

The Generalized Haar-Walsh Transform

Jeff Irion with Dr. Naoki Saito Department of Mathematics, University of California, Davis

GHWT Output: TWO Dictionaries

The GHWT expansion coefficients and basis vectors can

Coarse-to-fine dictionary – grouping is by region; i.e., the two child regions are beneath their parent region

2 fine-to-coarse dictionary – grouping is by tag,

exploiting the fact that the vectors/coefficients with tag ℓ are used to generate those with tags 2ℓ and $2\ell+1$ on

Using the path graph of length 6 as an example, we have:

4b. Fine-to-coarse dictionary

 $\psi_{0\,1}^{1}$

 $\psi_{1|1}^1$

Considering both dictionaries affords more options for

We generalized the best-basis algorithm [3] to our

Step 1: Specify a cost functional \mathcal{J} (e.g., ℓ^p quasi-norm

Step 2: For the coarse-to-fine dictionary, intialize the best basis as the bottom level. Proceed upwards, using \mathcal{J} to compare the cost of each block of coefficients to the blocks beneath it and updating the best basis as necessary. The result is the coarse-to-fine best basis.

Step 4: Use \mathcal{J} to compare the coarse-to-fine and fine-to-coarse best bases. The result is the overall

• When performed on an unweighted dyadic path graph (partitioned dyadically), the GHWT corresponds exactly to the Haar-Walsh

• The generalized Haar basis is a choosable basis from the

• Given a recursive partitioning with $O(\log N)$ levels, the computational cost of the GHWT is $O(N \log N)$

• Recursive partitioning via Fiedler vectors costs from $O(N \log N)$ to

	N	J _{max}	GHWT Run Tim	ıe
MN Road Network	2,636	14	0.11 s	
-acebook Dataset	4,039	26	0.62 s	
Brain Mesh Dataset	127,083	20	4.29 s	

(Experiments performed on a personal laptop.)

Add Gaussian noise to mutilated Gaussian on the MN road network (Fig. 2a) to yield a signal with SNR 5.00 dB (Fig. 5a)

2 Perform the GHWT and consider the fine-to-coarse best-basis (${\cal J}$ is the ℓ^p quasi-norm with p = 0.1), Haar basis, and GHWT

• Haar & best basis: threshold chosen manually using original signal • Level 6: threshold chosen using elbow selection algorithm (original

basis, SNR = 11.59 dB

j = 6, SNR = 13.46 dB

• GHWT level 6 has the best localization for this denoising task; Haar

• Most retained coefficients for GHWT level 6 are scaling coefficients, not Haar-like (as in the Haar basis) or higher frequency Walsh-like

Investigate usefulness for classification and function estimation Investigate different graph partitioning methods

J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," Proceedings of 2014 IEEE Workshop on Statistical Signal

2 J. Irion, N. Saito: "Hierarchical Graph Laplacian Eigen Transforms," Japan SIAM Letters, vol. 6, pp. 21–24, 2014.

③ R. Coifman, M. Wickerhauser: "Entropy-based algorithms for best basis selection," IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 713–718, 1992.