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What is a graph?

A graph G has:
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What is a graph?

A graph G has:
@ Vertices V=V(G) ={u,...,vn}
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What is a graph?

A graph G has:
o Vertices V=V(G) ={1,...,Un}
e Edges E=E(G) ={ey,...,en'}
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What is a graph?

A graph G has:
e Vertices V =V(G) ={vy,...,un}
e Edges E=E(G) ={ey,...,en'}

o Edge weights, which we organize in a weight matrix
W=Ww(G) eRVN

o wj; denotes the edge weight between vertices i and j
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What is a signal on a graph?

A signal on a graph is a vector f € RY whose values correspond to the
vertices of the graph G.
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What is a signal on a graph?

A signal on a graph is a vector f € RY whose values correspond to the
vertices of the graph G.
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Examples of Graph Signals (1/3)

An audio signal:
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Background

Examples of Graph Signals (2/3)

An image:

38383830008 0888854:
38299820003 000932004.
99238802285222355022.
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Examples of Graph Signals (3/3)

Traffic volume (Toronto):

43.9

435 1

-79.6 -79.5 -79.4 -79.3 -79.2
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Background

Our Assumptions

We assume that the graph is
e connected.

o undirected. w;;=wj;, and thus W is symmetric.
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© Motivation
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Motivation

Aims & Objectives:
@ Develop overcomplete multiscale transforms for signals on graphs
@ Develop a corresponding best-basis search algorithm

© Investigate usefulness for approximation and data analysis
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Motivation

Aims & Objectives:
@ Develop overcomplete multiscale transforms for signals on graphs
@ Develop a corresponding best-basis search algorithm

© Investigate usefulness for approximation and data analysis

Challenges:

© Irregular structure of the domain
@ Lack of translation, dilation, and a general notion of frequency
o Critical elements in the wavelet transform

© Computational complexity!
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Overcomplete Multiscale Transforms RGETTEWNEET AT TY-S

@ Background
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Overcomplete Multiscale Transforms RGETTEWNEET AT TY-S

Recursive Partitioning

Our transform requires as input a recursive partitioning of the graph.
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Overcomplete Multiscale Transforms RGETTEWNEET AT TY-S

Recursive Partitioning

Our transform requires as input a recursive partitioning of the graph.
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Recursive Partitioning
Recursive Partitioning

Our transform requires as input a recursive partitioning of the graph.
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Recursive Partitioning
Recursive Partitioning

Our transform requires as input a recursive partitioning of the graph.
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Overcomplete Multiscale Transforms RGETTEWNEET AT TY-S

Recursive Partitioning

Our transform requires as input a recursive partitioning of the graph
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@ We used Fielder vectors of the Laplacian matrices

@ The associated cost is from O(NlogN) to O(N?), depending on the
graph and the implementation.

@ More info = J. Irion, N. Saito: “The Generalized Haar-Walsh

Transform,” Proceedings of 2014 IEEE Workshop on Statistical Signal
Processing, pp. 488-491, 2014.
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Recursive Partitioning
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Overcomplete Multiscale Transforms GHWT

@ Background
© Motivation

© Overcomplete Multiscale Transforms

o GHWT

@ Matrix Data Analysis

© Conclusion
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Overcomplete Multiscale Transforms GHWT

Given a recursive partitioning of the graph, the GHWT yields an
overcomplete dictionary of orthonormal bases for signals on the graph.
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GHWT
GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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Overcomplete Multiscale Transforms

GHWT on Pg
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GHWT on Pg
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GHWT on Pg
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Overcomplete Multiscale Transforms GHWT

GHWT on Pg
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LIz
GHWT on Pg — Coarse-to-Fine Dictionary

We call this the coarse-to-fine dictionary.
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Notation is 1//;6[, where

@ j is the level

@ k denotes the region on level j

@ /is the tag

We have 3 types of basis vectors:

e scaling vectors (¢ =0)

e Haar-like vectors (¢=1)
e Walsh-like vectors (¢ =2)
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LIz
GHWT on Pg — Fine-to-Coarse Dictionary

Note that the basis vectors with tag £ on level j were used to generate
those with tags 2¢ and 2¢+1 on level j—1.
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LIz
GHWT on Pg — Fine-to-Coarse Dictionary

Note that the basis vectors with tag £ on level j were used to generate
those with tags 2¢ and 2¢+1 on level j—1.

Using this fact, we can reorganize the basis vectors by their tags to yield
the fine-to-coarse dictionary:
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GHWT
GHWT on Pg
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(a) Coarse-to-fine dictionary

(b) Fine-to-coarse dictionary
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of L,
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=1

50

49

48

47

46
-0.005

45 -0.01

-0.015
44

-0.02

43
-98 -96 -94 -92 -920 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=2
50
0.025
49 0.02
0.015
48
0.01
47 0.005
0
46 -0.005
-0.01
45
-0.015
44 -0.02
-0.025
43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=3
50
0.025
49 0.02
0.015
48
0.01
47 0.005
0
46 -0.005
-0.01
45
-0.015
44 -0.02
-0.025
43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=4
50 003
49

0.02
48

0.01
47

0
46

-0.01
45

-0.02
44
43 -0.03

-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=5
50 0.03
* 1 0.02
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=6
50 003
49

0.02
48

0.01
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0
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-0.01
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-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, =7
50 0.03
* 1 0.02
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=8

50

49

48

47

46
-0.01

45 -0.02

-0.03
44

-0.04

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=0, Region k=0, [=9

50

49

48

47

46
-0.01

45 -0.02

-0.03
44

-0.04

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=1, Region k=0, [=1
50 0.04
49 2 0.03

N
L 2
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=1, Region k=0, [=2

50

49

48

47

46
-0.01

45 -0.02

M 003

-0.04

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=1, Region k=0, [=3

50

49

48

47

46
-0.01

45 -0.02

M 003

-0.04

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=2, Region k=0, [=1

50

0.03
49

0.02
48

0.01
47

0
46

-0.01
45

-0.02
44

-0.03
43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=2, Region k=0, [=2

50

49

48

47

46
-0.01

45 -0.02

~0.03
44

-0.04

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=2, Region k=1,

50

49

48

47

46

45

44

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=2, Region k=1, [=2

50

49

48

47

46
-0.02

45 ~0.04

-0.06
44

-0.08

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=3, Region k=0, [=1

50

49

48

47

46
-0.02
45

-0.04
44

-0.06

43
-98 -96 -94 -92 -90 -88
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GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=3, Region k=0, [=2
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49

48

47
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45
-0.04

44

-0.06

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=3, Region k=2, [=1

50

49

48

47

46

-0.05

45

44

43
-98 -96 -94 -92 -90 -88
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GHWT
GHWT on MN Road Network

@ j=0is the coarsest level, j =16 is the finest

@ Inverse Euclidean weights, partitioned via the Fiedler vector of Ly

Level j=3, Region k=2,

50

49

48

47

46

45

44

43
-98
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Overcomplete Multiscale Transforms GHWT

Observations

@ When performed on an unweighted dyadic path graph (partitioned
dyadically), the GHWT corresponds exactly to the Haar-Walsh wavelet
packet transform

@ The generalized Haar basis is a choosable basis from the fine-to-coarse
dictionary

@ Given a recursive partitioning with O(log N) levels, the computational
cost of the GHWT is | O(NlogN)

N jmax GHWT Run Time
MN Road Network 2,636 14 0.11s
Facebook Dataset 4,039 26 0.62 s
Brain Mesh Dataset | 127,083 20 429 s

(Experiments performed using MATLAB on a personal laptop.)
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Overcomplete Multiscale Transforms R:=TOMEEETWNELTGLT

© Overcomplete Multiscale Transforms
@ Recursive Partitioning
e GHWT
@ Best Basis Algorithm
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Best Basis Algorithm
Best Basis Algorithm

e Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.

@ We generalize this approach, developing and implementing an
algorithm for selecting the basis from the dictionary of GHWT bases
that is “best” for approximation and compression.

@ We require an appropriate cost functional _#. For example:

N 1/p
j(x)zllxllp:(ZIxilp) l<p<2
i=1
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Best Basis Algorithm

oo o, g, dos do, dos
oo o, dy,, dy dy, dy
g o, di ds s, dso
dog i d ds di dsg
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Best Basis Algorithm

oo o, g, dos do, dos
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Best Basis Algorithm
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Best Basis Algorithm

oo o, g, dos do, dos

d&,O d(%,l d&,Z dll,O dll,l d11,2

g g, i dso
dsg dy

http://jefflirion.github.io/ Multiscale Transforms for Graph Signals



Best Basis Algorithm

By A, A, A, &,

0,3 0,4 0,5

1 1 1
dl,O dl,l d1,2
2 2 2 2
d0,0 dO,l dl,O d3,0
3 3
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Best Basis Algorithm
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Best Basis Algorithm
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Best Basis Algorithm
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Best Basis Algorithm
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Overcomplete Multiscale Transforms R:=TOMEEETWNELTGLT

Comparison to Decision Trees

(a) Full set of coefficients arranged as (b) The “pruned” tree of best basis
a tree. coefficients.
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Best Basis Algorithm
Best Basis Algorithm

Proposition

Suppose that ¢ is a cost functional such that for all sequences {x;} and
{yi} and integers a < <y,

it #(xitiewap) < 2 (iticiap)
and 7 ({xitiepy) < 2 ((idiep )
then Z ({xi}ictap) < 2 (Widictay) -

Given a signal f on a graph G and a hierarchical tree for the graph, the set
of expansion coefficients returned by the best basis algorithm is the set that
minimizes _¢ over all choosable sets of coefficients in the dictionary
(or dictionaries) considered.
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Best Basis Algorithm
Best Basis Algorithm

Proposition

Suppose that ¢ is a cost functional such that for all sequences {x;} and
{yi} and integers a < <y,

it Z(xidieta,p) = £ (iiciap)
and 7 ({xitiepy) < 2 ((idiep )
then ¥ ({xi}icia,p) < Z ({Viticlay)-

Given a signal f on a graph G and a hierarchical tree for the graph, the set
of expansion coefficients returned by the best basis algorithm is the set that
minimizes _¢ over all choosable sets of coefficients in the dictionary
(or dictionaries) considered.

The Minnesota road network (N = 2640) has over 10*% choosable bases!
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Overcomplete Multiscale Transforms R:=TOMEEETWNELTGLT

Experimental Result: Approximation

439 9

435

-79.6 -79.5 -79.4 -79.3 -79.2

(a) 24 hour traffic volume data on the
Toronto road network
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Multiscale Transforms for Graph Signals

Graph-QMF
w— \ultiwavelets (m=110)
= Multiwavelets (m=10)
== = = Walsh
e |_aplacian Eigenvectors (L)
= Haar
= = = = HGLET (L) BB (tau=0.3)
s GHWT BB (tau=1.1)
Hybrid BB (tau=0.3)

o
o

o
N
a

Relative Approximation Error

0.05 0.1 0.15 0.2 0.25 03
Fraction of Coefficients Retained

0.125
0

(b) n-term nonlinear approximation
error
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Matrix Data Analysis

@ Matrix Data Analysis
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Matrix Data Analysis

Motivation

There are many examples of data in matrix format:

o Images

e Ratings/Reviews
o Rows — Netflix users
e Columns — movies
e A(i,j) — user i's rating of movie j on a 1-5 scale

@ Spatiotemporal data
e Rows — sensors
e Columns — times
e A(i,j) — sensor i's temperature reading at time j

By utilizing graph-based techniques, we can discover and exploit underlying
structure in the data for a variety of tasks.
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Method

© Use the matrix data to recursively partition the rows and the columns

o Given a matrix Ae RN#*Nc Dhillon (2001) views the rows and columns
as the two sets of nodes in a bipartite graph.

Ajj denotes the weight between the node for row i and the node for
column j.

W=

0 A
AT o
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Method

© Use the matrix data to recursively partition the rows and the columns

o Given a matrix Ae RN#*Nc Dhillon (2001) views the rows and columns
as the two sets of nodes in a bipartite graph.

Ajj denotes the weight between the node for row i and the node for
column j.

AT o

@ Use the GHWT and best-basis algorithm to analyze the matrix
i. Analyze along the rows and extract the best basis
ii. Analyze the row best basis coefficients along the columns and extract
the best basis
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Matrix Partitioning a la Dhillon (2001)
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Example 1

Dataset: the Science News database (1153 x 1042)

@ Columns — article abstracts
from 8 fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics

@ Rows — (appropriately chosen)
words

@ A(i,j) — the relative frequency
of word i in abstract j = all
column sums are 1

@ 10.1% sparsit
o sparsity Figure: Science News database (original

order).
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Example 1

Dataset: the Science News database (1153 x 1042)

o Columns — article abstracts T AT

from 8 fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics

@ Rows — (appropriately chosen)
words

@ A(i,j) — the relative frequency
of word i in abstract j = all
column sums are 1

e 10.1% it
o Sparsity Figure: Science News database

(reordered rows and columns).
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Example 1

Haar
Walsh |4

Relative Error
o

8 10 12

0 2 4 6
Number of Coefficients Retained x10°

Figure: Haar basis vs. Walsh basis vs.

GHWT best basis approximation results.
The vertical line denotes the number of
nonzero entries in the matrix (10.1%).

http://jefflirion.github.io/

Multiscale Transforms for Graph Signals

Cost functional: 1-norm

Total number of orthonormal
bases searched: > 10370

62.3% of the Haar coefficients
and 100% of the Walsh
coefficients must be kept to
achieve perfect reconstruction,
compared to 10.1% for the
GHWT best basis

The Haar and Walsh bases
could not efficiently capture the
underlying structure of this
Science News dataset under the
current matrix partitioning
strategy!
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Example 1

Cost functional: 1-norm

The GHWT best basis is almost exactly the canonical basis, but the rows

and columns that it combines provide insight.
Combined Rows:

o “el” and “nifio”

e “la" and “nifia”

@ “meteor’ and “shower”

Combined Columns:

@ “Science Talent Search announces Finalists” and “Talent Search:

Student Finalists’ Flair for science to be rewarded”
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Example 1

The 0.1-quasinorm also combines the words
@ “orbiting” and “extrasolar”
@ “tornado,” “tornadoe,” and “meteorologist”

along with 8 pairs of documents, 1 group of three, and 1 group of four.

The 0.01-quasinorm combines 1 additional pair of documents.

The 0.001-quasinorm returns the canonical basis.
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Example 2

Dataset: the 512 x 512 “Barbara” image with the rows and columns
shuffled.

o Left: the original Barbara image
e Middle: the shuffled Barbara image

e Right: the shuffled image reordered according to the recursive
partitioning
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Example 2

U.ASL T T T

— — Coiflet-4 (Shuffled) . .
o s || @ Cost functional: 1-norm

04n — — Haar Wavelet (Shuffled)
Haar Wavelet (Reordered) | | o Tota | num ber of

s Graph Haar
Graph Walsh .
..... o B heto_coarse) orthonormal bases searched:
<6.37x 10173
@ The GHWT best basis
nearly matches the Haar

basis

| @ The GHWT best basis
) performs much better than

Relative Error

0 . . L
0 0.5 1 1.5 2 25

Number of Coefficients Retained x10° the Co|ﬂet a nd H aar basesy

Figure: Approximation results. The “shuffled” and which are fixed and

“reordered” results are for the cases that the therefore cannot account for
shuffled image (middle figure on previous page) and
reordered image (figure on the right) was analyzed,
respectively.

the geometry of the data
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Example 2

We can also use the GHWT and best basis algorithm to ascertain
information about the spatial structure of the matrix data.

‘-vfm v"’w?"'wl O w'vY'YYW i

il
mi | Hlkf

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.5-quasinorm as our cost functional.
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Example 2

We can obtain different results by using a different cost functional.

il

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional.
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Example 2

Another option is to not consider regions with fewer than Ny, nodes.

Wm da V’W% Gieas ,“, e G

i HYH Jiaf

\
I T 1

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional; regions with fewer than
[NR/20] = [Nc/20] = 26 nodes were not considered in the best basis search.
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Example 2

Future work: instead of searching for the tensor best basis, search among
all combinations of row and column bases.

YW, o n ,u ??w @Eh v?vw,w !

uu mmmmum i
Ji ol
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© Conclusion
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@ We have developed

o the GHWT
o the corresponding best basis algorithm

@ We have proven
o the best basis guarantee

@ We have demonstrated
o the effectiveness of the GHWT for approximation

o using the GHWT for matrix data analysis

@ In other work, we have

o developed the HGLET (another overcomplete multiscale transform)

e proven approximation bounds for the HGLET and GHWT

o denoised signals on graphs with the HGLET and GHWT

o used the HGLET to simultaneously segment, denoise, and compress
classical 1-D signals
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