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Motivations

Motivations

Many modern data analysis tasks often involve large matrix-form datasets:
Spatiotemporal data measured by sensor networks

Columns → sensors
Rows → time indices
ai j → sensor j ’s temperature reading at the i th time sample

Ratings/Reviews
Columns → movies
Rows → Netflix users
ai j → user i ’s rating of movie j on a 1-5 scale

Term-document databases
Columns → documents, articles
Rows → words, terms
ai j → the relative frequency of occurrences of word i in document j

By utilizing graph-based techniques, we can discover and exploit underlying
(often hidden) dependency and geometric structure in the data for a variety
of tasks, e.g., compression, classification, regression, . . .
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Motivations

Motivations . . .

A big difference between those datasets from usual images/photos.

Figure: Science News database (1153 words × 1042 documents)
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Motivations

Motivations . . .

They are often more like shuffled and permuted images, i.e., possess no
spatial smoothness or coherency in general:

(a) The original Barbara image

(b) The shuffled Barbara image
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Spectral Co-Clustering for Organizing Rows & Columns

Spectral Co-Clustering (Dhillon, 2001)1

Given a matrix A ∈RNr ×Nc
≥0 (e.g., a term-document matrix), the rows

and columns are viewed as the two sets of nodes in a bipartite graph.
ai j denotes the edge weight between the i th row and the j th column.

1I. S. Dhillon: “Co-clustering documents and words using Bipartite Spectral Graph
Partitioning,” Proc. 7th ACM SIGKDD, pp. 269–274, 2001.
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Spectral Co-Clustering for Organizing Rows & Columns

Spectral Co-Clustering . . .

Then, matrices associated with this bipartite graph can be written as:

W =
[

O A
AT O

]
weighted adjacency matrix

D =
[

Dr O
O Dc

]
Dr :=diag(A1)
Dc :=diag(AT1)

degree matrix

L :=D −W =
[

Dr −A
−AT Dc

]
(unnormalized) graph Laplacian

Lrw :=D−1L = I −D−1W random-walk normalized
graph Laplacian
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Spectral Co-Clustering for Organizing Rows & Columns

Spectral Clustering of General Graphs

Both L and Lrw are positive semidefinite and if the graph is connected,
the smallest eigenvalue is 0 and the corresponding eigenvector φ0 ∝ 1.
For graph partitioning and clustering, it is often useful to embed the
nodes in the low dimensional Euclidean space formed by a few
eigenvectors corresponding to the smallest positive eigenvalues.
The eigenvectors of L are orthonormal in the usual sense while those
of Lrw are orthonormal relative to D1/2, i.e., φT

k Dφl = δkl .
Yet, the eigenvectors of Lrw are preferable to those of L for the
purpose of graph partitioning and clustering because the former better
reflects the influence of nodes via the weights wi j than the latter2

More precisely, . . .

2See, e.g., U. von Luxburg: “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, no. 4, pp. 395–416, 2007.

saito@math.ucdavis.edu (UC Davis) Matrix Analysis via Graph Proc. March, 14, 2016 11 / 49



Spectral Co-Clustering for Organizing Rows & Columns

Graph Partitioning via Spectral Clustering
Goal: Split the vertices V into two “good” subsets, X and X c

Plan: Use the signs of the entries in the Fiedler vector
Why? Using φ1 of L to generate X and X c yields an approximate
minimizer of the RatioCut function3:

RatioCut(X , X c ) :=cut(X , X c )

|X | + cut(X , X c )

|X c | , where cut(X , X c ) := ∑
i∈X
j∈X c

wi j

On the other hand, φ1 of Lrw to cut a graph, which yield an approximate
minimizer of the Normalized Cut (or NCut) function of Shi and Malik4:

NCut(X , X c ) :=cut(X , X c )

vol(X )
+ cut(X , X c )

vol(X c )
, where vol(X ) := ∑

i∈X
di

3L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

4J. Shi & J. Malik: “Normalized cuts and image segmentation,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.
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Spectral Co-Clustering for Organizing Rows & Columns

Graph Partitioning via Spectral Clustering . . .

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Spectral Co-Clustering for Organizing Rows & Columns

Spectral Co-Clustering (Dhillon, 2001) . . .

Recall the matrices associated with a bipartite graph given A ∈RNr ×Nc
≥0 :

W =
[

O A
AT O

]
; D =

[
Dr O
O Dc

]
; L :=D −W =

[
Dr −A
−AT Dc

]
; Lrw :=I −D−1W

Since Lrwφ=λφ⇔ Lφ=λDφ, we have[
Dr −A
−AT Dc

][
φr
φc

]
=λ

[
Dr O
O Dc

][
φr
φc

]
⇔

{
Aφc = (1−λ)Drφr

ATφr = (1−λ)Dcφc

Then, setting u :=D1/2
r φr , v :=D1/2

c φc , we get

D−1/2
r AD−1/2

c v = (1−λ)u; D−1/2
c ATD−1/2

r u = (1−λ)v ,

which precisely defines the SVD of Ã :=D−1/2
r AD−1/2

c ∈RNr ×Nc ; no
need to compute the eigenvectors of L,Lrw ∈R(Nr +Nc )×(Nr +Nc )
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Spectral Co-Clustering for Organizing Rows & Columns

Spectral Co-Clustering (Dhillon, 2001) . . .

Hence, the Fiedler vector of Lrw bipartitions the bipartite graph:

φ1 =
[

D−1/2
r u1

D−1/2
c v 1

]
,

where u1 and v 1 are the second left and right singular vectors of
Ã = D−1/2

r AD−1/2
c .

The rows and the columns are partitioned simultaneously.
This also allows the analysis of rows and columns on an equal footing,
i.e., we can see not only which columns are similar but also which rows
are closely related to a specific group of columns, etc.
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Spectral Co-Clustering for Organizing Rows & Columns

An Example: Science News Dataset

Dataset: the Science News database (1153×1042)

Rows → preselected words
Columns → articles from 8
fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics
ai j → the relative frequency of
word i appears in article j ⇒ all
column sums are 1

Figure: Science News database (original
order)
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Spectral Co-Clustering for Organizing Rows & Columns

An Example: Science News Dataset . . .
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The Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

The Generalized Haar-Walsh Transform (GHWT) is a true generalization of
the classical Haar-Walsh Wavelet Packet Transform, and it generates a
dictionary (i.e., a redundant set) of basis vectors that are
piecewise-constant on their support.

The algorithm using the Fiedler vectors can be summarized as follows
although any other graph partitioning algorithm can be used . . .
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The Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive bipartitioning of the graph using Fiedler
vectors φ j

k,1 of Lrw(G j
k ), where k = 0, . . . ,K j −1 indicates a region,

j = 0, . . . , jmax indicates a level (or scale), V =V 0
0 =V 1

0 ∪V 1
1 = ·· ·

2 Generate an orthonormal basis for level jmax (the finest level) ⇒
scaling vectors on the single-node regions

3 Using the basis for level jmax, generate an orthonormal basis for level
jmax−1 ⇒ scaling and Haar vectors

4 Repeat... Using the basis for level j , generate an orthonormal basis for
level j −1 ⇒ scaling , Haar, and Walsh vectors

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,n−2 ψ0
0,n−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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The Generalized Haar-Walsh Transform (GHWT)

Basis Vector & Coefficient Notation

GHWT basis vectors and coefficients are written as ψ j
k,` and c j

k,`,
respectively, where j and k correspond to level and region and ` is the tag.

`= 0 ⇒ scaling coefficient/basis vector
`= 1 ⇒ Haar coefficient/basis vector
`≥ 2 ⇒ Walsh coefficient/basis vector
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The Generalized Haar-Walsh Transform (GHWT)

Remarks

For an unweighted path graph, this yields a dictionary of Haar-Walsh
wavelet packets.
Recursive Partitioning (RP) via Fiedler vectors costs O(N 2) in general.
Given a recursive partitioning with O(log N ) levels, the computational
cost of expanding an input data into the GHWT is O(N log N ).
We can select an orthonormal basis for the entire graph by taking the
union of orthonormal bases on disjoint regions.
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The Generalized Haar-Walsh Transform (GHWT)

Remarks . . .

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar, or Walsh).

Figure:

This reorganization gives us more options for choosing a good basis.
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The Generalized Haar-Walsh Transform (GHWT)

Related Work

The following articles (and perhaps many more) also discussed the Haar-like
transform on graphs, but not the Haar-Walsh Wavelet Packets on them:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs: top-down and
bottom-up constructions,” in Wavelets XI (M. Papadakis et al. eds.), Proc.
SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,”
J. Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive multi-scale basis
for sparse unordered data,” Ann. Appl. Stat., vol. 2, pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees, graphs
and high dimensional data: Theory and applications to semi supervised
learning,” in Proc. 27th Intern. Conf. Machine Learning, pp. 367–374, 2010.

5 R. Coifman and M. Gavish, “Harmonic analysis of digital data bases,” in
Wavelets and Multiscale Analysis: Theory and Applications (J. Cohen and
A. I. Zayed, eds.), pp. 161–197, Birkhäuser, 2011.

saito@math.ucdavis.edu (UC Davis) Matrix Analysis via Graph Proc. March, 14, 2016 24 / 49



The Generalized Haar-Walsh Transform (GHWT) Best-Basis Algorithm for GHWT

Outline

1 Motivations

2 Spectral Co-Clustering for Organizing Rows & Columns

3 The Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for GHWT

4 Matrix Data Analysis

5 Summary

6 References

saito@math.ucdavis.edu (UC Davis) Matrix Analysis via Graph Proc. March, 14, 2016 25 / 49



The Generalized Haar-Walsh Transform (GHWT) Best-Basis Algorithm for GHWT

Best-Basis Algorithms for GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.
We generalize this approach, developing and implementing an
algorithm for selecting the basis from the GHWT dictionary in the
bottom-up manner that is “best” for approximation and compression.
We require an appropriate cost functional J . For example:

J
(
c j

k

)
=

∥∥∥c j
k

∥∥∥
p

:=
N j

k−1∑
`=0

∣∣∣c j
k,`

∣∣∣p

1/p

0 < p ≤ 1

For other tasks, e.g., classification and regression, see the work of N.S.
on Local Discriminant Basis, Local Regression Basis, Least
Statistically-Dependent Basis, . . . , all of which use different cost
functionals and can also be used in the graph setting.
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Matrix Data Analysis
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Matrix Data Analysis

Method

1 Use the matrix data and the spectral co-clustering to recursively
partition the rows and the columns

2 Analyze column vectors of the input matrix using the GHWT
dictionary based on the row partitions and extract the best basis for
handling columns as a whole, which we call the row best basis

3 Analyze row vectors of the input matrix using the GHWT dictionary
based on the column partitions and extract the best basis for handling
rows as a whole, which we call the column best basis

4 Expand the input matrix w.r.t. the tensor product of the row and
column best bases

5 Analyze the expansion coefficients for a variety of tasks, e.g.,
compression, classification, regression, etc.
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Matrix Data Analysis

Matrix Partitioning à la Dhillon (2001)
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Matrix Data Analysis

Example 1: Science News Dataset

Dataset: the Science News database (1153×1042)

Rows → preselected words
Columns → articles from 8
fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics
ai j → the relative frequency of
word i appears in article j ⇒ all
column sums are 1

Figure: Science News database (original
order)
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Matrix Data Analysis

Example 1: Science News Dataset

Dataset: the Science News database (1153×1042)

Rows → preselected words
Columns → articles from 8
fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics
ai j → the relative frequency of
word i appears in article j ⇒ all
column sums are 1

Figure: Science News database
(reordered rows and columns)
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Matrix Data Analysis

Example 1: Science News Dataset
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The best basis coefficient are all 0's
after this line; in fact the best basis turns
out to be essentially the canonical basis
in this case. The sparsity is 10.1%

Figure: Decay of the expansion
coefficients w.r.t. Haar basis, Walsh
basis, and GHWT best basis. The
vertical line denotes the percentage of
nonzero entries in the matrix (10.1%).

Cost functional: 1-norm
Total number of orthonormal
bases searched: > 10370

62.3% of the Haar coefficients
and 100% of the Walsh
coefficients must be kept to
achieve perfect reconstruction,
compared to 10.1% for the
GHWT best basis

⇒ The Haar and Walsh bases
could not efficiently capture the
underlying structure of this
Science News dataset under the
current matrix partitioning
strategy!
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Matrix Data Analysis

Example 1: Science News Dataset

Since the sparsity was used as the cost functional, the best basis is in
fact almost the canonical basis; the fine scale information was too
much emphasized, which may be sensitive to ‘noise’.
We are interested in the medium scale information in this database,
e.g., clustering structures both in words (rows) and articles (cols).
Hence, we weight the coefficients in the GHWT dictionary as follows:

c j
k,l ← c j

k,l ·2 jα ·
(
supp(G0

0)/supp(G j
k )

)β
= c j

k,l ·2 jα · (N /N j
k )β

where α≥ 0, β≥ 0, are chosen empirically to make the magnitude of
the finer coefficients bigger, which discourages the best-basis
algorithm to select fine scale subgraphs.
See also Coifman-Leeb’s technical report (2013) and Ankenman’s
Ph.D. dissertation (2014) for such weighting scheme and its relation
to the Earth Mover’s Distance.
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Matrix Data Analysis

Example 1: Science News Dataset
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the original term-document
matrix whose sparsity is 10.1%

Figure: Decay of the expansion
coefficients w.r.t. Haar basis, Walsh
basis, and GHWT best basis. The
vertical line denotes the percentage of
nonzero entries in the matrix (10.1%).

Cost functional: 1-norm
αrow =αcol = 0

βrow = 1.0,βcol = 0.15

This best basis is less sparse
than before, and is between the
Haar and the Walsh bases, i.e.,
well captures information on
intermediate scales.
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Matrix Data Analysis

Example 1: Science News Dataset

Row Best Basis (Fine-to-Coarse) Partition Pattern
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Figure: The row best basis partition
pattern. This is a fine-to-coarse basis.

Figure: The row best basis vectors at
j = 4.
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Matrix Data Analysis

Example 1: Science News Dataset

Figure: The histograms of the article
categories (1 to 8) of the expansion
coefficients of column vectors w.r.t.
those 9 row best basis vectors.

For example, the positive components
of the 6th basis vector correspond to
the following words: earthquake, down,

california, dioxide, deep, warm, el,

southern, crust, valley, once, geologist,

bottom, tsunami, oxide, fault, antarctica,

warning, tsunamis, prediction, greenhouse

On the other hand, the negative
components of that vector
correspond to: temperature, ice, sea,

layer, flow, around, survey, coast, warming,

quake, past, nino, global, seismologist,

cycle, cold, slow, recent, plate, thickness,

meter, japan, forecast

Clearly, this basis vector is checking if
a given article is in Category 4 (Earth
Sciences).
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Matrix Data Analysis

Example 1: Science News Dataset

Column Best Basis (Coarse-to-Fine) Partition Pattern
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Figure: The column best basis partition
pattern. This is a coarse-to-fine basis.
The block indicated by a red circle
corresponding to ( j ,k) = (4,5).

Figure: The column best basis vectors
with ( j ,k) = (4,5) whose supports are 51
articles; 48 among 51 indicate
‘Astronomy’.
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Matrix Data Analysis

Example 1: Science News Dataset
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Figure: The expansion coefficients of
row vectors w.r.t. the column best basis
vector ψ4,col

5,0 = the indicator vector of
51 articles.

The 3 nonzero components in ψ4,col
5,0

that are not in ‘Astronomy’ correspond
to the following articles:
• “Old Glory, New Glory: The Star-Spangled
Banner gets some tender loving care”
(Anthropology: on the preservation of the
Star-Spangled Banner (flag) using the space-age
technology);
• “Snouts: A star is born in a very odd way”
(Life Sciences: on star-nosed moles);
• “Gravity tugs at the center of a priority

battle” (Math & CS: on the priority war on the
discovery of gravity between Newton, Halley, and
Hooke).

The expansion coefficients > 0.05 in the
left figure correspond to the following
words: year, university, time, team, system,

light, earth, star, planet, finding,

astronomer, universe, galaxy, object, ray,

telescope, orbit, mass, hole, dust, black,

distance, disk, infrared
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Matrix Data Analysis

Example 1: Science News Dataset

Column Best Basis (Coarse-to-Fine) Partition Pattern
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Figure: The column best basis partition
pattern. This is a coarse-to-fine basis.
The block indicated by a red circle
corresponding to ( j ,k) = (4,14).

Figure: The column best basis vectors
with ( j ,k) = (4,14) whose supports are
62; 56 among 62 indicate ‘Medical
Sciences’.
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Matrix Data Analysis

Example 1: Science News Dataset
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Figure: The expansion coefficients of
row vectors w.r.t. the column basis
vector ψ4,col

14,0 = the indicator vector of
62 articles.

Out of these 6 anomalies, 3 are in ‘Life
Sciences’, i.e., not really surprising. The
remaining 3 anomalies are:
• “In Silico Medicine: Computer simulations
aid drug development and medical care” (Math
& CS);
• “Beyond Virtual Vaccinations: Developing a
digital immune system in bits and bytes”
(Math & CS);
• “Paleopathological Puzzles: Researchers

unearth ancient medical secrets”

(Anthropology).

The expansion coefficients > 0.05 in the
left figure correspond to the following
words: year, university, study, scientist,

people, cell, group, disease, system, drug,

protein, brain, human, blood, patient, test,

immune, virus, strain, infection, vaccine,

antibody, hiv, infected, aids, amyloid
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image

Dataset: the 512×512 “Barbara” image with the rows and columns
shuffled.

Left: the original Barbara image
Middle: the shuffled Barbara image
Right: the shuffled image reordered according to the recursive
partitioning
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
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Coiflet−4 (Reordered)

Haar Wavelet (Shuffled)

Haar Wavelet (Reordered)

Graph Haar

Graph Walsh

GHWT BB (fine−to−coarse)

Figure: Approximation results. The “shuffled” and
“reordered” results are for the cases that the
shuffled image (middle figure on previous page) and
reordered image (figure on the right) was analyzed,
respectively.

Cost functional: 1-norm
Total number of ONBs
searched: > 6.37×10173

The GHWT BB nearly
matches the graph Haar
basis and performs better
than the graph Walsh basis
The GHWT BB performs
much better than the
Coiflet and Haar bases
directly applied on the
image, which are fixed and
therefore cannot account for
nondyadic geometry of the
data
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
We can also use the GHWT and best basis algorithm to ascertain
information about the spatial structure of the matrix data.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional.
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
We can obtain different results by using a different cost functional.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.5-quasinorm as our cost functional.
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
Another option is to not consider regions with fewer than Nmin nodes.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional; regions with fewer than
[Nr /20] = [Nc /20] = 26 nodes were not considered in the best basis search.
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Summary

Summary
Combining the spectral co-clustering and GHWT leads to a powerful
matrix data analysis tool.
The GHWT best-basis algorithm searches over an immense number of
orthonormal bases, including the graph Haar/Walsh bases.
When selected using an appropriate cost functional, the GHWT best
basis equals or outperforms the graph Haar/Walsh bases.
This demonstrates the importance/advantage of a data-adaptive basis
dictionary from which one can select the most suitable basis for one’s
task at hand!
Appropriately weighting the expansion coefficients dependent on scales
leads to a more meaningful basis at the cost of sparsity.
Should explore different cost functionals than the sparsity =⇒ Local
Regression Basis (LRB) of Saito and Coifman
What to do if your input data is of tensor form, i.e.,
A = (ai j k ) ∈RI×J×K ? =⇒ a tripartite graph (a.k.a. 3-uniform
hypergraph)!

saito@math.ucdavis.edu (UC Davis) Matrix Analysis via Graph Proc. March, 14, 2016 46 / 49



References

Outline

1 Motivations

2 Spectral Co-Clustering for Organizing Rows & Columns

3 The Generalized Haar-Walsh Transform (GHWT)

4 Matrix Data Analysis

5 Summary

6 References

saito@math.ucdavis.edu (UC Davis) Matrix Analysis via Graph Proc. March, 14, 2016 47 / 49



References

References

The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/

J. Irion & N. Saito: “Efficient approximation and denoising of graph
signals using the multiscale basis dictionaries,” submitted for
publication, 2016.
J. Irion & N. Saito: “Applied and computational harmonic analysis on
graphs and networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597,
Paper # 95971F, 2015.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” Proc.
2014 IEEE Workshop on Statistical Signal Processing, pp. 488-491,
2014.
J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,”
JSIAM Letters, vol. 6, pp. 21–24, 2014.

Jeff Irion disseminates the codes for HGLET/GHWT and his Ph.D.
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Thank you very much for your attention!
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