
n×1

, rank(C) = p, C ′C = diag{ni}

Covariate k (k = 1, 2) takes on pk distinct values, xk1 < xk2 < · · · < xkpk . Let I = all pairs (i1, i2) such
that 1 ≤ ik ≤ pk, k = 1, 2. WLOG, order the p = p1p2 elements of I in mirror dictionary order. Let
xi = (x1,i1 , x2,i2) for i ∈ I. Then

m︸︷︷︸
p×1

= (m1,m2, . . . ,mp)
′

where mi = µ(xi), µ is unknown.

Candidate PLS Estimators
Let Ak be an annihilator for covariate k:

Akuk = 0, uk︸︷︷︸
pk×1

= p
−1/2
k (1, 1, . . . , 1)′, k = 1, 2

Let
B1 = u2u

′
2 ⊗A1A

′
1, B2 = A2A

′
2 ⊗ u1u

′
1, B12 = A2A

′
2 ⊗A1A

′
1

Let ν = (ν1, ν2, ν12) ∈ [0,∞)3. Define

m̂(ν) = arg min
m∈Rp

[
|y − Cm|2 + ν1m

′B1m+ ν2m
′B2m+ ν12m

′B12m
]

=

C ′C + ν1B1 + ν2B2 + ν12B12︸ ︷︷ ︸
Q(ν)


−1

C ′y

• Candidate PLS estimators

• Choose ν1, ν2, ν12 to minimize estimated risk

18.1.1 Spectral Representation of Q(ν)

Spectral representation:

A1A
′
1 =

s1∑
a=1

λ1aP1a, where P11 = u1u
′
1, 0 = λ11 ≤ λ12 ≤ · · · ≤ λ1s1

A2A
′
2 =

s2∑
b=1

λ2bP2b, where P21 = u2u
′
2, 0 = λ21 ≤ λ22 ≤ · · · ≤ λ2s2

Let

δjk =

{
1 j = k
0 j 6= k
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Then

B1 = P21︸︷︷︸
u2u′2

⊗A1A
′
1

=

s1∑
a=1

λ1a(P21 ⊗ P1a)

=

s1∑
a=1

s2∑
b=1

λ1aδb1(P2b ⊗ P1a)

B2 =

s2∑
b=1

λ2b(P2b ⊗ P11)

=

s1∑
a=1

s2∑
b=1

δa1λ2b(P2b ⊗ P1a)

B12 = A2A
′
2 ⊗A1A

′
1

=

s1∑
a=1

s2∑
b=1

λ1aλ2b(P2b ⊗ P1b)

Hence,

Q(ν) = ν1B1 + ν2B2 + ν12B12 =

s1∑
a=1

s2∑
b=1

tab(P2b ⊗ P1a)︸ ︷︷ ︸
spectral rep. of Q(ν)

where
tab = tab(ν) = ν1λ1aδb1 + ν2δa1λ2b + ν12λ1aλ1b

So tab ∈ [0,∞)s1s2 , i.e. tab ∈ T ⊂ [0,∞)s1s2 . Continue much as for 1 covariate.

18.2 Sketch of Supporting Asymptotics

(c.f. Beran (2007) JSPI)

Model:
y = X︸︷︷︸

n×p

β︸︷︷︸
p×1

+e, rank(X) = p ≤ n

e satisfies strong Gauss-Markov. Let

H = X ′X, U = XH−1/2 ⇒ U ′U = Ip

The candidate estimator is
η̂(t) = US(t)U ′y

(this is a symmetric linear estimator in canonical form) t ∈ [0, 1]s, or more generally t ∈ T is a closed subset
of [0, 1]s. Let

z︸︷︷︸
p×1

= U ′y

Then E(z) = ξ = U ′n, Cov(z) = σ2Ip.
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Loss:

L(η̂(t), η) = p−1|η̂(t)− η|2

= p−1|US(t)z − Uξ︸︷︷︸
η

|2

= p−1|S(t)z − ξ|2

Let T (t) = S2(t), T (t) = [Ip − S(t)]2.

Risk:

R(η̂(t), η, σ2) = EL(η̂(t), η)

= p−1 tr
[
σ2T (t) + T (t)ξξ′

]
Let σ̂2 be an L1-consistent estimator of σ2 as p→∞. Estimate ξξ′ by zz′ − σ̂2Ip. The estimated risk is

r̂(t) = p−1 tr
[
σ̂2T (t) + T (t)(zz′ − σ̂2Ip)

]
.

18.3 Assumptions for the Asymptotes

1. T = [0, 1]s. The symmetric matrices {S(t)
∣∣ t ∈ T } satisfy

sup
p

sup
t∈T
|S(t)|sp <∞

(|B|sp = sup
|x|6=0

|Bx|Euclidean

|x| .) S(t) is continuous on T and is differentiable on the interior of T with partial

derivatives ∇iS(t) = ∂S(t)
∂ti

, 1 ≤ i ≤ s.

2. The strong Gauss-Markov model holds.

3. Under the strong Gauss-Markov model,

lim
p→∞

sup
p−1|η|2≤a

E|σ̂2 − σ2| = 0

for every finite a > 0 and σ2 > 0.

Theorem 18.1.

Suppose Assumptions 1-3 hold. Let W (t) be either the loss L(η̂(t), η) or the estimated risk r̂(t) of
η̂(t). Then for all finite a > 0 and σ2 > 0,

lim
p→∞

sup
p−1|η|2≤a

E
[
sup
t∈T
|W (t)− r(t)|

]
= 0

where r(t) = R(η̂(t), η, σ2).

100



19 12-1-11

19.1 Asymptotics (Continued)

Theorem 19.1.

y = Xβ + e, η̂(t) = US(t)U ′y

Suppose Assumptions 1 to 3 hold. Let W (t) denote either the loss L(η̂(t), η) or the estimated risk
r̂(t) of η̂(t). Then for every finite a > 0 and σ2 > 0,

lim
p→∞

sup
p−1|η|2≤a

E
[
sup
t∈T
|W (t)− r(t)|

]
= 0

where r(t) = R(η̂(t), η, σ2) = risk of η̂(t). η = Ey = Xβ, |η|2 = β′X ′Xβ = |Xβ|2.

Proof. (Steps)

1. Pointwise convergence of W (t)− r(t) p−→ 0.

2. Show sup
t∈T
|W (t)− r(t)| p−→ 0. Uses weak convergence in C[0, 1]s.

3. Strengthen this to E sup
t∈T
|W (t)− r(t)| → 0 (uniform integrability).

Theorem 19.2.

Let t̂ minimize the estimated risk r̂(t), and let t̃ minimize the risk r(t) = R(η̂(t), η, σ2). Suppose
Assumptions 1 to 3 hold. Then for every finite a > 0 and σ2 > 0,

lim
p→∞

sup
p−1|η|2≤a

|R(η̂(t̂), η, σ2)− r(t̃)| = 0

where t̂ = arg min
t∈T

r̂(t), t̃ = arg min
t∈T

r(t).

Moreover, for V equal to either the loss L(η̂(t̂), η) or the risk R(η̂(t̂), η, σ2),

lim
p→∞

sup
p−1|η|2≤0

E|V − r̂(t̂)| = 0.

where

r̂(t̂) = min
t∈T

r̂(t)

= estimated risk of the candidate estimator with smallest estimated risk
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19.2 Summary

Theorem 19.1: The estimated risk is a function is a trustworthy approximation to the true risk function
over t ∈ T .

Theorem 19.2: (follows from Theorem 19.1) Hence

1. The risk of the adaptive estimator η̂(t̂) converges to the risk of the best estimator in the candidate
class.

2. r̂(t̂) converges to this risk.

19.3 Statistics on Manifolds

Prominent researcher: Victor Patrangenara
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