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1 9-22-11

1.1 Organizational Info
e TA’s Office Hours: Mondays 11-12, Wednesdays 10-11 at MSB 1117
e Office hours: Tues & Thurs 9-10 in MSB 4224

e First discussion section is on 10/4.

No text (because nobody has written one).
e Midterm is theory.
e 7 labs = combination of theory and practice.

e Course website: http://www.stat.ucdavis.edu/~beran/s232a.html

1.2 Singular Value Decomposition and Moore-Penrose Pseudoinverse

Theorem 1.1. SVD in reduced form

Let A be an m x n matrix of rank » < min(m,n). Then

A= U L V
— S~

mXr rXr rxXn

where U'U = V'V = I, and L = diag{l;}, Iy > 1y > ...1, > 0.

Remark 1 about SVD

IfU = (uj ug ... u,), where the u; are m x 1, and V = (v1 vy ... v,) where the v; are n x 1,

~—~

mXx1 1xn

T
/
=1

This says that the SVD is not a unique representation.

Remark 2 about SVD

U,V are not unique.

Remark 3 about SVD

There are numerically stable algorithms for the SVD. See Matrix Computations by Golub and Van
Loan.



http://www.stat.ucdavis.edu/~beran/s232a.html

Remark 4 about SVD

We have software implementations of these stable algorithms in R, Matlab, etc.

Definition 1.6. Generalized Inverse

Let A be any m x n matrix. A generalized inverse of A is any matrix A~ such that AA~A = A.

Remarks about the generalized inverse

1. A may have many generalized inverses.

2. If A is square and of full rank (i.e. invertible), then A~! is the unique generalized inverse.

Theorem 1.8. Moore-Penrose Pseudoinverse

Let A be any m x n matrix. Then there exists a unique matrix A™ (n x m) satisfying the following
four properties:

1. AATA = A (generalized inverse property)

2. ATAAT = AT (mirror of the generalized inverse property)

3. AT A is symmetric

4. AAT is symmetric

Proof. Existence of A*:

SVD of A:
A= U L V.
N~
mXr rXr rXn
Define
At= v L7t U .
~— ==~
nXxXr rXr rxXm
Then
AATA=ULV' - VLU - ULV =ULV' = A
AYAAY = VL WU - ULV - VLTWU' = VLU = AT
AtA=vL U - uLv =vv’
AAY =ULV' - VLU =UU’
Uniqueness:

Let B be any m x n matrix with the Moore-Penrose pseudoinverse properties. Thus, we have ABA =



A, BAB = B, BA and AB are symmetric. We want to show B = AT,

ATA = AY(ABA) = (AT A) (BA) = A/(AT) - A'B'
———

symm symm
= (AATA)YB = A'B' = BA
AAT = (ABA)AT = (AB) (AA") = B'A/(AT)' A’ = B' (AA* A)
N —— N—_——

symm symm A
=B'A'= AB
B=B AB = BA At = ATAAT = AT
~~
=AA+ =AtA

Thus, AT is unique.

Construction of A"

Ideas:

1. Use the SVD and AT = VL~1U’

e You must typically threshold small [; (set them to zero)
2. Use standard package functions.

e In R, ginv(-) in library(MASS).

e In Matlab, pinv

1.3 Solving Linear Equations

We are trying to solve

A x =_b .
N N~ ~—
mXn nx1 mx1

where A, b are given and x is to be found (if it exists).

Definition 1.10. Consistent, Solution

The equation Az = b is consistent iff there exists a solution xg such that Axg = b. Note: the
solution is not necessarily unique.

Consistency is equivalent to b € R(A) (range space of A). The range is the subspace spanned by
the columns of A.




Theorem 1.12.

The equation Ax = b is consistent iff AATH = b.

Proof. Suppose the equation is consistent with solution xg. Then

b= Aﬂ?o
AATY = AAT Azg = Axg = b.

Conversely, suppose AATb = b. Let g = ATh. Then
Azg=AATb =0

So xg is a solution. O

The previous theorem is true with any pseudoinverse.

Theorem 1.14.

The solutions to the consistent equation Ax = b are of the form

— AT _ AT n
xz(c)= A" b 1 +(L, — A" A)c, ceR (1.1)
nx1 nxXm mx

Proof. From the previous theorem, consistency entails that AA*Th = b. Then

Azx(c) = AATb+ (A — AAT A)c
A
=b.

i.e. all such z(c) solve the equation.

Conversely, suppose ¢ is any solution: Azg = b. Then AT Azg = ATb. Hence, plugging into (1.1) we get
that

a(xo) = ATb+ (I, — AT A)zg = ATb+ o — AT Az
Atb

:aj‘o



Theorem 1.15.

The particular solution z(0) = A™b to the consistent equation Az = b has the smallest Euclidean
norm among all solutions. That is, it is the solution closest to the origin.

Definition 1.16. Fuclidean Norm

Let z = (21,22, ...,2n). The Euclidean norm is

n
]2\2 =2'z= sz
i=1

Proof.

z(c)]* = [ATb+ (I, — AT A)cf?
= (Atb+ (I, — AT A)e) (ATb + (I, — A'A)c)
= A D2 4 |(I, — ATA)c]? + (ATD) (I, — A A)c) + (I, — AT A)e) ATb
= |ATB)? + (I, — AT A)ef* +2[(I, — ATA))ATD
cross-product
cross-product = ¢/ (I,, — ATA)ATb = /(AT — ATAAT)b=0
|z(c)]* > |ATD?

1.4 General Linear Model

Definition 1.17. General Linear Model

= X k(X)=r<p<

Y 8 +_ e | rank(X)=r<p<n
nx1 nXp px1 nx1

y is the observation vector (y1,y2,...,yn) .

f is the regression coefficients (831, B2, ..., )’
X is the design matrix {x;;}.
e is the error vector (e1,eg,...,e,) .




Note that y = X3 + e ca be written as

p
yizzxzjﬁj+ei, 1<i<n.
j=1

Standard Probability Models for e

1. Gaussian (or Normal) error model. The {e;} are i.i.d. N(0,0?%) random variables < e,x1 ~
N(0,0%1,), 0 < 0% < 0
2. Gauss-Markov model. E(e) = 0, Cov(e) = 021, 0 < 02 < 00

3. Strong Gauss-Markov model. The {e;} are i.i.d. random variables with E(e;) = 0, Var(e;) =
0?2, 0 < o? < oo, E(e}) < 00

These models support the study of statistical properties of estimators for 3, o2.

1.5 Least Squares Estimation of

We have our model
y=Xp+e.
Ideas: We want to solve this equation approximately. “The” least squares estimator B of [/ minimizes

ly — X 3] over all possible 3 € RP.
Questions: existence and uniqueness of (.

Aside on Matrix Derivatives

Suppose [ is a real-valued function of some matrix y,xn = {vi;}. That is, f : C"™*" — R. We
define the partial derivative matrix

af(y) {Gf (y) }

Oy yij
ofty) ... 91y)
Y11 OY1n
ofw) ... 05
6ym1 aymn
In particular, when Y;,x1 = y (a vector),
(a) a(g;y) = a(g;a) = a for every a € C"™*!
a /
(b) 2 — 2y
(c) %ﬁy) = (A+ Ay, where A € C™*™ = 2Ay if A is symmetric




by part (a) from above.

Reference Book

H. Liitkepohl, Handbook of Matrices

Least Squares Criterion

T(B)=ly—XBI*=(y—XB)(y— XB)
=yy+ /X' XB—-24/Xp

From calculus, a necessary condition for a minimizer/maximizer of 7'(3) is that

o)
op
Using the matrix results we have, we see that
(P’ X'Xp) ,
—— = =2X'X
ap p
a(y/X/B) N v
T (B) _ / _ /
a5 2X'Xp—-2X'p

Thus, X’ X3 = X'y is a necessary condition on § for minimizing 7'(53).

Definition 1.24. Normal Equation

The equation X'X 3 = X'y is the normal equation for least squares estimation of 3 in the linear
model y = X5 +e.

Questions
1. Consistency of the normal equation? (Yes)

2. Solution set?

10




3. Do we have minimizers? (Yes)

11



2 9-27-11

2.1 LSE’s and the Normal Equation

Proposition 2.1. Basic Facts € Inequalities

rank(AB) < min(rank(A), rank(B))
tr(AB) = tr(BA)
tr(A+ B) = tr(A) + tr(B)

A symmetric, idempotent matrix is an orthogonal projection, e.g. AAT, ATA.

Definition 2.2. Least Squares Estimator (LSE)

Model
= X +_ e, <n, r=rank(X) <
y B+, p (X)<p
nx1 nXp px1 nx1

T(m) =y — X[

Least Squares Estimator = arg min T'(m)
meRP

Necessary condition: ?}% =0+ X'XB8=Xy.

Definition 2.3. Normal Equation

The normal equation is
X'XB=Xy

for the LSE of 3 in the model y = X5 + e.
Note: rank(X'X) = rank(X) =r < p.

Theorem 2.4.

1. |y — Xp|? is minimized of 8 € R? by any solution to the normal equation.

2.1=X B has the same value for every solution B to the normal equation.

12




Proof. 1. Let /3 be a solution: X’X/3 = X'y. Then

ly = XBI* = (y — XB)'(y — XB)
= [w-xB)+ x(3-8)] [w- X3+ x(3-B)
=y — XB> + (8- BYX'X(B—B) +2(8 - B) X'(y -~ XB)
—_——
=0 (Normal eq’'n)
= ly— XBP+X(B-p)
> |y — XBI?
Thus, 3 minimizes T(3).
2. Suppose 31, Bg both solve the normal equation.
1 XP1— XBof” = (XB1 — X)) (X1 — X o)
= (b1 — Bo) X' (X1 — X o)
= (B1 = B2)(X'X By — X'X )
~—— ~——

=y =y
=0

Consistency of the normal equation

When is the normal equation consistent?

Geometrical heuristic: Let R(X) = range space of X = { X _a a € RP} = subspace of RP

nxp px1
spanned by the columns of X.

Geometry says that y — X B L every vector in R(X)
Sy—X0 L every column of X
< X'y=X'X3.

This tells us that a solution (or solutions) exist, but it does not tell us how to find it.

Theorem 2.6. Algebraic Analysis of the Normal Equation

The normal equation X’ X3 = X'y is equivalent to the equation

Xp=XX"y.

13



Proof.

X'XB=Xy
(XT)'X' Xp= (XN)X' y
N—_—— N—_——
(XX+)=XX+ (XX+)=XX+
XXtTXpB=XX"y
X
XB=XX"y

Conversely,

XB=XXTy
X'XB=X'XXTy
= X'"(X1)'X"y
— (XXHX)y
= X'y

Theorem 2.7.

The normal equation is consistent and the LSEs of 3, i.e. the set of solutions of the normal equation,
are
Ble)=XTy+ (I, — XTX)c, c € RP.

The LSE of minimum Euclidean norm is
B0) = Xy.

ii=XBc)=XXtyVceRP.

Proof. Consistency: X8 = X Xy has solution 3y = X Ty. The solution set is

Ble)=XHXXty) 4+ (I, — Xt X)e, ceRP
= Xty4+ (I, - Xt X)e

/3(0) is the solution of minimum norm (see result from previous class). Finally,

0= X0(c)
=XXty+ (X - XXTX)c
X
=XX"Ty

14



1. The LSEs coincide with the solutions to X3 = y when the latter equation is consistent (it
is usually not). That is, least squares generalizes the problem of solving consistent linear
equations.

2. An alternative proof of the theorem using

X'X 8 =Xy
D s S
A4 X b

This is consistent iff

which is true (use SVD of X). The solutions are
Blo) = (X'X)* X'y + I, - (X'X) (X'X)]e,  ceRr
=XTy+ (I, — XTX)e
N Y——

Lab 1 use SVD

Theorem 2.9. Uniqueness of the Normal Equation Solution

X e C™P, rank(X)=r<p<n

The normal equation has a unique solution iff rank(X) = p.

Proof. The solution set 3(c) = Xty + (I, — X X)c is constant as a function of ¢ if 5(c) = 3(0) for all
This means that

(I,—XTX)e=0 VceR"
(I, - X*X) =0
X*tX =1,
rank(X) = rank(X T X) = rank(I,) = p

C.

From linear algebra, rank(X’X) = rank(X) = p, so (X'X)! exists and (X'X)" = (X’X)~!. Hence,

B — B(O) — X+y — (X’X)+X/y — (X’X)_lX/y.

2.2 Linear Parametric Functions of

Consider

b= B,
1xp px1

where ) is specified. The LSEs of of ¢ = X3 are

P(e) =NBle),  ceR
Ble) = Xty + (I, - X X)e

15
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For which A € RP is ¢)(c) uniquely defined?

Theorem 2.10.

The following are equivalent:

1. The LSEs 9(c¢) = N3(c), ¢ € RP, of ¢ = X3 are all equal to N Xty = 4)(0).

2. XTX A=A NXTX =)

3. A=X'a+ N =dX for some a € R"

4. = Np =dXp for all B € RP and some a € R". Thus, 1 is a linear function of n = XJ.

Proof. 1 & 2:
Pe) = NXTy+ NI, - XtX)e VceRP
= 9(0)
N(I,—XTX)e=0 VYceR?
N(, - XTX)=0
NXTX =X
2& 3

If NV = ¥XTX then N = d’X with ¢ = XXT. Conversely, if ' = a’X for some a € R" then VXX =
dXXTX =dX =M\

3= 4.

Obvious. O

Comments on previous proof

1. Criterion 2 can be checked (approximately) by a computer.

2. If rank(X) = p, then (X’X)~! exists, Xt = (X’X)"'X’, and the conditions hold for every
A €RP.

3. Later we will link this theorem to the theory of unbiased linear estimation of 1) = N§.

2.3 Polynomial Regression with One Covariate

General one-way layout model on means:

Yij = My + €45, 1<i<p, 1<j<n
i labels {m; ‘ 1<i<p}

7 labels replications
Yy = {{yw ‘ 1<5< ni}, 1< < p} = dictionary order

16



Vectorize:

y={{y;j | 1<j<ni}, 1<i<p}= dictionary order

P
n= Z n; = total sample size

i=1
Let
1 0 0
:(n1 total) ; 0
1 0 0
0 1 0
C = : (n2 total) 0 = data-incidence matrix
~~ 0 1 0
nxp )
0 0 e 1
0 0 -+« i(n, total)
0 0 . 1
The model says y = _C m +_e .
nx1 nxXp pxl1 nx1

e={{e; [ 1<j<ni},1<i<p}
Note:
1. Columns of C are orthogonal, or rank(C) = p
2. C'C = diag{ni,na,...,np}

With no further information, this model is a one-way layout in which ¢ labels the p factor levels. The LSE
of m is

= (C'C)"'C"y
px1
= (y17y27 cee 7yp)/

where

1 &
Yi. = nj E 11/7;3'-
]:

More generally:
Suppose each m; is a function of observed/known covariate with distinct values x1,z2, ..., zp:

mi = p(z;), 1<i<p.

Here the function p may be specified (at least in part) or completely unknown.

17



1 unknown

Puts no restrictions on m;, so previous analysis pertains:

m=(yi,...,Yp)-

2.4 Polynomial Regression

We postulate

d
w(x) = Z Brz*~1 = polynomial of degree d — 1 with d < p.
k=1
The {8k | 1 < k < d} are unknown real values. The model is that
i)+ eij

k—1 »
6kxi +€4;

Yij = i
d
=1

—_——
=m;
We vectorize:
Let
1 x a2 Ty
2 d—1 B
. 1 zy x5 Ty 5 _
= 2 ' , =
pXxd 1 d—1 dx1 ,Bd
a:'p xp o .. wp
The polynomial model says that
= C F e
\ Y P NN 6 ,+\,./
nx1 nXp pxd gx1 nx1

For d < p < n, rank(F') = rank(CF) = d.
Implication: Design matrix X = C'F' has rank d

B=(X'X)"'X"y

18



3 9-29-11

3.1 Announcement

TA Office Hours: Monday 11-12, Wednesday 1-2

3.2 Polynomial Regression (Continued)

Polynomial Regression

General Model:

y = C m +_e
. A N S S
nx1 nxXp mx1 nx1

where C' = data-incidence matrix.

General One-Way Layout: m € RP

d
Polynomial Submodels: m; = > kaf_l, 1<i<p, d<p + m=Fy8, =51 - Ba),
k=1

1 a2 a2 x‘li_l
Fd = . . :
S o
px1 Iz z, -+ 1z
The x1,x9,...,x, are distinct.
Theorem 3.2.
For d < p, rank(Fy) = d = rank(CFy)
Proof. Suppose that rank(F;) < d. Then
Fd c =0
~—"
de dx1
for some ¢ € RY, ¢ = (c; --- ¢4)’. Equivalently,

d
chxf_lzo for1<i<p
k=1

d
Thus, equation ) cxz® 1 = 0 has p distinct roots z1, x9, . .. ,Tp. =< because d — 1 < d < p. Hence,
k=1

rank(Fy) = d.

rank(CFy) < rank(Fy) =d
rank(Fy) = rank [(C'C)™'C’ - OFy] < rank(CFy) (rank(C) = p)
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Hence, rank(C'Fy) = rank(Fy).

1. F, (p x p) has rank p. Thus, R(F)) = RP (R = range space).
If z € RP, then z = Fpa for a = F, 'z, so RP C R(F,). Also R(F,) = RP.
This is telling us that the polynomial submodel of degree p—1 is equivalent to the model where
m € RP.
2. More generally, R(F1) C R(F2) C --- C R(F),) =RP.
The polynomial regression submodels are

m € R(F1), m € R(F3), ---, meR(Fp):R”

constant line one-way layout

3. We have the model y = CFyf + e, with rank(CFy;) = d, so X = CFy has full rank. So the
LSE of 8 is uniquely 3 = (F "C'CFy)~'F)C’y. This is mathematically correct but numerically
unstable. The Moore-Penrose version works better: § = (CF;)*y. The SVD formula is even
more accurate: B = UU'y, where CFy; = ULV’'. Main point: there are varying degrees of
numerical instability when doing these fits.

3.3 Statistical Analysis under Random Error Models

Definition 3.4. Linear Estimability Model, Gauss-Markov Error Model

Linear Estimability Model:

Gauss-Markov Error Model: e is a random vector such that E(e) = 0, Cov(e) = 021, 0 < 02 < oo.

Definition 3.5. Linear Estimable, Unbiased Estimator

A linear parametric function ¢ = X S is linearly estimable if there exists a € R™ such that
N~

Ixp px1

= a'y is an unbiased estimator of ¥: E(y) = N3 =19 V 8 € RP.
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Theorem 3.6.

The following are equivalent:

1 = N3 is linearly estimable

. The LSEs ¢(c) = N3(c), ¢ € R™, are all equal to i) = X' Xty
CXTXA A=A NXTX =X

. A=X'a+ N =dX for some a € R"

Proof. From last time, we know that 2, 3, & 4 are equivalent. So it suffices to verify that 1 <> 4.

Linear estimability gives us that there exists a € R™ such that E(a’y) = N8V 8 € RP. Thus,
o XB=XNB VBcRP
N

E(y)
adX =N

Theorem 3.7. Gauss-Markov Theorem

Suppose 1 = X' is linearly estimable and the Gauss—MarkoY error model holds. The unique linear
unbiased estimator of ¢ with smallest variance is the LSE: ¢ = X' X Ty.

We have:
linear estimators C unbiased estimators C all estimators

So this theorem only looks at a small subset of estimators.

Proof. (Sketch) 1 is linearly estimable < X = a’X for some a € R™. So the LSE is
1,@ = NXty=dXX"y.
An arbitrary linear estimator ¢ = ¢’y is unbiased for ¢ iff ¢ X = X. Hence,
dX =dX.

Var(y) = Var [TZJ + (- 7/;)}
= Var(¢)) + Var(¢) — ) + 2 Cov(e), ) — 1))

Note:

Var(i) — ¢)) = Var(c'y — a/ X X +y)
_ I + (A + _ +
= Var [(¢ —dXX")y] = (¢ — ' XXT) Cov(y)(c X;X a)
021, symm

=o%lc— XX tal?

>0 unlessc:XXJra(—m/;:iﬁ
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Cov [1/3, ) — 1[1} = Cov [a'XX+y, (c— XX+a)'y]
=dXXT 6’1, (c— XX Ta)
—~—
Cov(y)

XXTXXT
= 0'2 |:CL/XX+C — CLIWQ
=% XX (c—a)
=o?(d —d)XX"a
=’ (X —dX)X"a

~—_———
=0
=0

3.4 SVD and Spectral Representation

Theorem 3.8.

Let A be an m x n matrix of rank r with singular value decomposition A = ULV', U'U = V'V =
ITa L= dlag{ll}a ll > l2 > 2 lr > 0.
Note that AA’ is symmetric positive definite.

(a) A spectral representation for matrix AA’ is

ar=0 (5 1) ()

mXxXm

where (U U) is an orthogonal matrix of eigenvectors of AA” and L? gives the nonzero eigenvalues
of AA'.

(b) A spectral representation of A’A is

vV v Lz o\ [V’
AA= (<~ =~ _
<W nxn_r> ( 0 0) <v/
where (V' V) is an orthogonal matrix of eigenvectors of A’A and L? gives the nonzero eigenvalues
of A’A.

(c) UU'+UU =1, VV' +VV =1,
(d) UT =0, V'V =0

Proof. (a) By the SVD,
AA' =ULV' -V LU = UL*U’
I
(b) By the SVD,
AA=VLU - ULV =VL*V
I
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!/

In=(U T) (3) =UU + U0

Similarly for V, V.

(d) Eigenvectors are mutually orthogonal.

Use these identities for problem (h) in HW1.

3.5 Distribution Theory

Canonical Representation of Least Squares Estimators

Model: y = Xpg+e=n+e, n=Xp, rank(X)=r <p<n.

Classical estimator of 02: 62 = 1|y — 7)|?, where /7 = X Xty is the LSE of 7.

n—r

Theorem 3.11.

Suppose X has SVD X = ULV’. Construct U so that (U U) is an orthogonal matrix (e.g. previous

theorem). Then
1

h=UUY, 6= Ty
n—r
Proof.
h=XXTy=ULV' -VL™'U'y =UU"y
(n—r)6*=y—al> =y —UU"yP = | (I, - UU") y|? [=UU +UU
——
W!
=T y)* =y TUTU y =y/TTy
symm symm
= Uy
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Theorem 3.12.

Suppose the Gauss-Markov error model holds. Obviously, E(y) = n = X3, Cov(y) = o21,.

) =0°
Proof. 1
E(f) =E(XX'y) = XX* X8 =XB=n
~~
E(y)
Cov() = Cov(XXTy) = XX T Cov(y) XX
=’ XX XXt =02XXT
Fact:

Cov(Ay) = ACov(y)A’

~ -/ ==/
(n—r)8>=|Uyf =|Uef
because, from the previous theorem,

Uy=U(XB+e)=UXB+Ue=UULV'B+Te.
=0

E[(n — )% = E|U e|> = E[¢UU €] = E[tr(¢TU ¢)]
= E[tr(UU ee')] = tx[E(UT e€’)]

=t[UU E(ee)) |=0tx(UU) = o> tx(U'T)
1,

Cov(e)=02I,
=o’tr(I,_,) = (n—r)o?
Fact:
tr(AB) = tr(BA), tr(A+ B) = tr(A) + tr(B)

Note: Var(6?) depends on E(e}) and more, which is not specified by the Gauss-Markov error model.
O

Theorem 3.13.

Suppose the Gaussian error model holds (e ~ N,(0,021,)). Obviously y ~ N, (n,0%I,), where

n = XpB. Then
L ) ~ No(n, 02X X )

a2
2. % ~ X%—r

3. 7 and 62 are independent random variables
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Proof. 1. m = XXty = linear map of y ~ N,(E(%),Cov(n)) = N(n,02XX™") by the Gauss-Markov
calculation.
2. As in a previous proof,

(n—1r)6? = |ﬁle]2 = |2)?, where z= U _e
S~

(n—r)xn nx1

_ 27T
z ~ Np_r(E(2),Cov(z)) = Np—r(0,0 i]U)

= Nn—r(oa Uz[n—r)

Thus,
~ n—r
Y
=1

where w = z/0 ~ Ny (0, I),—;).

) = UU'y = function of U'y
2

= ]U/y|2 = function of U'y
Observe that

! —
<glz> - <U Ul>n><n, orthogonal Y

~ Np(%,0-0*I-0")
= N,(,6200)
<~

In
= N(x,0%1,)
U'y,U'y are independent.
O
Theorem 3.14. Lehmann-Scheffe
Suppose ¢ = M3 is linearly estimable and the Gaussian error model holds. The
unique unbiased estimator of ¢ with the smallest variance is the LSE: ¢p = MNXTy. The

2:

unique unbiased estimator of o with the smallest variance is 62 = —L_|y — 9|?.

1&, 62 € all unbiased estimators C all estimators
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4 10-4-11

4.1 Comparing Least Squares Fits

General Model

y=X B +e
nxp px1
rank(X) =7 <p<n, e~ N(0,0%I,), 0 < 0% < c0.
Under this model, n = E(y) = X € R(X).
LSE: = XX Ty = Py. P=XX7 is symmetric and idempotent.

Submodel

y= Xo Bo te
~—
nXpo pox1
rank(Xo) =79 <1, R(Xo) C R(X).
Under this model, n = E(y) = Xofo € R(Xo).
LSE: ) = XoX Ty = Pyy. Py = XX is symmetric and idempotent.

Theorem 4.3.

Let PL = P — Py. The following hold:

P is symmetric and idempotent with rank(P) = tr(P) = r.

Py is symmetric and idempotent with rank(FPy) = tr(FPy) = rp.
PPy = PP = Py

Py is symmetric and idempotent with rank(Py) = tr(P) =71 =7 — ro.
PPy = PyP, =0 (orthogonal)

ot N

Proof.

1. rank(P) = rank(X X ) = tr(X X ) = rank(X) (HW 1 problem 1.i)
2. Likewise

3. Because R(Xp) C R(X), each column in X is a linear combination of columns of X. That is,

Xo= X A for some A
NG
nxpo nXp pXpo
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Hence, PPy = XX T Xo X = XXt XAX{ = XA X] = XoX = Py. Also, )P = PP’

Xo
Pé =F.

4. Symmetry of P; is obvious.
P} = (P — Py)(P — Py) = P> — PP — PPy +P;
Py Py
=P-P-P+P=P-F
= Pl
rank(P)) = rank(P — Py) = tr(P) — tr(FPp) =r — 19

PiPy=(P—-P)Py=PP—P?=P— Py =0

(PPRy)

P = Py + P, decomposes the orthogonal projection P as the sum of two mutually orthogonal

orthogonal projections.

Theorem 4.5. Spectral Representations of P, Py, P,

Let
!/ !
PO — U[) UO 5 P]_ — U]_ Ul
~ ~—
nxn nXro rgXxXn nxn NXT1ryxn
be spectral representations of Py, P;. Let
U =| Uy U r=r19+7].
, 0 1| 0o+ 71
nxr nxXrg nXri

Then
1. UlUp = ULU; = 0
2. U'U =1,
3. P =UU'is a spectral representation, = UgU, + U1U; = Py + P,
4. R(X) = R(P) =R(U), R(Xo) = R(F) = R(UVy)

Proof.
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1. We know P; Py = 0 from the previous theorem. Hence,

UlUy = ULUL ULU, UL U,
~—— ~——
I, I,
= U U\U, UpU} Uy
N~~~
Py Py
=0
UéUl (UlUO) =

2.
. (U _(yus Uy (I, O
UU_(U{ (Uo Th) = Uu, Ujuy) —\ 0 I, =1
3.
/ Ug
UU Z(UO Ul) U1 UoUo—l-UlUl Ph+P =P
4,

Xa=XX"Xa=XX"(Xa) (4.1)
XXtb=X(X"b)

Thus, R(X) = R(XT). XX = P =UU’ implies that R(XX ") = R(UU’). Then R(UU’) = R(U)
by (4.1) with U instead of X. Note U’ = U™. Hence, R(X) = R(XX ™) = R(UU’) = R(U).

O

4.2 Hypothesis Testing

Model: y =n+e, n=_X B, rank(X)=7r<p<n, e~ N,(0,0%I,), 0< 0? < oco. To test:
nxp px1
H:neR(Xo) CR(X), 0<o0?<o0
K:n¢R(Xo), n€ R(X), 0<o®<o0
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The F-test for H versus K

Rejects H for sufficiently large values of the F-statistic:

(ly = nol® — |y — A?)/m
5-2

T =

where
o = Xo Xy = Poy
i=XXty="p,
ro = rank(Xy), r = rank(X), r =r —ro,

1
62 = ly — > = est. of 0? under general model.
n—r

Note: this can be derived as a likelihood ratio test.

Theorem 4.8.

1. The F-statistic has two equivalent forms:

7 (Qy=mol* = ly = i) /r1 _ [ —iol*/ms
- 52 - 52

2. Under H, the distribution of T"is F}.,,—;.

Proof. By the previous theorem, 5 = Py = UU'y, 1o = Poy = UpUly.
1.
ly = il> = ly — Pyl* = |(In — P)y[*
=y (In— P’y =y'(I. — P)y
because I,, — P is symmetric and idempotent:

(I,-P)?=1,-2P+ P> =1,—-P

=P
Similarly,
ly — ol =y — Poyl* = ...
=y'(In— Po)y
Thus,

ly — ol = ly — 01> = y'(In — Po)y —y/(In — P)y
:y,[(In_PO)_(In_P)]y
=y (P-PR)y=y Py
= |Pyy|?

P is symmetric and idempotent.
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2. Under H, n € R(Xo) = R(Upy) < n = Upa for some a. Thus,

Un=UUya=0
——
0

1 —io)? = |Pry|? = U U y|* = y'U UL UL Uy
= |Uy[?

Uy ~ N, ( Uin ,Ujc*L,Uy) = N,,(0,0°1,.))
T N——
E(Ujy) Cov(U'y)
Hence, under H,

L D &

From earlier,

(n —7r)6>

2
2 ~ Xn—r

g

under the general model and therefore under H. 7, 52 are independent. Thus, under H

X31 /T1

SRy

~ Fr,n—r
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5 10-6-11
5.1 Confidence Intervals for an Estimable Linear Parametric Function

Model: y ~ N, (1,0°I,), n = X_f, rank(X) =r <p <n.
nxp

The LSE of n: H = XX Ty ~ N(n,0?XX™)

Theorem 5.1.

Suppose that 1 = X B is a linearly estimable parametric function of (i.e. N = MX*X) and
~— <~

1xp px1
the model is as specified above.

1. The LSE of # is R
v = NXTB=NXTH~ N, o?XN(X'X)TN)
~~

2. The pivot

Proof. (sketch)
b=NXTy=NXtXXTy=NXx1y
HA/_/

n
fj ~ Np(n,c?XXT)
N(E(3), Cov())
Cov(¢h) = (VX ) Cov() (N XY
= NXT.2XXT(XT)A
= NXT(XTYX =2 N(X'X)TA

<
2

Notes:
1. Use this result to get confidence intervals for

2. Invert the confidence intervals to test (for example)

H:1{ =1, 0<0?< o0
K 9 # 1y, 002 < 00
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5.2 Risk and Estimated Risk of a Submodel Fit

As before for the F-test, we have our general model:

y=n-+e, 77:X \’é_/, I'ank(X):T‘Sp<n
nxp le

The LSE of nis ) = Py for P = XX ™.

Submodel:

y=m-+e m= Xo Po, rank(Xo)=ro <7, R(Xo)CR(X)

nXpo pox1

e ~ Ny (0,0%I,). The LSE of ng is 7o = Pyy, where Py = XoX .

Estimation Approach to Comparing Fits

1. The general model is taken to be true (unlike in testing).

2. We assess an estimator 7 of n through its (quadratic) risk

r~t Eli—-n* = R(,n,0%
N—_——

(under general model)

3. Ideally, minimize risk by choice of 7.

Theorem 5.4. Mallows (1973)

1. R(f,n,0?%) = o?
2. R(fo,n,02) =171 [roo? + |n — Pon*] =r=! [roo? + tr{(L,, — Po)nn'}]

Proof. 1.

rR(i,n,0%) = Elj — nf* = Etr[() — )7 —1)’]
= tr(Cov(#)) = tr[o?P] = o% tr(P)

=ro?
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rR(fo,n,0%) = E| fo_—n|* = E|(Poy — Pon) — (In — Po)n|®
~—
=Py

=E|[Py(y —n)* + |(In — Po)n> —E | (n — Pon)’ Po(y —n)
——

EPo(y—n)=0
E|Py(y —n)|> = Etr [Po(y —n)(y —n) P Py is symmetric & idempotent
= tr [Py Cov(y)Po] = o® tr(Py)
= 027'0

Notice:

(I, = Po)n|* = tr [(I, — Po)ni/ (I, — P)]
= tr [(I, — Po)*n]
= tr[(Ln — Po)nn']

O

Note: R(1jy,n,0?) depends on o and 71 which are unknown. We therefore estimate o by 62 and 71’ by
yy' — 6%1,.

Mallows’ idea (1973)

Justify their estimation through E(6%) = o? (recall: 62 = |y — #|?) and Elyy' — 6°1,] = nn/
because

E(yy') =E(n+e)(n+e) =Em + ey +ne' + €
=1 + 040+ %L, =y + o1,

Theorem 5.6.

1. The estimated risk of 7g is
R(io) = v [6%r + tx[(In — Po)(yy' — 6°1,)]]

and it satisfies E[R(70)] = R(Ao,n, 02), i.e. R() is an unbiased risk estimator.
2. R(fo) = r~[ly — ol + (2r0 — )67

Proof. 1. By substituting 62, yy' — 621, for o2, nn’ in R(io,n, o?).
2.
rR(io) = ro6” — tr(Ly — Po)6® + tr[(1n — Po)yy/]
—tr(I, — Py)6? = —(n —r9)6°
tr[(I, — Po)yy']l = v'(In — Po)y = 4/ (In — o) (In — Po)y = |y — Poyl* = |y — fio|?

because tr(FPy) = 19
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Notes:

1. Mallows C), criterion (1973) is

Cp = |y — 70| + 27052 = one-to-one transform of R(7p)
2. There exists asymptotic theory under which R(7i)= R(fio, 1, 02).

5.3 Specifying Submodels for Means

Model: y =_C m e ~ N,(0,0%1,), where C is the data-incidence matrix (see polyno-
—~—

= + e ,

N

nx1 nxXp pxl1 nx1

mial regression example) which records the replication pattern.

C'C = diag{n;},
where n; is the number of observations of m;.
Submodel: Add the restriction that m € F is a subspace of RP, with dim(F) = r < p. For now,

assume that rank(C') = p, i.e. each n; is nonzero (we have at least one observation for each mean;
this is called complete design).

Theorem 5.8.

Suppose that F = range(_F ), where rank(F) = r. Let @Q = FF* have spectral representation

~—
pXxt PXP
Q =_V V' where V'V = I,. The following are equivalent:
. )~ —
pXPp PXT TXp
1. meF
2. m=_F _«a forsome ac R
N~
pxt tx1
3. m=Qm

4. m=@Q [ for some 5 € RP
—~—

px1

5. m =V~ for some v € R"

Proof. 1 < 2: By definition.

2 & 3: The relation m = Fa is consistent iff FFT™m =m < Qm = m.
3=4:for f=m

4=3:m=0Q8=QQB=Em

4 & 5: The relation m = vj is consistent iff VVm =m < UU'm = m (because U =U™") & Qm =m. O
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Notes: Submodels on m have multiple equivalent expressions which lead to multiple expressions for least
squares estimators under the submodels.

Theorem 5.9.

Under the submodel m € F, the LSE of nr = C,, is

iF =CQ(CQ)'y=C(CQ)"y=CU(CU)"y = CF(CF)"y

Proof.

m=Qf = y=CQp+e TheLSE of CQB is XXty = CQ(CQ)*y = C(CQ)*y (by HW 1 Problem
X

l.m). m=Vy = y=CV v+e. The LSE of CV~ is now CV(CV)ty. m = Fa = y=CFa+e. The

X
LSE of CFa is CF(CF)"y.

Note that (CQ)" = (CYV)* =V (CU)" (by HW1 Problem 1.1).
Q

Note: we assume that rank( C' ) = p. Then

nxXp

1. The LSE mz of mz (the submodel restricted to m) is
mr =CtiF = (C'C)"'C'nr
=Q(CQ)Ty = (Ca)Ty=V(CV)Ty =F(CF)"y
2. By HW 1 Problem 1.g, we get that
iiF = CV(CV)Ty = CV(V'C'CV) VT
=covv'c'evy tv'c’ because rank(CV) =rank(V) =r, rank(C) =p

and rank[(CV)'CV] = rank(CV). This is a Moore-Penrose-free expression! O

5.4 Projection Form of One-Way ANOVA

One- Way Layout of Means

Model: y;; =m; +e;5, 1 <i<p, 1 <j<n; The e areiid. ~ N(0,02).

Vectorize:
y=Cm+e
y=( w2 - )
mi:(ml my - mp)/

C = data incidence matrix

p
n = E n;
i=1
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Basic ANOVA Decomposition

Classically, m; = p+ a5, 1 <i<p, a9 =0.

12
Q= — Z «; = average over dotted subscript

p =1
ma m. mi1 —m.
mo m. mo — M.
= +
my m. mp —m.

This is the vector form of ANOVA decomposition.

Theorem 5.12. Projection Form

L%Jb:pﬂ%L”J)UU:LL%il:UUJﬁ:@—%Imm
px1 pXp
1. Py, P; are each symmetric and idempotent.
2. BhPh=PFP=0
3. I, =P+ P

Proof. In particular, m = Pym + Pym is the ANOVA decomposition because

1
Pom =U(U'm) = Ee(e’m)

. I\ , m.

=5 | 2mi=
P\1) = m.
mip —m.
Pim=m—Pm = |y, —m.
my, —m.

The submodels {m;} are all equal < {«;} are all 0 & Pym =0 < Pym = m < m; = Py3 for some [ € RP.
Here the submodel is y = ng + e, 1o = CPyB. The LSE fjg = CPy(CPy)Ty = C(CPy)Ty.

General model is y =n+e, n=Cm, m € RP. The LSE 5 = Cty = C(C'C)~'C"y, m = (C'C)~'C'y. O

Next time we will address the relation to classical simple formulas.
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6 10-11-11

6.1 Models for Means

Submodels

General Model: y =Cm +e¢
Submodels restrict m, e.g.

m= @ B, BeRP,
—~—

pXp

with rank(Q) = tr(Q) = r. Equivalently,

m=_V v, ~v € R?,
nXT rx]

Q = VV’ = spectral representation

@ symmetric & idempotent
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6.1.1 One-Way Layout of Means

One-Way Layout

General Model (classical form)
Yij=m;+ey, 1<i<p 1<7<mn

where {e;;} are i.i.d. N(0,02), 02 > 0. Vectorize:

m = (mi,...,mp)
px1
P

y ={{yy | 1<j<mi},1<i<p}, nzzni
~~~ ;
nx1 =1
C = data incidence matrix
~~
nxp

ni 0 0

0 no 0
c'C = )

0 0 - m

Thus, the general model (6.1) can be written as: y = Cm + e. The LSE of m is:

m=Chy=(C'C)'C'y = (y1,y2, - ,4p.)
1 &

vi=— 3 Ui
T, =1

The LSE of n = Cm is

>
Il
Q
§>

(6.1)
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Projection Form of Basic ANOVA

Classical form: m; = u+ «;, 1 < i < p, where a, = 0.
This is a one-to-one map of {m;} to u, {a;} in which py =m_, oy =m; —m._.

Projection Form
Let Py =wt/, u =p '/2(1,1,...,1).
px1

Note:
1. Py, P1 are symmetric & idempotent
2. BhPh=PFPy=0
3. Ip = Po —+ P1

The ANOVA decomposition is
m = Poym + Pim

which is equivalent to m; = u 4+ a4, a. = 0, because

uu'm = u(u'm)
- (m.va e am.)/
mip —m,
mo — M,

Pm=m— Pym =

my, —m,

Classical Submodel

{m;} equal & {a }all0 & m= PyS3, B €RP (m= Pym).
So y = CPyf3 + e is the submodel, with e ~ N, (0, 0%1,).

The LSE of ng = CFPyf is
770 = C'PQ(C'POVy = C(CP0)+y.

the LSE of mo = Poﬁ is
mo = (CPy)ty.

We have assumed that n; > 0, 1 <7 < p, so rank(C) = p.
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Reduction to Elementary Form

mo = (CPy) "y = (C )Ty = u(Cu) Ty by lab 1, problem 1.1 (S =1, T = u)
Py
n\ T
ot =L ot = (1) e by lab 1, problem L
NN D

Ranks of General Model and Submodel Deisgn Matrices

Both have the form QCS.
Q=1, (General Model)

with r = rank(C) = p. So C is of full rank.

Q=5 (Submodel)

with rg = rank(C'Py) = rank(Py) = tr(FPy) = tr(uv’) = tr(v'u) = tr(1) = 1.

Consequences

1. F-test for H: submodel m = P,/ holds
vs. K: not so, general model holds

refers R
7 i =l*/(p—1)

- )

o

with 62

1 .
= ——y -l
n—p
to prl,nfp-
2. Estimated risks of 7,79 as competing estimators for n = C'm under the general model are:

R(j) = 6”

because r = p, rg = 1.

6.1.2 Two-Way Layout of Means

(complete layout = at least 1 observation for every mean)

General Model (classical form):

Yijk = Myj + €ijk, 1<i<p, 1<7<py, 1<k<n;

label levels of factors labels replications
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where {e;j} are i.i.d. N(0,0?), 02 > 0.
Vectorize:
Set p = p1ps2. Let

o ={{my |1<i<p} 1<) <p)
px1

= mirror dictionary order
= stack columns of matrix {m;;}

= special case of array order
y ={{{yijr | 1<k <n i}l <i<p}, 1<5<po}
~—

nx1
p1 p2
=33,
=1 j=1
e is similar.
Enn total : .
1 0o .- 0
0 1 0
o 0 Engl total
\Cf-’ o 0 1 0
nxp )
0 0 1
Np, po total
0 0 1

General Model

y=Cm-+e, e~ Ny(0,0%I,). LSE of m is

m=Cty=(C'C)"'C"y = {{ui [ 1<i<p}, 1<j<po}

1
Yij. = Zyijk

Y =1

The LSE of 7 is

>
Il
Q
§>

Classical ANOVA Decomposition

mij = p+ oG + B + Vi
1 one-to-one

p=m_, ap=mj—m_, fj=mj—m_ Yy =M —m; —m;+m,
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7 10-13-11

7.1 The Kronecker Product and vec

Definition 7.1. Kronecker Product

The Kronecker product of A (m x n) and B (r x s) is

annB  ai2B -+ a;,B
an1B  axB --- aB
AR B =
amlB amgB s amnB
Definition 7.2. vec
If X = (ac(l) Tg) - x(p)) = {zi;}, where each z;) is n x 1, then
nxp
L)
x
vec(X) = (.2)
L(p)

Thus, it takes: stacked columns of X <> {{z;; ’ 1<i<n}, 1<j<p}

Note: we can reverse vec(X) given n,p, “unvec.”

Basic Properties (of Mardia, Kent, Bibby)

1. For scalar ¢, c(A® B) = (CA) ® B=A® (cB). We can write cA® B.
2. A(B®(C)=(A® B)®C. We can write A@ B® C.
3. (A®B) =A®B.

A®B

( )
4. (A® B)(F®G) = (AF) ® (BGQG)
( )"l =A=' ® B~! for A, B nonsingular.
) ®

6. (A+B —(A®C)+ (B®C)
7. A9 (B+C)=(A®B)+ (A®C)
8. (A1 + A2) ® (B + Ba) = (A1 ® By) + (A1 ® Ba) + (A2 ® By) + (A2 ® Bo)
9. vec(AXB) = (B' @ A) vec(X)

10. tr(A® B) = tr(A) tr(B)
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7.2 ANOVA Decomposition for Two-Way Layout

Classical Form

mij = p+ a; + Bj + vij, 1<i<p
a=0=7%=7;=0
mi; =m_+ (mj —m_ )+ (mj—m_ )+ (my; —m; —mj+m.)

In order to put this in projection form, we set

M = {mi;}
P1Xp2
m = vec(M) = mirror dictionary vectorization of {m;;}

px1
b= Ppip2
k=1,2
Let
—1/2 /
U = 1,1, , 1
k ke ( )
pr X1
Ji = uu,
Hy =1, —Jg
Note:

1. Ji, Hj are symmetric & idempotent
2. HpJy = JiHy, = 0 (because Hyuy, = (I, — ugup,)ur = up — uy = 0, since ujuy = I)
Thus

I, =1y, @1, = (HaJo) ® (H1 + J1)
= (J2®@J1) + (Jo @ H1) + (Hy ® Jy) + (Hy ® Hy)

Definition 7.4. Two-Way Layout Projections

Py=Jo®J;
P ::(JQQfoﬂ
P, = (Hy® Jy)

Py = (Hy ® Hy)

H-subscripts induce P subscripts.

Note:
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1. Py, P1, P», P15 are each symmetric & idempotent

2. Thse 4 projections are mutually orthogonal. e.g. PiPo = PiPiao=---=10

Projection Form of the ANOVA Decomposition

m = Pom + Pom + Pom + Piam

This is equivalent to the classical ANOVA decomposition because

\P’()J\@,Z{m.., 1<i<m}, 1<j<po}=(a®J1)m

pxp PX1
Pom={{m; —m_, 1<i<pi}, 1 <j<ps}=(a®H)m
Pom={{m;—m_, 1<i<pi}, 1<j<p}=(Ha®J1)m
Piom = {{mi; —m; —mj+m_, 1<i<pi}, 1<j<pe}=(Ha® Hi)m

Method of Checking the four equations above

= (Jo2 ® J1)m = vec(J1 M J3)
le (Jo ® Hi)m = vec(H1M Jy) = vec[(Ip, — J1)M J3] = vec(M J3) — vec(J1 M J3)
Pym = (Hy ® J1)m = vec(J1 M Hy) = vec[J1M (I, — Jo)] = vec(J1 M) — vec(J1 M J2)
Piom = vec(Hy M Hs) = vec(M) — vec(M J3) — vec(J1 M) + vec(J1 M Jo)

Thus,
m. m. m
unvec(Pym) = J1M Jy =
—
P1Xp2 m, m,_ -+ m,
mip.—m_ - M1 — M,

unvec(Pym) = MJy — J1MJy =

Some Standard ANOVA Submodels for 2- Way Layout

Formism= @ B , g€ RP, @ symmetric & idempotent.
—~

pXp pX1
Q=I,=FP+P+ P+ P (General Model)
Q=FPo+ P+ P+ {v;}al0 (Additive Submodels)
Q=P+ P+ {8}, {vj}alo (Factor 1 effects)
Q=P+ P>+ {oi}, {75} all0 (Factor 2 effects)
Q= Po < {a;},{B;},{vij} all 0 (No effects)
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7.3 Least Squares Analysis

Model
= = <
y C m +_e ,rank(C)=p<n
nx1 nxXp pxl1l nx1

Note: It is not assumed that n;; = ng, 1 < ¢ < p;, 1 < j < pg. Thus, C'C # nol, for some ny (because
C'C = diag{n;;}).

Under the general model: y = Cm + e, m € RP. The LSEs of m, n = Cm are

Cry =(C'C)~'C"y
ccry=c(c'e)" 1y

m

7
These have elementary forms, as in 1-way layout.
Under submodel (Q), the LSEs of m,n are
o = (CQ) Ty
i = C(CQ) Ty (= CQICQ)MY)

F-test
H: submodel @ holds
K: not so, general model holds

The test statistic is . a2
o 1 =ml*/m

=2
G
where 6% = |y — 7|2, with r = rank(C) = p (+— C is the design matrix in the general model).
r=r—r9=p—tr(Q)
ro = rank(CQ) = rank(Q) = tr(Q)
b1 P2
where C'Q is the design matrix in the submodel y = CQB +eand n =) > nyj.
i=1j=1
The Null distribution is F,_ Q) n—p-
Estimated Risks
of /) and 7y as competing estimators of n = C'm in the general model:
R(i) = 5°
R(io) = p~" [ly — fol* + (2t2(Q) —n)5?]
~
r 70

Note: Calculating ro = tr(Q) is easy algebraically in 2-way ANOVA models.
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Q=P+ P+ P

tr(Q) = tr(Po) + tr(Pr) + tr(P)
tI‘(P()) = tI‘(JQ ® Jl) = tr(Jg) tr(Jl) =1-1=1

where we have used that tr(J) = tr(upu),) = tr(ujug) = 1.
——

=1

tr(P) = tr(Jo @ Hy) = tr(Ja) tr(Hy) = tr(J2)[tr(L, — J1)]
= tr(J2) = 1tr(Lp, ) — tx(J1)]
—— —
=p1—1
tr(Py) = pa — 1 (by similar analysis)
ro = rank(CQ) = rank(Q) = tr(Q) =1+ (p1 — 1) + (p2 — 1)

where we used that C is of full rank. For the F-test:

n=r—ro=_p ~A+@Em-+@2-]=pip2—p1 —p2+1
——
p1p2
=(1—1)(p2—1)

The d.f. (degrees of freedom) are (p; — 1)(p2 — 1), n — p.

Note: This analysis of 2-way layouts works whatever the {n;;} may be, i.e. in unbalanced complete layouts
as well as in balanced complete layouts.

Definition 7.8. Complete Layout, Balanced Complete Layout, Unbalanced Complete Layout

A complete layout has n;; > 1, 1 <i<pj, 1 <5 < po.
A balanced complete layout has n;; =n, > 1V i,j.
An unbalanced complete layout has {n;;} are not equal but n;; > 1V 1, j.

Comments:
e Balanced complete layout is classical & elementary
e Unbalanced complete layout is very difficult classically and not elementary

Recall:
Submodel m = CQpB, B € RP, @ symmetric & idempotent and of rank rg.

0

Submodel m = CV~, vy € R, @ = V' is the spectral representation of Q.

\%4
N~~~
PXT0 TOXP
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Spectral Forms of Projections for One-Way Layout

1 = / — — ! — — — 71/2 /
Consider Py = v/, Pr =1, —uwu' =1, — Fy, _u D (1,1,...,1). Let (_(u U ) be an

px1 px1l px(p—1)
orthogonal matrix. This implies that u'u + U'U = wu' + UU’ = I,,. The spectral representations of
Py and P; are

Py = vové, where vg = u

P = vlvi, where v1 = U

Notes:

1. The columns of U are mutually orthogonal and are orthogonal to u, i.e. the columns of U are mutually
orthogonal contrasts

2. Construction of U from Helmert contrasts:

1 1 1 1
-1 1 1 1
0o -2 1 1
H =120 0 -3 1
—~—
px(p—1) 0 0 0 1
0 0 0 —(p—1)

Define U = (  H'H )~Y2. Then
<~ ——

px(p—1) diagonal matrix

U'U:Ip_l
WU =0

So (u U) is an orthogonal matrix.

3. Take U to have columns that are orthogonal polynomials of degrees 1 to (p — 1). poly(-) — U.

LSE’s for the One-Way Layout Submodel

Submodel Model Fit in One-Way Layout

mo = Vo(CVo)ty, Vo = uu/
flo = CVo(C'Vo) Ty
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Two-Way Layout: Spectral Representations of Py, P, P>, Pio

Let ( ug Ui ) be orthogonal matrices, k = 1,2, uj, = pgl/z(l, 1,...,1)". Then
~—
PeX1 ppx(pp—1)

Ul
I, = (uk Uk) <U]§> = ukuﬁc —l—U;.CU,,C = Jy + Hg.
k ~— =
Ty Hy,
Then we get the spectral representation

P0:J2®J1:U2U,2:‘/0‘/0, for Vi = us ® wuy

—~ =~ =~

px1 pax1l ppx1
P12J2®H1:UQ’LL/2®U1U{:V1V1/ for Vi =uo®@U;
Py = V2V2/ for Vo = U ® uq
Py = Hy ® Hy = UsUj @ U Uy = V1oV, for Vis = Us @ U,

These yield spectral representations for standard submodels ) in the 2-way layout.

Q=P+ P+ P=VVy+W/+WhV,
=vV’ for V = (Vo Vi Vg)

and the columns of V' are mutually orthogonal.

7.4 Review for Midterm

e Lab 1 material
e Existence and uniqueness of LSEs

e Algebraic stuff
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8 10-18-11

8.1 Midterm Info
e Closed book. Can bring 2 double-sided sheets of notes.
e Coverage:

— SVD, Moore-Penrose pseudoinverse

— Least squares: normal equation, solution sets, distribution theory, linear estimability, optimality
properties (Gauss-Markov, Scheffe), polynomial regression

Cutoff is just before F-test or estimated risk
Study labs 1 & 2

e 3 problems, relatively short, each with a nice solution

82 r &
General Model: y=_C m +e

—~— "~

nxp pxl1
Submodel Q: m= Q B , B € RP, where Q) is symmetric & idempotent.
E— ~—

pXp px1

y=CQp+e
——
Xo

So

r = rank(X) = rank(C)
ro = rank(Xp) = rank(CQ)

Useful for complete layouts
When C  is of full rank, rank(C') = p, then

nxp

r=p
ro = rank(CQ) = rank(Q) = tr(Q)

8.3 Spectral Representations of Iy, P;, P, P
Let O = (uy Up ), k=1,2, be apx porthogonal matrix: O'O = 00" =1, < O~! =0 Then

P X1 ppx(pp—1)

u/
Ip, = (ux  Uk) <U]7> = wpwy + UpUy, = Ji + Hy
k N~ N~
T Ip—Jk
The columns of Uy are mutually orthonormal contrasts.

P() = J2®J1 =u2u'2®u1u’1 = V()VOI

for Vo = us ® wuy , p=pips. Similarly,
~— M~ =~
px1 p2x1  p1x1

P=Jy® H = u2u/2 & UlU{ = V1V1’
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for Vi =wu®U.
—~—
px(p1—1)
P,=Hy® J = UQUé ® U1U/1 = V2V2/
for Vo =Us®u.
—~

px(p2—1)
Py =Hy® Hi = UQUé & U1U{ = V12V1,2

for Vi =Uy ® Uj.
px(p1—1)(p2—1)

Moreover, (Vo Vi V2 Vi9) is an orthogonal matrix.

Suppose Q = Py+P1+ P, = Wi+ ViV + WLV = VV/ for V = (V) Vi V3) = spectral representation
of Q. Note that V'V = I. Hence,

m=CQB, BeR? <+ m=CVr, vecRPrHr2-1
In the case that rank(C) = p, the LSEs for model @ are

g = (CQ)Ty =V (CV)Ty
ilo = Crng = C(CQ) Ty = CV(CV) 1y

8.4 Special Case: Balanced Complete Design

General model: y = C  m _+e, rank(C) = p (because it is complete), C'C' = ngI, (because it is balanced

nxp px1
< same number of observations for each mean). The LSEs are

m = (C'C)~'C'y = ny'C'y
= Ci =ng'CC'y

Submodel Q: y = CQp + e for § € RP, i.e. m = QB. The LSEs are

o = (CQ) ™y
o = C(CQ)"y

Theorem 8.2.

Suppose C'C' = ngl,, ng > 1 (i.e. complete balanced design). Then

o = ng 'QC"y = Qi
o = ny 'CQC" = CQm
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V' V' spectral representation. ry = rank(Q) = tr(Q).
PXP pXro TOXP

cQ)r =CcyvHt=vcv)*t Lab 1, 1e
vyt =W'c’'cv)tv'c’  Lab 1
~—

= (noV'V)"V'C" = ng ' I,,V'C' = ng'V'C’
Ing
Q) =v(ECV)T =n VYV O =nytQC!
Q

Thus,

moy = nalQC'y =Qm because m = nalC’y
o = Crg = CQMm

Note: This explains nice formulas for balanced, complete designs.

8.5 Three-Way Layouts - Complete Layout
General model in classical form: y;;k = mji + €;r. Factor levels:
1<i<p, 1<j<p2, 1<k<p3

Replications are labeled by

1 <1< nyjg
Vectorize:
m_={{{myr | 1<i<pi}, 1<j<pa}, 1<k <ps}
px1

This is called mirror dictionary order or array order.

y={{{{vijm | 1 <1< nyx}, 1<i<pi}, 1<j<ps}, 1<k <ps}
P1 P2 Pp3

n=> > ni
i=1 j=1 k=1
e is defined similar to y.
C = data-incidence matrix of 1’s and 0’s

8.5.1 Simple ANOVA Decomposition of Means

Classical Form:

1 2 3 12 13 23 123
migr = p+ ol +al? + o +al? + ol + P + a7

where

12) (12) (13) (23) _ (23)

(12) _ _ _ _
o =a =ay =ay ;" = 0
(123) _  (123) _ (123) _
" =g =g =0
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This form gives a one-to-one mapping of {m;;;} into u, {0451)}, {a§-2)}, .

_ 1 _ _ 2) _ _
pw=m._., o =m; m., a; " =mg  —m
(12) )
Qi = Myj m; mj +m
(12) )
ozjk =Mk — M,  —M +m
13
aE,C ) =Mijp— M. —Mm +m
(123)
ijk Mijk — My My — Mk +mMi +mj +m p—m,
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9 10-20-11

9.1 Projection Form of ANOVA Decomposition for 3-Way Layout

As earlier, let up = p;1/2(1

Let

L0, Ty =wuy, Hy = I —Jk, 1 <k <3, p=pipap3 = # of means {myj;}.

Po=J30J8J;
P =J3®Jy® H;p
P, =J3® Hy® Jp
Py=H3® Jo® J;
Py =J3® Hy ® Hy
Pi3s=Hs® Jo® Hy
Py3s = Hs® Hyo® Jp
Po3 = H3 ® Hy ® Hy

The subscripts on the LHS indicate the H-factors on the RHS.
Note:

1. These P’s are symmetric & idempotent, and they are mutually orthogonal

2. Iy =1, @1y, @Iy, = (J3+ H3) @ (Jo+ H2) @ (J1 + Hi) = Po+ PL + Pa+ P34+ Pia + Pz + Pag + Pros.
The ANOVA decomposition of m in the 3-way layout:

m = P()m +P1m+P2m+P3m+P12m+P13m+P23m+ P123m
~—~— o~ ——
overall mean main effects 2-way interactions 3-way interactions

9.2 Standard ANOVA Submodels

The form is: m = @ B, € RP, Q is an orthogonal projection.
~ ~~

px1 PXD

e () = I, (general model) =1
e Q=PFPy+ P+ P+ P;+ Pia + P13 + P3 (no 3-way interactions) = 1
e Q=Py+ P+ P>+ Ps+ Pig + Pi3 (no 3-way and no 2-3-way interactions) = 1

— + two more 2 X 2-way, no 3-way interactions = 2
e Q=Py+ P+ P>+ P;+ P15 (no 3-way interactions, only the 1-2 2-way interaction) = 3
o ) =PFPy+ P+ Py + P; (additive) = 1
e Q= Py+ P+ P> (+ 2 more) (subadditive, no factor 3 effect) = 3
e Q= PFPy+ P (+ 2 more) (only factor 1 matters) = 3
o () =P (no effects) =1

Total = 16 submodels (more exist...)
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9.3 LSE’s under the General Model and Submodel

Under the general model, y = C _m +e, the LSE’s are:
nxp px1

m=CTy=(C'C)"1C'y = {m;jx.} in mirror dictionary order
CCry=Cm=C(C'C)"1Cy

n
We assume that it is a complete layout (1 observation for every cell, i.e. n;j; > 1), so
r =rank(C) =p

Under submodel @), the model is y = CQB + e, 8 € RP, m = QpB. The LSE’s are

o = (CQ)Ty

i = CQICQ) YR C(CQ) Ty
Note: 79 = Cmg = Ey under the submodel. Thus, mg = (C'C)~'C’ng, so my is linearly estimable.

ro = rank(CQ) = rank(Q) = tr(Q)

Special Case: Balanced Complete Design (i.e. C'C = nolp, ng > 1)
As for the 2-way layout,

1o = Qin
m = (C'C)~'C'y
flo = CQm

9.4 Spectral Representations for the Projections Py, P, Ps, ..., Py

Let (uy Ug) be a pg x pi orthogonal matrix. (The columns of Uy are orthonormal contrasts.)

%2@%1@<%)=w%+m%, k=1,2,3
k — =~
Ji H,
Jr = upuy, by definition
Hjy, ::Jb-— Jx ZICQJYé
Py=J3®Jo®@J; = VoV] with Vo = u3 ® ug @ uy
P=J3®Jo@H =VV] with Vi = u3 @ us ® Uy
similarly for P», P3
Py =J3®@ Hy ® Hy = ViV, with Vio =uz3 @ U2 @ Uh
similarly for Pis3, Pos
Piog = H3 ® Hy ® Hy = Vig3Vip3 with Vigg = U3 @ U2 ® Uy

Note:

1. The matrix
J{_,:(VO Vi Vo Va Vig Vizg Vaz Vi)
pXp

is orthogonal: V'V =VV' = I,

2. Submodel @ can be expressed in terms of V. For example, let Q = Py+ Py + Pio+ P13 = VQVé, where
Vi = (Vo V4 Vig Vi3). This is a spectral representation of Q.

95



9.5 Other Projection Decompositions
The ANOVA projections are designed for nominal covariates: the levels (values) of the covariates are only

labels.

For ordinal covariates (the values are real numbers whose order and particular values matter), we may
want other projections.

Ordinate Covariates Example: vineyard.dat

Vineyard data in Lab #2.
Yij = Myj + €45, 1<i<52=p1, 1<j<3=p9

i labels the vineyard row (<+— ordinal covariates).
j labels the year (‘ nominal covariates).
y;; = the year from row 7 in year j.

We conjecture that m;; varies “slowly” in ¢ for a given j. E.g. polynomial regression for each year?

We can replace ANOVA projections by alternative projections that implement polynomial regression as
follows:

1. Let Uy (d) = orthogonal polynomial of degree d — 1.

N——
p1xd
2. Define Ji(d) = Uy (d)U1(d), Hy(d) = I,, — Ui (d).
N—— ——
P1Xp1 P1Xp1

3. Define Jy = ugufy (where ug = p;1/2(1, 1,...,1)), Hy = I,, — J5 as earlier.

4. Then Ip = Ip2 ® Ip1 = P()(d) + P1 (d) + Pz(d) + Plg(d)

m = Po(d)m + Pl(d)m + Pg(d)m + Plg(d)m
This gives a projection decomposition of m that extends the ANOVA decomposition <+ d = 1.

Idea: Extend the ANOVA fits to d = 2,3,...,6. Compare these least squares fits via estimated risk.

9.6 Incomplete Designs

Of interest is the mean vector 'm . We have one or more observations only on a subvector mp of m, where
~~ ~—~

px1 gx1
<p. t thi bvector by deleti ts of m. Th =D .
qg < p. We ge 1s subvector by deleting components of m us, mp m
gx1 gxp px1
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D D' =
—~
axXp pXxq

Note: D is obtained by deleting suitable rows of I,. The rows of D are therefore orthonormal:

I,. We call D the deletion matriz.

Deletion Matrixz Example

mq

. mo . mi o 1 0 0 O o o
m = ms ; mD_<m4>7 D2_<O 0 0 1)7 p_47q_2

my

Note that D is I, with rows 2 and 3 deleted.

DD/:IQ, mp =Dm

General Model for the Incomplete Design

f=C(C'C)"'C'y=CCry
m = (CD)*y+[I, — CD(CD)"]e, c€ R?

Question: How do we make an intelligent choice of ¢?

Question: Dm;mD. Yes.
e Lab 1.I: (CD)" = D'C* because DD’ = I,.
e Hence
Din = D(CD)"y + [D — D(CD)*CD]c

=DD'Cty+[D—-DD' CTCDJe

Iq Iq
=Cty+[D—(C'C)"'C'CD]c
1
=Chy=rp

9.7 Submodel Q for mp

If mp is a subvector of m, which is a vectorized array of means, submodel specification is often obscure.

Proposed Idea: Start with the submodel @ for m: m = QB, § € RP, @Q is symmetric & idempotent. This
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implies that mp = DQPB, B € RP. So the model is y = +e.

cC D @ p
N e e S
nXq gxXp pxp pxl

Let mp o = LSE of mp under the submodel. Then
mpo=DQ(CDQ) 'y =D(CDQ)"y
Let 7 = LSE of n = CDQp under the submodel. Then
i =CDQ(CDQ)" 'y = CD(CDQ)" y = unique
Because mp = (C'C)~1C'np, it is linearly estimable.

9.8 Midterm Comments

e Recommended: have Lab 1 results on cheat sheets, also major results from in class
— Can cite any lab 1 results or results we proved in class
e 3 problems, about an hour’s worth of work

e Material Covered

— SVD, Moore-Penrose pseudoinverse

Solutions to consistent linear equations (including how to test for consistency)

Least squares (whatever the rank of X = normal equation and its solutions)
— Linear parametric functions of § (y = X + e)

x Linear estimability <+ unique LSE’s of linear parametric functions
* U= \Np

1. Is ¥ = X'/ unique for every LSE 3?

2. Link to linear unbiased estimators of W

- Boils down to 2 theorems we wrote down: uniqueness and something about \ [3’ being
unique

— Gauss-Markov/Lehmann-Scheffé theorems
e The algebra is simple, but it requires understanding

e 2 problems are statistical in nature, the 3rd is algebraic
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10 10-27-11

10.1 General Model for Incomplete Design

= C mp+e=_C D m +e
\ , N N
nx1 nXq gx1 nxq gXp px1

D = depletion matrix
DD =1,

Unique LSE’s
e The LSE of is 7 = CCty = C(C'C)~'C"y
— r =rank(CD) =rank(D) = ¢
e The LSE of mp is mp = (C'C)~1C"y.
Not Unique LSE

e The LSEs of m are m = (CD)"y + [I, — (CD)*(CD)]c, where ¢ € RP

10.2 Submodels for the Incomplete Design

Start with the submodel m = where @ is symmetric & idempotent) for the associated complete

Q B (
N~
pX1 pXxp px1

design. This induces submodel @ for mp:

mp,o = DQB, B e RP.

y=0CDQb+e
——
mp.o
The LSE of g = E(y) in this submodel is
flo = CDQ(CDQ) y = CD(CDQ)"y Lab 1, 1.m

ro = rank(C'DQ) = rank(DQ)

The LSE of mp is
mpo = (C'C)~'C"jy = DQ(CDQ) Ty = D(CDQ) Ty

because mp o = DQB = (C'C)~1C"no; i.e. mp is linearly estimable.

10.3 Balanced Incomplete Design

Here, in addition, C' C = ngl,, ng > 1.

o _ axp pxq
Simplifications:

CDQ(CDQ)* = CDQ(QD' C'C DQ)*QD'C!
nolp

=ny'CD(QD'DQ)"D'C’
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Let
mp = (C'C)"'C"y = general model LSE of mp
— nalc/y
Hence, in the submodel Q
o = CDQ(CDQ) "y
=ny'CD(QD'DQ)"D'C'y
=CD(QD'DQ)*D'tnp
= CDQ(DQ) 1mp
i.e.
flo = CDQ(DQ) rnp
mpo = (C'C)"*C'Hp = DQ(DQ) rp

10.4 Interpolating Among Submodel Fits in Complete Balanced Designs

General model:

y = C m +_ e , C'C =nolp, no>1
nx1 nxXp pxl1 nx1

Consider the projection decomposition

S
Zpkzlp
k=1

where {P;} are symmetric and idempotent: P,P; = 0 if j # k. For example, the ANOVA decomposition.

Let dy C {1,2,...,s}. Let Q = > P, Q is symmetric & idempotent. The submodel m = @ has

kedg
LSE’s
o = Qi
Ao = CD

m= nalC'y = general model LSE of m.
S

Note: mp = >, Pgrn. Thus, mp = > apPym, where
kEdg k=1

o — 1 kedg
Tl 0 kédg

New idea: Consider the class of multiple shrinkage estimators

S
m(a) = ap Py
k=1
for m in the general model y = Cm + e, C'C = nyl, (where a = (a1, as,...,as), ax € [0,1]).

Note: In this discussion, the general model is balanced and complete.
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Aim: Choose the {a;} to minimize risk and estimated risk of 7(a) = C(a).

Formally:
General model y = Cm + e, C'C = ngl, (balanced, complete design).
Strong Gauss-Markov model on e: the components {e;} are i.i.d. with E(e;) = 0, Var(e;) = 02, 0 < 0% < oo.

Definition 10.1. Quadratic Risk

The quadratic risk of any estimator 7 for n is

R(ﬁa 7, 02) = P_1E|77 - ’I’L’2

References

e Stein (1966)
e Beran (2008) AISM

We will calculate the risk of 7j(a) = Cm(a) and then minimize it by choice of a = (a1, a2, ..., as).

Theorem 10.3.

R(fi(a),n,0%) =Y r(ak, Tk, wy)

where

wy, = p~ng| Pym/|?
r(ag, Tk, wi) = Thap + (1 — a)*wy = (ag — ag)* (Tp + wi) + Trds
N wy,
arp —
Tk + W
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Proof.

R(A(a),n,0”) = p~'Eli(a) — n|?
Eli(a) —n|* = |C(1i(a) —m)|* = (m(a) —m)’ C'C (1i(a) —m)
=nolp

s 2

> (ax Py — Pym)
k=1

= ng|m(a) — m(a)|)® = ng

s
= 1o Z \akPkm - Pkm]2

k=1
=no »_|apP(r —m) — (1 — az) Pym|?
k=1
R(i(a),n,0%) =p~'no > _ Elar( —m) — (1 — ax) Pem|?
k=1
= pilno ZEtr [{akPk(m — m) . (1 . ak)Pkm} {akPk(m — m) — (1 — ak)Pkm}/]
k=1
=p 'no Y _trE [{arP(rh —m) — (1 — a) Pem} {ax Py (1o — m) — (1 — az,) Pem}']
k=1
=p ng zs:tr [aiPk (UQIP> Py + (1 — ag)*Pym(Pym)’
k=1 o

S
= _Imaj + (1 — ax)’wy
P

r(ag,Tr, W)

where we got the last line by using

E(m) =m
o2
E [(rn — m)(h — m)'] = Cov(mh) = <> I,
no
To complete the argument:
- Wi
ap =
Tk + Wk

(ar — ar)* (ke + wi, + Thag = ai(Tp + wi) — 2akdx (T, + wg) + @z (T + W) + TR

2
wi n TR W
T +wg TR+ wg
2 2
= TRap + apWwi — 2apwy + wg

= Tkai + a%wk — 2apwg +

quadratic

= Tka% + (1 - ak)ka

10.5 Oracle Estimation

Oracle Estimation (not fully realizable)
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Definition 10.4. Oracle Shrinkage Estimator

The oracle shrinkage estimator mgy, is the candidate shrinkage estimator m(a) that minimizes risk
over all a € [0, 1]°.

Theorem 10.5.

S S
~ - n Wi o
Mghr = E apPrm = E <T o )Pkm
k=1 =1 Nk k

where m = ny’ Loy y is the LSE of m in the general model. Moreover, for s, = C'gyy, the risk is

S S
_ _ TLWE
R(iishr, 1, 0%) = § TrAp = E (7_ T >
— ko k

k=1

Proof. Taking ay = aj minimizes r(ax, 7%, wy) (i.e. the summand).

Definition 10.6. Oracle Projection Estimator

The oracle projection estimator My, is the candidate shrinkage estimator 7 (a) that minimizes risk
over all a € {0,1}* < each a; =0 or 1.

If not unique, pick the one with the smallest {ay}.

Note: This identifies the submodel fit(s) that minimizes risk.

Theorem 10.7.

S
Mo = > Pun= Y Puh

k:ap>1/2 kiwg >7g

s
R(ﬁprm 7, 02> = Z min{Tlm wk}
k=1

Proof.

s

R(ﬁ(a)a 7, 02) = Z r(ak, Tk, wk)
=1

k
T(ak,Tk, wk) = (ak — dk)2(7'k + wk) + dek
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The minimizing choice of a = 0 or 1 is
ap, =1 if a; >

ap =1 ifa, <

N = DN =

Either choice will do if a; = %, but we take ar = 0 by convention to simplify the summation. This gives the
first form of Mmpyo.

Next, ap > % &

Tk+wk>2 = W > Tk

Finally, to simplify the risk:

If wy > 7, then ap = 1 and so r(ag, 7, wr) = 7% = min(7g, wg). If w, < 73, then a; = 0 and so
r(ag, Tk, wg) = wg, = min(7g, wg). O

10.6 Comparison of the Oracle Estimators and the LSE
For the LSE, a = 1, and

S S

m=|> P,|m=> 1 Pun=nm(1)
k=1 k=1
=I,

where 1 = (1,1,...,1)".

Its risk is

——
Ip
= 0’2
Theorem 10.8.

L R 2 <R %R0 2 R(f,n,02) = o2
2 (nproﬂ?;U )_ (77shr;777<7 )_ (an”O?naO— >_ (7]77770- )_J

—_—

risk of LSE
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Proof. We already know 3 to be true. The kth summand in R(fjsnr, 1, 02) and in R(jpro, 1, 02) are, respec-

tively, TZ’fu’jk and min{y, wy}. Obviously TZ’fu’jk < 71, and < wy, and so < min{ry, wi}.
W Th
Tk \ ———— | > Wg | ———
Ti + Wy T + Wk
—_——— —_———
<1 <1

On the other hand,

. TrWk Tewr 1. 1
e if 7. < wy, then . > 2w, — 27k = 3 min{7y, wy}.

TrWk > TLWk
Te+wr — 27k

e if w, < 73, then = %wk = %min{Tk,wk}.

Note: The oracle estimators are unrealizable because the risk function and so {wy}, {7} depend on m and
o2, which are unkown.

The next step is to devise trustworthy estimators of the risk function. O
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11 11-1-11

11.1 Estimators

Model:

y = C m +_e
N ;N
nx1 nxXp pxl nx1

where E(e) = 0, Cov(e) = 0%I,, {e;} are i.id., n = E(y) = Cm, C'C = ngl, with ng > 1 = complete
balanced design.

Candidate estimators:

m(a) = apPem & i(a) = Cr(a)
k=1

S
where { P} are mutually orthogonal projections and » Py = I[,,.
k=1

Risk:

R(ii(a),n,0%) = p~'Elij(a) — n|?

s

r(ak, Tk, W)
k=1
152 tI‘(Pk)

_1n0]Pkm]2

Tk

p
W =P
r(ag, Tk, wg) = TRap + (1 — ag) wy

= (ak, — ak)*(7k + wy) + Tray
W,

ap =
T + Wi

11.2 Adaptive Estimators
Let 62 be an asymptotically (as p — o) consistent estimator of o2. Estimate 75, by
T =p L6 tr(Py).

The naive estimator of wy, is
N -1 A2
Wy = p~ no| Pyrn]

where 1m = ng ' C'y.
Know:
E(1n) = m, Cov(in) = ng ‘o>,
E(rm’) = mm’ + ngyto?I,
Hence

noE|Pyin|? = noE(m/ Pyin)
= noE tr(Pyriim)
= ng tr[PLE(mm’)]
= ng|Pym|? + o2 tr(Py)
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Thus,
E[p~tno| Purn|?] = p~tno| Pem|? + p~to? tr(Py)
= wg + Iy
This suggests estimating wy by
Wy = p~Tno|Pern|* — 7
(cf. Mallows 1973 adjustment)

More convenient is
P
k= %kt = 0 otherwise
Evidently
[, — wy| < g — wg]

because w; > 0, as is wy.

Definition 11.1. Estimated Risk

The estimated risk is

»

r(ag, Tg, W) = Tkai +(1- ak)ka
= (ag — ax)* (75, + wi) + Trak
T + Wk

By analogy with the oracle estimator:

Definition 11.2. Adaptive Shrinkage Estimator

The adaptive shrinkage estimator Mgy, is the candidate shrinkage estimator that minimizes the
estimated risk over all a € [0,1]* (or over all a € R?).

Theorem 11.3.

where




Moreover, for fgn, = C'ighy, the estimated risk of the adaptive shrinkage estimator is

TrW
R(fsir) ZTkak— E —
Tk—i-wk

Definition 11.4. Adaptive Projection Estimator

The adaptive projection estimator, Mmpr, is the candidate shrinkage estimator that minimizes
estimated risk over all a € {0,1}.

Theorem 11.5.

Mpro = E Pom = E P
k k
ag>1/2 WE>Tg

For fpro = Cpro, the corresponding estimated risk is

npm Z min{ 7, Wy }

Theorem 11.6.

R(ﬁpm) < R(ﬁshr) < R(ﬁpm) < 6% = R(ﬁ)

N

11.3 Link to Stein Shrinkage (1956, 1961, 1966)

Wy = [pilnolPkmF — 7A'k]+

_ p_1n0|Pkm|2 — T p‘lnoyPka > T
0 otherwise

-1 A2 1 ~12 S 2
. pTing|Pemnl® pTing| Pyt > 1y
T + Wi = . .
71 otherwise
W
ap =
T + Wk

# -1 S12 s A
_ e Ponol Bl 2
0 otherwise
2
= [1 — _1]€A2}
pino|Pel? ]

S A
e = 3 1o DTk |p
k=1 +
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Notes:

e Apart from small p refinements in the Gaussian error model on e, Mgy, applies James-Stein (1961)
positive-part to each Pym.

e Stein (1966) gave an exact treatment under the Gaussian error model with an independent estimate

&2 of o2.

e Our approach supports an asymptotic rationale under the strong Gauss-Markov error model. It also
motivates further developments such as penalized least squares.

2

11.4 Estimating ¢ in Complete Balanced Designs

Balanced complete design = C'C' = ngl,
1. When ng > 1 (replication), the LSE of o2 is
<92 1

5% = ly — Crnf?
n—p

wheren = ngp, m = nalC’y. This works well if n > p

2. Whenn —p =0 < ng = 1, we might use the estimator of o2 associated with a submodel m = Qp3
(where @ is symmetric & idempotent):
1

A2
WW—CQW

&5 =

because

e rank(CQ) = rank(Q) = tr(Q)

in a complete balanced layout. Note: (3(2) is usually biased upwards.

11.5 Section: Lab #5 Comments
11.5.1 Part a

Pap is a projection = symmetric & idempotent

A2 |PGDy|2 _9
tI‘(PGD)
E(5%) = E|Pepyl* _ E(y'Papy)
tr(PGD) tr(PGD)
E(y'Papy) = Eftr(y' Papy)]
= E[tr(Papyy')]
= tr[PepE(yy')]

+e, e~ N(0,0%0)
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11.5.2 Partsf& g

perspective plot = function persp(-)
Use arguments “phi” and “theta” in persp to adjust the angle of the graphs

11.6 Section: Lab #3 Comments

_ i~ l/(p ~rq)

t -
52

T~ Fp—er—p

p-value = p(T > t)
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12 11-3-11
12.1 General Problem of Estimating o?
Model:

rank(X) =r < p < n. The {e;} are i.i.d. E(e;) = 0, Var(e;) = 02 < oo.

Case 1:
n > p, n — r not small. LSE:
. 1 .
o° = ly —f*
n—r
XXty=Py  with P=XX"

U
tr(P) = rank(P) =r

Case 2:
n — r not small, or even zero. Strategy: fit a submodel to the data and construct the associated o

estimator.
Submodel:

y=Xobo+e
rank(Xo) =ro <r
R(Xo) C R(X)

The LSE of ny = E(y) is now 1 = XOXJ'y = Pyy, where Py = XOXS'. tr(Py) = rank(Xy) = ro. The
associated estimator of o2 in the submodel is
1

n—rTrg

66 = ly — 7ol

Question: Is 63 a sensible estimator of o under the general model?

Theorem 12.1.

Under the general model:
. — Pon?
E(52) = o2 n
(65) = 0"+ pep—

bias

where n = X§.
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Proof.

Ely — ijo|* = Ely — Poy|* (Po = XoX{)
= E|(In — Ro)yl*
=Etr[y (I, — Po) y] (trace trick)
~—_——
symmetric
idempotent

=Etr[(I, — Po)yy']

= tr[(1n — Po)E(yy')]

= tr[(Ln — Po) (' + 0°I,))

= 2 tr(I, — Po) + tr[(In — Po)nif]
= (n—r0)0” + |(In — Po)nl?

Note:

1. Further analysis yields
62 > E(62) asn—rg— oo

2. In practice we construct 63 for several of the larger submodels and use the smallest value obtained.
We want n — rg > 30 to control the variability of &8.

3. 62 quantifies the level of variability in y that is deemed unimportant.

4. In the complete balanced design setting,

X= 0, r=p
~—
nxp

Xo=0CQ (because m = @ describes the submodel)
ro = rank(Xy) = tr(Q)
n = ngp (balanced design)
n=Cm
Py = XoXg
- CQRCICQQC
nol
=ny'CQ QT QC
~—~
=Q
=nytCcQC’
Pon = ny1CQC’ o)
n
=CQm as expected.

(Ey under the submodel where m = Qp < m = Qm)

. Cm—-C 2
B(o) = o* + e
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12.2 Penalized Least Squares
Model:

= X e
y =X B+,
nx1 nXp px1 nx1

Goal: To estimate n = X and, if possible, 5.

Definition 12.2. Penalized Least Squares

The penalized least squares criterion is

TB)=ly—XBP>+ B

where W is symmetric positive semi-definite.

We consider § values that minimize T'(3) over 8 € RP.

Note:
1. W = 0 gives classical least squares.
2. Existence and uniqueness of minimizers has to be resolved.

3. The strategy is to transform the penalized least squares (PLS) problem to the least squares (LS)
problem.

Theorem 12.3.

Let Bo = (X'X + W)* X’y. Then
1. The minimizers of T'(f) as [ ranges over RP are
Ble)=Fo+[I, - (X'X +W)T(X'X +W)le, ceRP
(This formula reduces to the classical LS formula when W = 0.)
2. XB(c) = X By and W/23(c) = W25, for all ¢ € RP.

3. 5 (c) = By for every ¢ € RP iff rank(X’'X + W) = p, in which case the Moore-Penrose pseudoin-
verse is the regular inverse. (i.e. rank(X) = p or rank(W) = p or both)

Proof. Key idea: Let

- [y = ([ X
@) &
(n+p) (n+p)xp

X
N
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Then
2

17— XB|* = ‘ (fwfz”%)
= ly— X+ |- w5
=y — XBI* + B'Wp
=T(8).

Thus, the PLS criterion is also an LS criterion! So by LS theory:

1. The minimizing values of 5 are

Be) = XTg+(I, — X" X)e ceRP
D
Bo
Using Lab 1 results, we get
X + Y
¥ v/ v v/
Xt=(X'X)"X = [(X’ wi/2) (WI/QH (X" wi/2) (0>
= (X'X +W)TX"y
and
FHR - (RR)X K
5,—/
X+
= (X'X+W)T(X'X +W)
2. LS theory says that X 3 (c) is unique for all ¢ € RP. In particular,
XB(c) = Xpy = XXty

= (W)f/Q) B(C) - <W)§/€(Bc()c)>

X N\ XPo
()G

3. The LS form of T(B) has a unique minimizer iff rank(X) = p, in which case the minimizer is
(X' X)Xy = Xty = 5. ie.

p=rank( X )=rank(X'X) =rank(X'X + W)
(n+p)xp pXp

Both X’X and W are positive semi-definite (z'/Wx >0V x # 0 = all eigenvalues are nonnegative).
So X'X + W is positive semi-definite. X’X + W is positive definite iff at least one of X'X or W is
positive definite. Equivalently, either rank(X’X) = rank(X) = p or rank(W) = p.

O
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12.3 Interpolating Among Submodel Fits Using PLS in Complete Balanced Designs
General Model:

y = C m +_ e , C'C =nolp, nop>1
nx1 nXp pxl1 nx1

Consider again the projection decomposition Z P, = I,, where the {P;} are symmetric and idempotent

and mutually orthogonal. Let lg C {1,2,. s} and let @ = >  Pj. The submodel is m = Qp, € RP. To
kElQ

interpolate among LS fits to such submodels, consider the penalty matrix:
S
t):ZtkPk where t, >0, 1 <k <s.

(Q and Q(t) are not the same.) Note that Q(¢) is a symmetric positive semi-definite matrix. Consider the
PLS criterion:
T(m) = ly — Cml? + m'Q(t)m

S S
m — Ztkm'Pkm = Ztk‘Pkm‘Q-
k=1 k=1
Since rank(C') = p, by the previous theorem T'(m) has a unique minimizer,

m(t) = argmin T(m) = [C'C + Q(t)] ' C'y

meRP

Note:

(where t = (t1,t2,...,ts) € [0,00)®). This simplifies greatly because C'C' = ngI,, and so

S

m(t) = [no \If, +itkpk}10/y = [Z(N(H-tk)PkrlC'y

- k=1 k=1
> P
E=1
S
= Z(no + tk)flpkcly

k=1
s
= Z akPkm
k=1

where a = 22—, m = nalC’y = LSE of m in y = Cm + e. Observe that aj € (0, 1].

no+tk

Note:

1. By adding the values ap, = 0, 1 < k < s, we obtain the candidate shrinkage estimators considered
earlier as a slight extension of the candidate PLS estimators.

2. The PLS estimator 7 (t) is defined for unbalanced complete layouts:
m(t) = argmin T(m) = [C'C + Q(t)] ' C'y

meRP

by the previous theorem. ¢t = (t1,t2,...,ts) € [0,00)°. Now C'C = diag{n;}, where n; is the number
of observations on m;.

3. As in the balanced subcase, we seek to find ¢ € [0,00)* that minimizes the estimated risk of m(t).
Unfortunately, simplification of [C'C + Q(¢)]~! is not obvious.

4. Other penalty matrices can be considered usefully beyond Q(t).
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13 11-8-11

13.1 PLS Estimators in Possibly Unbalanced Layouts

Model:

~—

nx1 nxXp pxl1

_ I~ - ' A .
y =_C m +e, CC=diag{n;}, ni>1Vi

e satisfies the strong Gauss-Markov model. The PLS estimator of m is

1(t) = argmin(ly — Cm|> +m’ Q(t) m]

meRP

~—~—
penalty
matrix

S

{P;} are orthogonal projections (symmetric & idempotent), with ) P, = I,. For example, ANOVA

projections.

k=1

S S
Q(tym = >ty |Pem[> = m/ tpPy | m

! P2
=m'Pim

S
Qt) = Z t, P, = spectral representation

k=1

m(t) = [C'C+ Q1) C"y,
i(t) = Cm(t) = C[C'C + Q(1)] 7' C'y

13.2 Numerical Issues in Computing m(t)

13.2.1 Aside from numerical analysis

Suppose A (m x m) is a nonsingular square matrix with SVD A = ULV’, where U'U = V'V

t €[0,00)°

m and

Definition 13.1. Matriz Norm
Ax
4] = sup 1221
x#0 |LU‘
where | - | is the Euclidean norm. (spectral norm, 2-norm)
Definition 13.2. Condition Number
The condition number of A is l
1 _
K(A) = = A A7)
m
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Theorem 13.3.

A+ AA)L— At
lm  sup  WATAA) I ja=1psa)
0| a4 <e) Al €

Notes

1. Results like this are cited in Matrix Computations (Golub & van Loan), 3rd Edition, page 80.

2. Large k(A) entails relatively large errors in (A + AA)~! versus A~%.

3. When A is symmetric,
B 12 ~ Amax(4)

S N

13.2.2 Apply This Aside to PLS Estimation

m(t) = [C'C+ Q) 7' Cy
— A*l Cly

for A= C'C +Q(t).

Theorem 13.4.

R(C'C + Qb)) > — e

Nmax T tmin

where t = max tg, tpin = min tx, n = max n;.
max 1<k<s 5 ‘min 1<k<s s Ttmax 1<i<p 7

Proof.
A (€€ + Q(1)) = masx a/[C7C + Q1)
= |r£1|a}1<[a/C>IOC'a +a'Q(t)al

Zﬁng@a
- )\maX(Q(t)) = tmax

because {t;} are the eigenvalues of Q(t).
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On the other hand,

s /
Amin = min a [ C'C +Q(t)]a
—diag{ni}

P
= min [Z nias + a'Q(t)a]
i=1

< H‘mi[nmaxlaﬁ +d'Q(t)a)

lal=

= Nmax T+ ‘min a/Q(t)CL
al=1

Thus, for A = [C'C + Q(t)]
)\max(A) tmax
)\min(A) Nmax + Tmin

N
s
=

I
v

Notes

1. Thus, k[C'C + Q(t)] can be very large as ¢ wanders through [0,00)%. e.g. tmax large and other t; =~ 0
makes [C'C + Q(t)] very large.

2. In the balanced design, where C'C' = ngl,, we have re-expressed the PLS estimator as a shrinkage

estimator by computing [C'C + Q(t)]~! algebraically. We seek an analogous strategy for all C' such
that C'C = diag{n,}.

13.3 Reparameterizing PLS Estimators in the General Unbalanced Case
m(t) = [C'C+ Q)] 'Cy
Q)= tbli, > Pi=1I,
k=1 k=1

{Py} are mutually orthogonal, symmetric & idempotent. ¢ € [0,00). Let

di = ., 1<k<mn, d<€(0,1].

This is a one-to-one reparameterization:

tg
1—d? =
L S
1—d2
ty = —5 =
dk

Hence,

COEDIIEDD (1 ;ﬁ) Pi=Q7(d)Q( -d)Q"d,  where
k=1 k

k=1
d=(dy,dy,...,d)T"
1-d®>=(1—dy,1—do,...,1—dp)T"

Q'(d)=> d,'P.=Q(d™")
k=1
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d,;l is positive definite because di > 1. Thus,
k

[C'C+ Q)] =[C'C+ Q™M) ~ d*)Q™ ()]
= Q(d)[Q(A)C'CQd) + Q1 — d*)] 7' Q(d)
PSD
= Qd)[QW) (C'C — 1,) Q(d) +1,] ' Q(d)

PSD

using

S

QL-d) =) (1-d)P,

k=1
S S
-y iRy kn
k=1 k=1
~—
Ip Q*(d)

Definition 13.5. Hypercubed

The hypercubed PLS estimators are

(d) = Q(d)[Q(d)(C'C — I,)Q(d) + L] ' Q(d)C"y
= Q(A)[Q(A)C'CQ(d) + Q(1 — d*)] ' Q(d)C"y
where  d € 0,1]°

Theorem 13.6.

The PLS estimators are the subclass where d € (0, 1]°.

13.4 Numerical Issues for Hypercubed PLS Estimators

Theorem 13.7.

K2Q(A)C'CQ(d) + Q(1 — d?)] < npmax  for d € [0,1]F

where nmax = uax n;. i.e., the matrix Q(d)C’'CQ(d) + D(1 — d?) should invert stably.
<i<p

13.5 Section 11-8-11: Lab 6 Comments

For parts (a)-(d), use matrix results about rank and trace.
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For parts (e)-(i), use the results from (a)-(d) to perform data analysis.

For part (h), the fourth difference matrix is
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14 11-10-11
14.1 Penalized Least Squares
Recall:

1. = C m +e
Yy vv+
nx1 nxp px1

2. C'C = diag{n;}, n; > 1, where C is the data-incidence matrix

P
3.n=> n
i=1
S
4.Q(t) = X tk Py
k=1

S
5. I, = Y P, where the Py’s are mutually orthogonal projections (e.g. ANOVA)
k=1

PLS Estimator

1.
mpLs(t) = argellﬂggn [ly = Cm|* +m'Q(t)m]
Q) = zs:tkpk
k=1
so m'Q(t)m = kil ti| Pem?
2.

mpLs(t) = [C/C + Q(t)]_lcly, t e [0, OO)S

14.2 Hypercubed Penalized Least Squares Estimator (HPLS)

mmpLs = Q(d)[Q(d)C'CQ(d) + Q(1 — d*)] 7' Q(d)C"y
= Q(d)[Q(d)(C'C — L,)Q(d) + L) 'Q(d)C"y,  de0,1]°

HPLS estimators contain PLS estimates, but should promote numerical stability.

14.2.1 Numerical Conditioning of HPLS

Question: Is the matrix inversion well-conditioned?

Theorem 14.1.

KA Q(A)C'CQ(d) + Q(1 — d*)] < Nax, Nmax = max ng, d € [0,1]°

1<i<p

(where d? means coordinate-wise squaring)
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Inversion should be stable for all d.

Proof.
K2(A) = W, where A is symmetric
A= Q) [C'C ~ 1] Q(d) + 1,
B

Let B =CC’' — I, = diag{n; — 1}.

/
Amax = maxa Aa

la]=1
- e QOB + o]
= lm‘zi}lc d'Q(d)BQ(d) + 1
Note:
Q(d)af® = d'Q*(d)a = d'Q(d*)a < Anax(Q(d?)) |a]? = di s
gl
Hence

Amax(A4) < maxd'Bb+ 1
[b|<1

Amin(4) = min[d’ Q(d)BQ(d) a+ d'a
a —
>0b/c
B is pos. semi-def.

b/cn; —1
>0+1=1

14.3 HPLS Estimators Include Submodel Fits
Model: y = Cm + e.

Let g € {1,2,...,s} and @ = > P;. @ is symmetric and idempotent and defines the submodel
——

kel
pPXp @

m=Qp, feRP.

Recall: In submodel Q, the LSE of m is g = (CQ)"y.
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Theorem 14.3.

Suppose

. 1 ke lQ
di = { 0 otherwise

Then

mupLs(d) = (CQ)y.

Proof.

m(d) = Q(d)[Q(d)C'CQ(d) + Q1 — d)*!| ' Q(A)C"y
by the choice of d

Qd) =@
Q1 —d*) = Zs:(l — &) P =1, - Q
Q- =0 | .
mh(d) = Q[@XC_er@] QC'y

A and B are symmetric with AB = 0 (think of the midterm problem). Hence
(A+B) ' =(A+B)"=A"+B*
m(d) = Q(CQ)Y(CQ)IT QCy +Q (I, - Q)" QC"y
—_— —_——

At P
=C(CQR) Ty +0 because (I, — Q)T =1, — Q
=(CQ)"y by Lab 1 part 1

14.4 Symmetric Linear Estimators

Linear model of full rank:

y=_X_ [ +e
nxp px1

1. Assume rank(X)=p <n < full rank

2. Assume Gauss-Markov error model: the e; are i.i.d. and E(e;) = 0, Var(e;) = 02 < oo, Ele}] < co.

Definition 14.4. Linear Estimator

A linear estimator of n = E(y) = X has the form Ay, where A does not depend on y, and A is an
n X n matrix.

Loss of Ay is p~t| Ay — n|%.

Risk of Ay is R(Ay,n,0?) = Elp~|Ay — n|*] = p~'E[|Ay — n|*].
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Theorem

14.5.

. The risk of Ay is

R(Ay,n,0°) = p~'[o? tr(AA) + (I, — A) (I, — A)n)

p

P [?AP + [y — AnP]

pHo? wAA) (L~ AY (L~ A
N——

Frobenius norm

. The oracle A that minimizes this risk is

A= I, — (I, + 0'_27777')_1
= (o + n|*) "'

A is a symmetric positive semi-definite n X n matrix.

. The canonical form of A. Let H = X'X, U = XH Y2, Then

n=U¢, ¢=HY?3
U'U =1,
A=USU, S= (o + ¢ 7ee

Here S is symmetric with eigenvalues in [0, 1].

Proof. (Sketch)

1.

R(Ay,n,0%) = p "B Ay — n|*] = p 'E[A(y — n) + (In — A)n|’]
=p o? tr(A'A) + 1/ (I, — A)' (I, — A)n)

n'n—2n'An+n' A’ An

= variance + bias

= convex functions of A

2. We use matrix derivatives to minimize the risk (c.f. Rao & Toutenberg (1995) or “Matrix Codebook”

online

Hence,

)
Dtr(AA)
a4
onfAn
24
on'A'An ,
T4 M
OR(Ay,n,0?)

—1 2 / /
20“A — 2 +2A
A 20 n n']
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Set %ff’oj) = 0 and solve for A.

Alo* L, + ') =
A =i/ (oL, + )7}

/ N\ —1 /
_ <In N m?) WL+ W) where 1 = 7.

o? o?
Thus, A = I, — (I, + W)~! = symmetric matrix because

I, = (I, + W) (I, + W)™}
= (I, + W) L 4+ W(IL, + W) !

This is the first formula for A. To get the second formula, we use the identity (see Schott page 10)

=1 _ _ cd’
In+_c d ) =1, s de
nx1l 1xn
Set ¢ =d = o~ !n to get
-2,/
I 2,0~ _ 7

= In = (o® + ")~ '
Thus, A = (62 + |n|>)~'n/, a symmetric positive semi-definite matrix.

3. Canonical form of A. Since n = U¢, with U'U = I,,,

> = £UV'UE = |¢)?

' = UEE'T’
A= (o +|¢P) Uy = USU, S=(a+1¢)) e
)\min(g) >0 because S is p-s.d.
! !
A (5 = 130 — max 288
(5) = S = ot
max |a’¢|? )
i C.S.
al=1 €] <1

T IR S PP
Note

(a) This motivates interest in studying symmetric linear estimates, Ay, where A = USU’ with U con-
structed from X as discussed and S symmetric with eigenvalues in [0, 1].

(b) Symmetric linear estimators with this structure arise naturally.
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In the model y = X + e, rank(X) = p < n, the LSE of n = X is

7/7 — UHl/QHlel/Q U/y
—_—

I
=UUy
=U_S Uy

<~
:]p

We have shrinkage when we replace eigenvalues less than 1.

PLS estimators in y = Cm + e, where C is the data-incidence matrix, C'C = diag{n;}, n; > 1.
pXp

Penalty matrix from earlier:

Qt) = Ztkpka etc.
k=1

fipLs = C[C'C + Q1)1 C'y

symmetric

So 7pLg is a symmetric linear estimator.

14.4.1 Canonical Structure
Let H=C'C, U=CH Y% & C=UHY? Then
ClC'C+ Q)¢ = UHY?[H + Q1) *HY?U
= U[l, + HY2Qt)H~ Y~ 1U

5(t)

S(t) is symmetric, and
‘r(lrflr} a'[I, + H™Y2Q(t)H"/?)a = smallest eigenvalue of S~'(t)
>1
Thus, the larges eigenvalues of S(¢) are < 1. The smallest eigenvalues of S(t) are > 0 because S(t) is positive
semi-definite.

14.5 Discussion

If canonical structure, we reduce numerical error.

e HPLS are numerically stable.

e HPLS has canonical form.
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15 11-15-11

15.1 Last Time

Last time: y = X 3+e. Found oracle linear estimator Ay that minimizes risk. Motivates symmetric linear estimators
of the form Ay, where

A= U S U
S~ =~
nXp pxXp pxn

U=X(X'X)"1?
R(U) = R(X)
U'v =1,

where S is symmetric with eigenvalues in [0, 1].

15.2 Actual Examples

1. LSE of n is
fiLs = X(X'X)" X'y = UU'y = U 1, U'y
—~
S
S s
2. PLS in\y/:\C/\n}/—i—\c;/ with penalty matrix Q(t) = > tx Py, with > Py = I, t;, > 0, P2 = P,
nx1 nxp px1 nx1 k=1 k=1
P,P; =0if j #k.
fpLs(t) = C[C'C + Q1)1 C'y

Let H=C'C, U=CH™ /2

fpLs(t) = UHY2[H + Q1)) H'2U'y
=Ul[l, + H_1/2Q(t)H_l/2]_lU’y

=USt)U'y
with
S(t) = [, + H2Q(t)H"/* 7.
~~
symm
Note:

d'S™Htya = d'[I, + HY2Q)H Y?)a > 1 if |a| =1,

psd

so the eigenvalues of S~1(t) are > 1 (because they are the reciprocals of the eigenvalues of S(t), which
lie in [0, 1]).
Bujua, Hastie, Tibshirani (1989) discussed through examples symmetric linear estimators.

3. Hypercubed PLS can also be put into the form US(d)U"y, where d € [0, 1]°.
PLS < HPLS when d € (0, 1]*.
The eigenvalues of S(d) are in [0,1] for d € [0, 1]*.
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15.3 Risk and Estimated Risk of a Symmetric Linear Estimator

Theorem 15.1.

Model: y = XB + e, rank(X) = p, n = X5. Let A be an n X n symmetric matrix.
1. The risk of Ay as an estimator of 7 is
R(Ay,n,0%) = p'E|Ay —nl?
=p ! [02 tr(A2) + tr ((In — A)an’)]
=p Ho? AP + |n — Anf?]
2. Suppose 62 is the LSE of 02 (assume n > p). Then the estimated risk is

R(A) =p~ ' [62tr(A%) +tr (I, — A)(yy' — 621,))] (15.1)
=p " [ly — Ay* + (2tx(4) — n)5?] (15.2)

is unbiased for R(Ay,n,d?).

Proof. 1. Follows by specializing the risk of a linear estimator, using A’ = A.

2. Consider

Ely — Ay|* = E| (I, — A) y|?
———
=E[y'(In — 4)%]
= Etr[(I, — A)*yy]
= tr[(Ln — A)? (' + 0°1,)]
E(yy’)
= tr[(L, — A)*m] + o tr[ (1, — A)?)
= tr[(I, — A)*ny] + o%[n — 2tr(A) + tr(A?)]
p~'Ely — Ay® = R(Ay,1,0%) + (n — 2tx(4))0”

i.e. (15.2) is an unbiased estimator for risk. For (15.1), note that E(62) = 02 and

Elyy — 621, = (' + 0*1,,) — oI, = n1f’.

Note:
1. This result generalizes the Mallows (1973) argument for the estimated risk of submodel fits.

2. The Cp-criterion for § = Ay is |y — Ay|> + 2tr(A)s?

15.4 Specialization for Canonical Symmetric Linear Estimators USU"y

Model: y = X3 + e, rank(X) = p <n. Let U (n x p) be such that R(U) = R(X) and U'U = I,.

h=USU"y = Ay
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where A = USU’.

Definition 15.2. Canonical

A symmetric linear estimator Ay is canonical iff A = USU’ (as above).

Theorem 15.3.

Suppose Ay is a canonical symmetric estimator.

1. The risk of Ay is

R(Ay,n,0°) =p~ ! [0 tr(S?) + tr (I, — S)%¢¢)]
=p '[o?|S]? + € — S¢P]

where £ = U'n.
2. Suppose 62 = ﬁw — UU'y|? is the LSE of 02 (n > p). Then

N

R(A) =p! [(72 tr(S?) + tr (I, — S)2(z2 — 62Ip))]
=p [z = 82 + (2tx(S) — p)&”]

_ g7 : : 2
where z = U’ 'y is unbiased for R(Ay,no*).

15.5 Section 11-15-11

Construct V. The first d columns of V; are the normalized orthogonal polynomials supported on 1 to p of
degrees 0 to d — 1.
vy = poly(z, degree) — d — 1 vectors from degree 1 to d — 1

r=1:p
degree = d —1
v1 = rep(1,p)/\/p
cbind (v, v2)
2
|

For part (c), under what condition on m in the model will lim E|64 — o
PO N

mean square error

= 0?7 Don’t need rigorous

argument, just perception.

For part (h), explain in terms of your findings. Look for a seasonal pattern and at sales on holidays.
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16 11-17-11

16.1 Comments on Lab 7

For part (c), assume that the errors are Gaussian. This simplifies things because then the z’s are Gaussian.
The estimator is clearly biased, but what is the nature of the bias and when is it manageable? When is the
estimator useful?

16.2 Symmetric Linear Estimators (Continued)

y=_X [ +e, rank(X) =p <n, e strong Gauss-Markov
nxXp px1

7 = Ay, where A is symmetric, is a candidate linear symmetric estimator.

We saw that the risk of Ay is

R(Ay,no?) = p~ o tr(A?) + tr[(I, — A)*nr]
=p '[o*|AP + |n — An|?]

The estimated risk is

R(A) = [6%tr(A%) +tr (I, — A)(yy' — 621,))]
=p ! ly — Ay|* + (2tx(A) — n)6?] (Mallows)

where 62 is the LSE of 02 (i.e. n > p).

16.3 Canonical Symmetric Linear Estimators

Let U  be such that R(U) = R(X) and U'U = I, (e.g. U = X(X'X)""/2 OR X = _U LV’ SVD). Since
—— ——
nxp

R(U) =R(X), n € R(X) has the form n =U¢ for E e R? = £ =U'n.

Definition 16.1. Canonical

The symmetric linear estimator Ay is canonical iff A = USU’ for some symmetric p X p matrix S
whose eigenvalues lie in [0, 1].
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Theorem 16.2. Simplified Risk € Estimated Risk Formulas for Canonical Symmetric Linear
Estimators

Suppose that AY is a canonical symmetric linear estimator and 42 is the LSE of o2 (n > p). Then

1.

R(Ay,n,0%) =p " [0®tr(S?) + tr (I, — 9)*¢¢)]
=p '[o?|S]? + € — SEP]

2. Also, for z = Uy

R(A)=p~! [[72 tr(S?) + tr (I, — S)%(27 — 621p))]
= ]f1 [|z — Sz|2 + (2 tr(9) —p)&Z]

is an unbiased estimator of R(Ay,n,c?).

Proof. Second risk formula (which implies the first form):

|A]? = tr(A%) = tf[US U’ - U SU']
N——

IP
= tr[S2U'U) = tr(S?) = |S|?
~~
IP
= — / — et /- =
[n— An| = (n — An)'(n — An) use Ar) US\UI Ug=US¢
p
= (UE - USE) (US —USE) = (€ — S¢)' U'U(E — 5¢)
IP
= |¢ — 5¢f
The second estimated risk formula:
2 _ / _ AV 712
ly = Ayl" = Uy + (I — UV )y = USWy|
Y A
= |UU'y —USU'y + (I, —UUy|> = [UU'y —US U’y 2+ (I, — UU")y|? (cross-product = 0)
=|U(z = S2)P +]y— UU'y
~——
LSE of n
= |z — Sz + (n — p)&° where 62 = LSE of ¢?
Also,
(2tr(_A ) —n)o? = (2tx(S) — n)é?
Usu’
R(A) = |z — S2|* + (w—p)6* + (2tx(S) — »)5?
= |z —Sz* + + (tr(S) —p)é 52
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Notes
1. The S-form uses smaller p x p matrices than the n x n A-form.
2. The S-form does not identically match the A-form when &2 is not the LSE of o2.
e However, both forms of the estimated risk still converge correctly to risk if 52 is suitably consistent.

3. To avoid negative estimated risks, we might also consider the modified formula
Ry (4) = p7t |62 6x(8%) + (1[I, — $)(22' = °L,)]) |

Remark: feel free to use the uncorrected estimated risk formulas in the final project. Smaller is better,
even if it means negative.

16.4 Applications to PLS
16.4.1 Interpolating Among Submodel Fits (Complete Design)
Model:

y=_C m +

€
N
nxp pxl1 nx1

where C' is the data-incidence matrix, C'C' = diag{n;}, n; > 1. {P } 1 < k < s} are mutually orthogonal
S

projections with ) P, = I),. (e.g. ANOVA decomposition) {P;} are symmetric & idempotent: P,P; = 0 if
k=1
j # k. Let
S
Qt)=> tPi,  tp>0.
k=1

The candidate PLS estimator of m is

mprs(t) = [C'C + Q)] ' C'y.
The hypercubed PLS estimator of m is

inprs(d) = Q(d) [QD(C'C — L)QW) + L) Q)Cy,  de0.1]°
Put H=C'C. Let U=CH /2 & C=UHY2 Then
i(d) = Cr(d) = US(d)U"y
with  S(d) = H'2Q(d) [Q(d)(H - 1,)Q(d) + 1) * Q(d)H"/?
Note:
1. When d € (0,1]*, the eigenvalues of S(d) lie in [0, 1]. Then
i(d) =UH2 [H+ Q)] H2 Uy

S(d) in t-parameterization
2. This property is preserved if we let dp — 0.

Hence, US(d)U"y is a canonical symmetric linear estimator for every d € [0, 1]*.

The estimated risk of HPLS estimator 7(d) (or 7(d)) is now

R(d) = p_1 [6’2 tr (SQ(d)) + tr ((Ip — S(d))z(zz' — 62Ip))]
=p ' [z = S(d)z|* + 2tr (S(d) — p)67]
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where 2 = U'y, U =C (C'C)_l/Q, 62 = LSE of ¢2 if n > p or another consistent estimator of o2. We now
N\ —
H-1/2
minimize estimated risk by choice of d € [0, 1]°.

Note

1. If we restrict each dj to be either 0 or 1, this method identifies the submodel fit with smallest estimated
risk.

2. This is computationally efficient because all of these submodel fits are treated simultaneously.

3. Moreover, minimizing estimated risk over all d € [0, 1]° may be reduce risk substantially.

16.4.2 Ordinary PLS with One Covariate (Complete Design)

Model:
y=_C m +e, C'C = diag{n;}, n; > 1
nxp px1
m; = p(z;)
WLOG, assume z1 < 22 < --- < x,, are distinct values of a covariate. p is an unknown function. Either

1. The covariate is ordinal: the values and order of the covariate matter. Example: Canadian earnings
data.

2. The covariate is nominal: it is just a label; permutation of labels is harmless. Example: rat litter data.

PLS candidate estimators — general strategy

Let A be an annihilator matrix: Au =0 for u = p’1/2(1, 1,...,1)". Let
<~ -
?7xp px1

m(v) = argmin |y — Cm|* + v|Am|*] = argmin ||y — Cm|* +vm/ _B_m
meRP meRP ?,:;

From earlier, we know that

m(v) =[C'C +vB|'C
(In Lab 6, A = 4th difference matrix.) Can we hypercube the parameterization to stabilize computation of
m(v) for large v?

Since B = A’A is positive semi-definite, it has spectral representation

pPXp
S
B = Z e P
k=1

where Py is the eigenprojection for eigenvalue ;. Order the eigenvalues as

0< A <A< < Ag, s < p(b/c of possible multiplicities)

S
P.Pj=0ifj#k P2=P,. 3 P, =1, Thus,
k=1

vB =Y (vA\)P.=> tQs
k=1 k=1
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where t = (VA1, VA2, ..., v). Le. t € something = {(VA1,v)2,...,vAs) | v > 0} C [0,00)%. The candidate
PLS estimators amount to the estimators

m(t) = [C'C + Q)] 'C'y for t € something.

The hypercubed PLS estimators are:

m(d) = Q(d) [Q(d)C'CQ(d) + Q(1 — d*)] Q(d)C"y
= Q(d) [Q(A)(C'C — L,)Q(d) + I,] ' Q(d)C'y

where d? = ﬁti, d € D is a restricted subset of [0, 1]°. Let

Do={(1+v )" V2 (A +vr) V2 . (A +0vAr) V2
Cases:

1. Suppose A\; = 0. Then D =Dy U (1,0,0,...,0). < Adds the fit to the submodel m = P13, f € RP, to
the candidate class.

2. Suppose A\; > 0. Then D =Dy U (0,0,...,0). (Think of Lab 4.)

Numerical Stability when t; = vy

From earlier, the condition number for PLS satisfies

W00 +Q(t)] > — L omas

Nmax + VAmin

which can be large; for example, if Ay = 0 and v is large. The condition number for HPLS satisfies
FQIDC'CQ() + QL — d*)] < Numax

which does not depend on v.
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17 11-22-11

17.1 Simple PLS for One Covariate < One-Way Layout
Candidate PLS:

m(v) = argminfly — Cm|> + v|[Am|?], v >0
meRP

= [C'C + vm/ Bm)]
where B = A’A, A is an annihilialtor: Au =0, u=p~/3(1,1,...,1). Candidate HPLS extension...

17.1.1 Constructions of A

The rows of A are contrasts (meaning they sum up to zero). m = p(z;), 1 <i<p. 1 <z < -+ < Tp are
distinct values of the covariate. p is unknown.

1. Ordinal Covariate. Suppose the {z;} are equally-spaced. To penalize departures in m from a local
polynomial of degree hg — 1 in the {z;}, we take A (? x p) to be the hoth difference matrix.

Explicitly, define

A (9)={0uw}, Ouu =1, 6yut1 = —1, all other 6, =0

(g=1)xg

Define recursively

Ist difference  D(1,p) = A(p)

2nd difference  D(2,p) = A(p — 1)D(1, p)
~——

(p—2)xp

hth difference  D(h,p) = A(p—h+1)D(h—1,p), 2<h<p-1
———
(p—h+1)xp

Set,
A = D(ho,p)

(p—ho)xp

to achieve the goal of penalizing departures from a local polynomial of degree hg — 1.

Let ¢ = (21,2, ...,3,) . Write ¢ = (x’f,wg,...,x;})’. Then Ac" =0for 0<h<hg—1. u < °.

More generally, if the elements of ¢ (the distinct covariate values) are not equally spaced, we have to
generalize the concept of differencing. We construct A to satisfy three conditions:

(i) For every possible 7, the elements in row i of A that are not in columns i,i+1,...,i+ hg are zero.
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(ii) Ach =0for0<h < hg—1.

(iii) Each row vector in A has length 1.

These 3 conditions are achieved by putting the nonzero elements in row i to be the basis vector of degree
ho in the orthonormal polynomial (MATLAB: orth) on the hg + 1 design points (z;, Tit1, ..., Tithg)-

Note: When the {x;} are equally spaced, this general construction of A yields a multiple of D(hg,p).

2. Nominal Covariate. The values of a nominal covariate are merely labels that can be permuted without
loss of information. (e.g. one-way ANOVA.) The candidate PLS estimators should also be invariant
under permutation of nominal covariates. This motivates setting A = I, —uw’ = H (from the ANOVA
discussion), with u = p 21,1, .., 1)’. (Remark: think of the final project as an extension of this to
two-way ANOVA.)

17.2 Simple PLS with Two Covariates < Two-Way Layout

(complete design)
Model: y = \C’/\n;%—e
nxp pxl1
Covariate k (k = 1,2) has py, distinct values, x5 < Tp2 < -+ < T p, -
Let Z be all pairs i = (i1,42) such that 1 < i < p for k = 1,2. WLOG, order the p = p1ps elements of 7
in mirrored dictionary order. Let x; = (214, T2, ).

Assume that m is such that m; = u(x;), where p is unknown.

17.3 Comments on the Final Project

If you get stuck, look at what we did for the rat litter data and the hypercubed LS and how setting d = 0
or d = 1 leads to submodel fits.

Each part gets equal value, 9 points (except the last part, which gets 8).

17.4 Section 11-22-11
17.4.1 Lab 6 Comments

(b)

1z 23 xd
1 zo 22 :ng
X(d) = } .
2 L gd
Lz Tp/ px(d+1)

rank(X(d));d + 1. If rank(X(d)) < d + 1, then there exists v € R such that X(d)y = 0. =
d .
polynomial » 7v;x/ = 0 has p roots, z1,...,xp. But it should have at most d roots =<.
4=0
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min |y — Cm|? + A|Dm)?
m J/

S(m)
S(m) =9y —2¢/Cm +m/(C'C +A\D'D)m
aS(m)

2~ 20"y 4+ 2(C'C + AD'D)ym = 0
om

C'C +_ X\ D'D is invertible.
~~ < <~
pos. def. >0 pos. def.

17.4.2 Lab 7 Comments

(¢) Va=[Vizg VRopl, 2 = [21.79 280"~ Then

p
Z Zi2 = |280:p|2 = |‘/§O:py|2
=80

p

E <Z Z?) = E"/Slo:py’Q = E(y/‘/SOZP‘/S/O:p Y )

h ~~
=80 mae

= m/‘/EQO:PVgO:pm + E(e/VBOIP‘/S/O:pe)

E(e/‘/gOIP‘/S,O:pe) = E(tr(e/‘/gOZPVvS/O:pe)) = tr(E(ee/) VvSO:p%O:p)
——"

o1
= 02 tr(‘/SIO:pVéO:P) = (p - 79)02
m' Vio.pVig.,m
= E ~2 — 2 P P
(6F) =0+ S

’
m Vgo;pvgl(]:pm

oot = 0, we have E|67; — o?| — 0.

Claim: when lim
pP—00

Proof. First, Cov(zg0,p) = Cov(‘/g’():py) = UQIp_79. This means the z;’s are uncorrelated, so

Z?:so Var(zf ) < k
(p—=792 T p-—T79

where & = max Var(z?) < oo because of the finite fourth moment assumption
7

Var(6%) = —0
Var(z) = Ez? — (Ex)? = E|z|* — (Ex)?
= E|6% — o?| = (E(6% — 0?))* + Var(6%)
—_— ——
—0 —0

So E|6%, — 02| is satisfied.
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18 11-29-11

18.1 (Simple) PLS with 2 Covariates

Model:

— — / — 1 .
y = C m +_e , rank(C)=p, C'C=diag{n;}
nx1 nxXp pxl1 nx1

Covariate k (k = 1,2) takes on pj distinct values, zy, < xg, < -+ < Tk, - Let T = all pairs (i1,12) such

that 1 < i < pr, K = 1,2. WLOG, order the p = p1ps elements of Z in mirror dictionary order.

x; = (x1,4,,%2,,) for i € Z. Then

m_ = (my,ma,...,mp,)
px1
where m; = p(z;), p is unknown.
Candidate PLS Estimators
Let Ay be an annihilator for covariate k:
Aguy, =0, we =pp (L1001, k=1,2
~
prXx1

Let
B, = uQu’Q &® AlAll, By = AQAIZ ® ulull, Bis = AQA/Z &® AlAll

Let v = (11, v2,v12) € [0,00)3. Define
m(v) = arg min Uy — C’m|2 +vym/Bym + vom/ Bom + 1/12m/B12m]
meRP

-1

= |C'C 4+ v1 By 4+ v9By + 119B19 C"y
Q)

e Candidate PLS estimators

e Choose v, 9, V12 to minimize estimated risk

18.1.1 Spectral Representation of Q(v)

Spectral representation:

S1

Al A = ZAlaplm where Pip = ujuy, 0=2XA1 <Ap <o < Ag
a=1
S2

A Ay = Z A2b Pay, where Py1 = uguy, 0= Aa1 < Agp <--- < Aoy,
b=1

Let
s [ 1 =k
k=Y 0 j#£k
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Then

By = Py @A1A]
—

ugul,

s1
= Z Ma(Po1 ® Pyg)

a=1
s1 89

= Z Z A1 (Pop @ Pia)
a=1b=1
52

By = ay(Poy @ Pr1)

b=1
s1 89

=3 ) a1 dap(Poy @ Pra)
a=1b=1

By = A2Al2 & AlAll

s1 89

=3 ) Mada(Poy @ Pry)
a=1b=1

Hence,
s1 82
Q(V) =By +19By +119B19 = Z Ztab(PQb ® Pla)
a=1b=1
spectral rep. of Q(v)
where

tab = tap(V) = V1M 10061 + V2041 A2p + V12X 10 A 16

So tap € [0,00)%152 ie. ty, € T C [0,00)%2%2. Continue much as for 1 covariate.

18.2 Sketch of Supporting Asymptotics
(c.f. Beran (2007) JSPI)

Model:

= = <
y=_X [ +e, rank(X)=p<n
nXxXp px1

e satisfies strong Gauss-Markov. Let
H=X'X, U=XHY? = U'U=1,

The candidate estimator is
() =USH)U"y

(this is a symmetric linear estimator in canonical form) ¢t € [0,1]%, or more generally ¢ € T is a closed subset
of [0,1]%. Let

Then E(z2) = £ = U'n, Cov(z) = 02I,.
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Loss:

L(i(t),n) = p~i(t) —nl?
=p US(t)z — UE |
~—
n
=p S(t)z — ¢

Let T(t) = S2(t), T(t) = [I, — S(1)]*.
Risk:

R(ﬁ(ﬂv 7, 02) = EL(ﬁ(t)a 77)
=p tr [0*T(t) + T(t)¢¢]

Let 62 be an Li-consistent estimator of o2 as p — co. Estimate &€’ by z2/ — &QIp. The estimated risk is
P(t) =p ttr [6°T(t) + T(t) (22" — 6°1,)] .
18.3 Assumptions for the Asymptotes
1. 7 =[0,1]°. The symmetric matrices {S(t) | t € T} satisfy

supsup |S(t)]sp < 00
p teT

Bls, = sup [Bzlgucidean ) G(4) is continuous on T and is differentiable on the interior of 7~ with partial
P |]
|z|#0
. . oS .
derivatives V;S(t) = %:), 1<i<s.
2. The strong Gauss-Markov model holds.
3. Under the strong Gauss-Markov model,

lim sup E[6%2—0% =0
P00 p=1in2<a

for every finite a > 0 and o2 > 0.

Theorem 18.1.

Suppose Assumptions 1-3 hold. Let W (t) be either the loss L(7(t),n) or the estimated risk 7(¢) of
7(t). Then for all finite a > 0 and o2 > 0,

lim sup E |sup|W(¢t)—r(t)]| =0
P70 p=tip2<a  LteT

where r(t) = R(7(t),n, o?).
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19 12-1-11

19.1 Asymptotics (Continued)

Theorem 19.1.

y=XB+e  0t)=USHUy
Suppose Assumptions 1 to 3 hold. Let W (t) denote either the loss L(7j(t),n) or the estimated risk
#(t) of /(t). Then for every finite @ > 0 and o2 > 0,

lim sup E|sup|W(t)—r(t)|| =0
PeOptn2<a  LteT

where r(t) = R(i(t), 1, 0%) = risk of i(t). n = Ey = X3, [n2 = #X'X8 = | X"

Proof. (Steps)
1. Pointwise convergence of W (t) — r(t) 2 0.

2. Show sup |W (t) — r(t)| 2 0. Uses weak convergence in C[0, 1]°.
teT

3. Strengthen this to Esup |[W(t) — r(¢)| — 0 (uniform integrability).
teT

Theorem 19.2.

Let £ minimize the estimated risk #(¢), and let £ minimize the risk 7(t) = R(/(t),n,02). Suppose
Assumptions 1 to 3 hold. Then for every finite ¢ > 0 and o2 > 0,

lim sup ’R(ﬁ(f)7 m, 02) - T(f)‘ =0
pﬁoop_lln‘ZSa

where ¢ = argmin #(t), £ = argminr(t).
teT teT

Moreover, for V equal to either the loss L(7j(f),n) or the risk R(7(),n,0?),

lim sup RE|V —#(f)] =0.
P =12 <0

where
#(£) = min 7 (¢
(i) = min (1
= estimated risk of the candidate estimator with smallest estimated risk
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19.2 Summary

Theorem 19.1: The estimated risk is a function is a trustworthy approximation to the true risk function
over t € T.

Theorem 19.2: (follows from Theorem 19.1) Hence

1. The risk of the adaptive estimator 7(f) converges to the risk of the best estimator in the candidate
class.

2. #(t) converges to this risk.

19.3 Statistics on Manifolds

Prominent researcher: Victor Patrangenara
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adaptive projection estimator, 68
adaptive shrinkage estimator, 67
ANOVA decomposition, 36, 39

balanced complete layout, 47

canonical, 89, 90
complete design, 34
complete layout, 40, 47
condition number, 76
consistent, 6

contrast, 95

data incidence matrix, 17
deletion matrix, 57
design matrix, 18

estimated risk, 33, 67
Euclidean norm, 8

F-statistic, 29

Gauss-Markov error model, 20
generalized inverse, 5

hypercubed, 79
Kronecker product, 43

least squares estimator (LSE), 12
linear estimability model, 20
linear estimator, 83

linearly estimable, 20

Moore-Penrose pseudoinverse, 5

nominal covariates, 56
normal equation, 10, 12

one-way layout, 17

oracle projection estimator, 63
oracle shrinkage estimator, 63
ordinal covariates, 56

penalized least squares, 73
penalty matrix, 75

quadratic risk, 61

risk, 32

solution, 6

unbalanced complete layout, 47

unbiased estimator, 20
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