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Aims & Objectives

Aims & Objectives

Wavelets

Successful on regular domains

Extend to irregular domains ⇒ �2nd Generation Wavelets�

For example,

Hammond, Vandergheynst, and Gribonval (2011): wavelets via
spectral graph theory

Coifman and Maggioni (2006): di�usion wavelets

Bremer et al. (2006): di�usion wavelet packets
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Aims & Objectives

Aims & Objectives

Step 1. Develop and implement multiscale transforms for data on graphs
and point clouds.

Step 2. Investigate usefulness for:

1 Approximation/Denoising.

Smoothing crime rate data

2 Classi�cation.

Twitter spam account
classi�cation/detection
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Basics of Graph Laplacians

Basic De�nitions and Notation

Let G be a graph.

If G is a connected graph without cycles/loops, then it is called a tree.

Let V =V (G) = {v1, . . . , vN } be a set of vertices representing some data.

Let |V (G)| = N , and let 0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λN−1(G) be the sorted
eigenvalues of L(G).

Let E = E(G) = {e1, . . . ,eN ′} be a set of edges where ek = (vi , v j )
represents an edge (or line segment) connecting between adjacent
vertices vi , v j for some 1 ≤ i , j ≤ N . Note that if G is a tree, then
|E(G)| = |V (G)|−1.

Let d(vk ) = dvk be the degree of the vertex vk .
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Basics of Graph Laplacians

Graph Laplacians
L(G) :=D(G)−W (G) the Laplacian matrix

W (G) = (wi j ) the weight matrix

D(G) :=diag(dv1 , . . . ,dvn ) the degree matrix, where dvi :=∑N
j=1 wi j .

Note that there are many ways to de�ne wi j .
For example, for unweighted graphs, we typically use

wi j :=
{

1 if vi ∼ v j (i.e., vi and v j are adjacent);

0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).

For weighted graphs, wi j should re�ect the similarity (or a�nity) of information
at vi and v j , e.g., if vi ∼ v j , then

wi j := 1/dist(vi , v j ) or exp(−dist(vi , v j )2/ε2),

where dist(·, ·) is a certain measure of dissimilarity and ε> 0 is an appropriate

scale parameter.
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Basics of Graph Laplacians

Why Graph Laplacians?

Let f ∈ L2(V ). Then

L(G) f (vi ) = dvi f (vi )− ∑
j 6=i

wi j f (v j ),

i.e., this is a generalization of the �nite di�erence approximation to the
Laplace operator.

After all, sines (cosines) are the eigenfunctions of the Laplacian on the
rectangular domain with Dirichlet (Neumann) boundary conditions.

Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions are part of the eigenfunctions of the Laplacian for the spherical,
cylindrical, and spheroidal domains, respectively.

Hence, the eigenfunction expansion of data measured at the vertices using
the eigenfunctions (in fact, eigenvectors) of a graph Laplacian corresponds
to Fourier (or spectral) analysis of the data on that graph.

They also play a useful role in understanding a graph (e.g., the discrete
nodal domain theorem useful for grouping vertices; see B�y�ko§lu, Leydold, &
Stadler, LNM, Springer, 2007)
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Basics of Graph Laplacians

Why Graph Laplacians? . . .

Furthermore, the eigenvalues of L(G) re�ect various intrinsic geometric and
topological information about the graph including:

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997, says: �This
monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

However, eigenvalues of L(G) cannot uniquely determine the graph G.
∼ Kac (1966): �Can one hear the shape of a drum?�
⇒ Gordon, Webb, & Wolpert (1992): �One cannot hear the shape of a
drum.�

An example of �isospectral� graphs (Tan, 1998; Fujii & Katsuda, 1999):
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Basics of Graph Laplacians

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .

2
1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .

1 0 1
1 0


︸ ︷︷ ︸

A(G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).

λk = 2−2cos(πk/N ) = 4sin2(πk/2N ), k = 0,1, . . . , N −1.

φk (`) =p
2/N cos

(
πk(`+ 1

2 )/N
)
, k,`= 0,1, . . . , N −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. k
(frequency). However, for general graphs, λ does not have a simple
relationship with k.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we turn our focus to a novel transform that can be viewed as a
generalization of the block Discrete Cosine Transform. We refer to this
transform as the Hierarchical Graph Laplacian Eigen Transform (HGLET).

In order to utilize a hierarchical scheme, we will need to partition the graph.
Therefore, we will now review some information about graph partitioning.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two subsets, X and X c .

Plan: minimize the RatioCut function1,

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) := ∑

vi∈X
v j∈X c

Wi j

Dividing by the number of nodes ensures that the partitions are of roughly
the same size ⇒ we do not simply cleave a small number of nodes

Dividing by the volume of nodes instead of the number of nodes leads to the

popular Normalized Cut (NCut) of Shi and Malik2
1L. Hagen and A. B. Kahng: �New spectral methods for ratio cut partitioning and

clustering,� IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
2J. Shi & J. Malik: �Normalized cuts and image segmentation�, IEEE Trans. Pattern

Anal. Machine Intell., vol. 22, no. 8, pp. 888�905, 2000.
saito@math.ucdavis.edu (UC Davis) Wavelet Packets on Graphs Sep. 11, 2013 14 / 56



Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two subsets, X and X c .

Plan: minimize the RatioCut function1,

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) := ∑

vi∈X
v j∈X c

Wi j

Dividing by the number of nodes ensures that the partitions are of roughly
the same size ⇒ we do not simply cleave a small number of nodes

Dividing by the volume of nodes instead of the number of nodes leads to the

popular Normalized Cut (NCut) of Shi and Malik2
1L. Hagen and A. B. Kahng: �New spectral methods for ratio cut partitioning and

clustering,� IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
2J. Shi & J. Malik: �Normalized cuts and image segmentation�, IEEE Trans. Pattern

Anal. Machine Intell., vol. 22, no. 8, pp. 888�905, 2000.
saito@math.ucdavis.edu (UC Davis) Wavelet Packets on Graphs Sep. 11, 2013 14 / 56



Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

Goal: split the vertices V into two subsets, X and X c .

Plan: minimize the RatioCut function1,

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) := ∑

vi∈X
v j∈X c

Wi j

Dividing by the number of nodes ensures that the partitions are of roughly
the same size ⇒ we do not simply cleave a small number of nodes

Dividing by the volume of nodes instead of the number of nodes leads to the

popular Normalized Cut (NCut) of Shi and Malik2
1L. Hagen and A. B. Kahng: �New spectral methods for ratio cut partitioning and

clustering,� IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.
2J. Shi & J. Malik: �Normalized cuts and image segmentation�, IEEE Trans. Pattern

Anal. Machine Intell., vol. 22, no. 8, pp. 888�905, 2000.
saito@math.ucdavis.edu (UC Davis) Wavelet Packets on Graphs Sep. 11, 2013 14 / 56



Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

1 De�ne f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f s.t. f de�ned as above
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

f TL f = 1

2

N∑
i , j=1

Wi j ( fi − f j )2

= 1

2

∑
vi∈X

v j∈X c

Wi j

(√
|X c |
|X | +

√
|X |
|X c |

)2

+ 1

2

∑
vi∈X c

v j∈X

Wi j

(
−

√
|X c |
|X | −

√
|X |
|X c |

)2

= cut(X , X c )

( |X c |
|X | + |X |

|X c | +2

)
= cut(X , X c )

( |X |+ |X c |
|X | + |X |+ |X c |

|X c |
)

= |V |RatioCut(X , X c )
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

Let us reformulate the RatioCut minimization problem.

1 De�ne f ∈RN as

fi :=


√
|X c |
|X | if vi ∈ X

−
√

|X |
|X c | if vi ∈ X c

2 The RatioCut problem can be reformulated as

min
X⊂V

f TL f , f de�ned as above

Unfortunately, this problem is NP hard...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

A couple things to note about f :
f ⊥ 1 ⇔ ∑

fi = 0

N∑
i=1

fi =
∑

vi∈X

√
|X c |
|X | − ∑

vi∈X c

√
|X |
|X c |

= |X |
√

|X c |
|X | − |X c |

√
|X |
|X c | = 0

‖ f ‖ =p
N

‖ f ‖2 =
N∑

i=1
f 2

i

= |X | |X
c |

|X | + |X c | |X |
|X c |

= |X |+ |X c | = N
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

If we relax our previous de�nition of f and simply require that (i) f ⊥ 1
and (ii) ‖ f ‖ =p

N , then we get the relaxed minimization problem1:

min
X⊂V

f TL f s.t. f ⊥ 1, ‖ f ‖ =
p

N

By the Rayleigh-Ritz Theorem, the solution is given by φ1 (scaled as
necessary), where φ1 is the eigenvector corresponding to the second
smallest eigenvalue of L.

φ1 is known as the Fiedler vector and is often used to partition a
graph into two subsets.

von Luxburg recommends the use of the random-walk version of the
Laplacian matrix, Lrw :=I −D−1W , over the usual Laplacian matrix L,
which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: �A tutorial on spectral clustering,� Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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which leads to the NCut and the generalized eigenvalue problem:
Lφ=λDφ.

1U. von Luxburg: �A tutorial on spectral clustering,� Statistics and Computing, vol.
17, no. 4, pp.395-416, 2007.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

De�nition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Example of Graph Partitioning

Figure: The MN road network
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Example of Graph Partitioning

Figure: The MN road network partitioned into two regions via the Fiedler vector
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

And now, we present our Hierarchical Graph Laplacian Eigen Transform:
1 Generate an orthonormal basis for the entire graph ⇒ Laplacian

eigenvectors (Notation is φ
j
k,l with j = 0)

2 Partition the graph using the Fiedler vector φ
j
k,1

3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian
eigenvectors

4 Repeat...
5 Select an orthonormal basis from this collection of orthonormal bases

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N−1

]
[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N1−1

]
[
φ2

0,0φ
2
0,1 · · ·φ2

0,N0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,N1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,N2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,N3−1

]
...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Observations

For an unweighted path graph, this yields a dictionary of the block
DCT-II

Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand ⇒ best-basis algorithm, local discriminant
basis algorithm, . . .

A union of bases on disjoint subsets is obviously orthonormal[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N0−1

][
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N1−1

]
[
φ2

0,0 · · · φ2
0,N0−1

][
φ2

1,0 · · · φ2
1,N1−1

][
φ2

2,0 · · · φ2
2,N2−1

][
φ2

3,0 · · · φ2
3,N3−1

]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j = 0 is the coarsest scale, j = 14 is the �nest.)

Level j = 14, Region k = 0, φ1
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Computational Complexity: HGLET

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 83 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 1: Haar-like Basis

Now we present a Haar-like modi�cation of our scheme:

1 Starting with the entire graph (i.e., level j = 0), compute the Fiedler vector
φ1 (φ0 is trivially known, and we denote it by ϕ0,0). Convert φ1 to a
Haar-like vector:1

ψ0,0(i ) :=
{

1 if φ1(i ) ≥ 0

− # nonnegative
# negative if φ1(i ) < 0

and then `2-normalize it

2 Partition the graph ⇒ Fiedler vector

3 Compute the Fiedler vector for each partition and convert it to a Haar-like
vector on its respective partition1 ⇒ ψ j ,k

4 Repeat...

This yields an orthonormal basis: ϕ0,0 ∪ {ψ j ,k }0≤ j<J , k

1As with the HGLET, we could generate a full orthonormal basis by converting all the
Laplacian eigenvectors into piecewise-constant orthonormal vectors according to their sign,
similar to the Walsh-Hadamard transform.
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 1: Haar-like Basis

HGLET Haar-like Basis Example

1 2 3 4 5 6
10 10 10 1 10

[
ϕ0,0 ψ0,0 φ0,2 φ0,3 φ0,4 φ0,5

][
φ1,0 ψ1,0 φ1,2 φ1,3

] [
φ1,1 ψ1,1

][
φ2,0 ψ2,0

] [
φ2,1 ψ2,1

] [
φ1,1 ψ1,1

]

ϕ0,0 ψ0,0 ψ1,0 ψ1,1 ψ2,0 ψ2,1

1 1 1 0 1 0
1 1 1 0 −1 0
1 1 −1 0 0 1
1 1 −1 0 0 −1
1 −2 0 1 0 0
1 −2 0 −1 0 0
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][
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]
Thus, we generate a matrix whose columns (after `2-normalization) form
an orthonormal basis:
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 1: Haar-like Basis

Computational Complexity: Haar-like HGLET

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 83 sec

Haar-like HGLET O(N log N ) 5 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

We have also developed and implemented a modi�cation that is similar to
the Haar-like HGLET, but yields a smoother set of orthonormal basis
functions. We call this the Orthonormalized Hierarchical Fiedler Transform
(OHFT).

1 Starting with the entire graph (i.e., level j = 0), compute the Fiedler
vector φ1 and denote it as ψ0,0 (φ0 is trivially known, and we denote
it by ϕ0,0)

1

2 Partition the graph ⇒ Fiedler vector

3 Compute the Fiedler vector for each partition and orthonormalize it
against all ψ j ,k 's computed thus far (it is already orthogonal to ϕ0,0)

1

⇒ ψ j ,k

4 Repeat...

This yields an orthonormal basis: ϕ0,0 ∪ {ψ j ,k }0≤ j<J , k

1As with the HGLET, we could generate a full orthonormal basis. However, this
would require computing all of the eigenvectors, and so we do not perform this step.
But we point this out to show consistency with the HGLET.
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Haar-like HGLET vs. OHFT

1 2 3 4 5 6
10 10 10 1 10

(a) (b)
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Haar-like HGLET vs. OHFT

1 2 3 4 5 6
10 10 10 1 10

ϕ0,0 is the same in both cases: a global constant vector.

(a) Haar-like ϕ0,0 (b) OHFT ϕ0,0
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(These vectors look the same, but they are not.)
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Haar-like HGLET vs. OHFT
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(a) Haar-like ψ2,0 (b) OHFT ψ2,0
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Haar-like HGLET vs. OHFT

Now we compare the basis functions they generate on the MN road
network.

ψ0,0
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Haar-like HGLET vs. OHFT

Now we compare the basis functions they generate on the MN road
network.

ψ2,2
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Haar-like HGLET vs. OHFT

Now we compare the basis functions they generate on the MN road
network.

ψ2,3
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Hierarchical Graph Laplacian Eigen Transform (HGLET) HGLET Variation 2: OHFT

Computational Complexity: OHFT

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 83 sec

Haar-like HGLET O(N log N ) 5 sec

OHFT O(N 3) 8 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Approximation Experiments

We have performed some preliminary approximation experiments on the
following datasets...
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Approximation Experiments

(a) Thickness data on dendritic tree
#100

(b) The pixels of the Barbara image
mapped to the MN road network

(c) A Gaussian on the MN road
network

(d) A mutilated Gaussian on the MN
road network
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Approximation Experiments

Explanation of Barbara on MN Road Network

The Barbara image (512×512) and the MN road network (2640
nodes)
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Approximation Experiments

Explanation of Barbara on MN Road Network

1 Stretch the MN road network so that it is on a [1,512]×[1,512] grid
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Approximation Experiments

Explanation of Barbara on MN Road Network

2 Superimpose the stretched MN road network onto Barbara
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Approximation Experiments

Explanation of Barbara on MN Road Network

3 Set each node value to be the nearest pixel value
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Approximation Experiments

Explanation of Barbara on MN Road Network

Barbara on the original MN road network
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Approximation Experiments

Approximation Results for Dendrite #100
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Approximation Experiments

Approximation Results for MN Barbara
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Approximation Experiments

Approximation Results for MN Gaussian
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Approximation Experiments

Approximation Results for MN Mutilated Gaussian
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Approximation Experiments Discussions

Discussion of Approximation Results

Overall, the Haar-like HGLET variation was the best performer, followed by
the OHFT. This makes a strong case for using localized basis functions on
multiple scales.

Level 5 of the HGLET outperforms Level 3. Both outperform Laplacian
eigenvectors (i.e., HGLET Level 0). Again, this demonstrates the merit of
using localized basis vectors. Future work will investigate the advantages of
using a basis comprised of HGLET vectors from multiple levels.

Haar-like HGLET vs. OHFT

The basis vectors for both are derived from the same Fiedler vectors ⇒
convert to a Haar-like vector vs. orthonormalize against pre-existing
basis vectors
The OHFT o�ers a compromise between the localization of the
Haar-like HGLET and the smoothness of the HGLET (including
Laplacian eigenvectors)

This explains why the Haar-like HGLET performs better for the
dendrite #100 data (piecewise constant), while the OHFT performs
better for < 50% coe�cients kept on the MN Gaussian data (smooth)
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Bonus: Simultaneous Signal Segmentation & Compression
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Bonus: Simultaneous Signal Segmentation & Compression

Bonus: Simultaneous Signal Segmentation & Compression

As a bonus, we can apply the HGLET for simultaneously segmenting
and compressing a given nonstationary regularly-sampled signal.

Our proposed procedure is:
1 Form a graph of a given signal by associating each vertex (i.e., the

signal sample location) with a set of signal amplitude at that vertex
and those of its local neighbors (e.g., 3 or 5 points around it);

2 Compute the graph Laplacian matrix and the Fiedler vector;
3 Segment the signal based on the polarity of the Fiedler vector;
4 In each segment, apply the standard DCT;
5 Store the compressed coe�cients and the segment location info.

Of course, one can use more sophisticated feature vectors instead of
the local samples at each vertex; also can use a few more eigenvectors
for the segmentation above.
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Bonus: Simultaneous Signal Segmentation & Compression

Preliminary Result

Figure: Noisy `Piece-Regular' Signal from WaveLab
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Bonus: Simultaneous Signal Segmentation & Compression

Preliminary Result

Figure: Segmentation intervals using the Fiedler vector
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Bonus: Simultaneous Signal Segmentation & Compression

Preliminary Result

Figure: Approximation comparison
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Bonus: Simultaneous Signal Segmentation & Compression

Preliminary Result

Figure: More concise approximations
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Bonus: Simultaneous Signal Segmentation & Compression

Preliminary Result

Figure: Segmentation using φ2

saito@math.ucdavis.edu (UC Davis) Wavelet Packets on Graphs Sep. 11, 2013 51 / 56



Summary and Future Work

1 Aims & Objectives

2 Basics of Graph Laplacians

3 Hierarchical Graph Laplacian Eigen Transform (HGLET)
HGLET Variation 1: Haar-like Basis
HGLET Variation 2: Orthonormalized Hierarchical Fiedler Transform
(OHFT)

4 Approximation Experiments
Discussions

5 Bonus: Simultaneous Signal Segmentation & Compression

6 Summary and Future Work

7 References

saito@math.ucdavis.edu (UC Davis) Wavelet Packets on Graphs Sep. 11, 2013 52 / 56



Summary and Future Work

Summary

We developed a set of multiscale transforms on graphs and networks:
HGLET; Haar-like HGLET; OHFT.

They are direct generalizations of Hierarchical Block Discrete Cosine

Transforms originally developed for regularly-sampled signals and
images.

They allow us to choose an orthonormal basis most suitable for one's
task at hand, e.g., approximation, classi�cation, regression, . . .

They may also be useful for regularly-sampled signals.

Developing a true generalization of wavelet and wavelet packet
transforms is more challenging due to the di�culty of the notion of
the frequency domain of a given graph.
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Summary and Future Work

Future Work

Implement basis selection algorithms to be used in conjunction with
the HGLET

Approximation/Denoising ⇒ the best-basis algorithm of Coifman
and Wickerhauser (1992)
Classi�cation ⇒ the local discriminant basis algorithms of Saito,
Coifman, Geshwind, Warner, Marchand (1995, 2002, 2013)

Perform classi�cation experiments and compare the results using each
of the 3 schemes presented herein

Explore other methods for graph partitioning

Allow for splitting of a region into an arbitrary number of subregions
Consider a bottom-up clustering method, rather than a top-down
partitioning method
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