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Aims & Objectives
1 Develop an overcomplete multiscale transform for signals

on graphs
2 Develop a corresponding best-basis search algorithm
3 Investigate usefulness for approximation, denoising,

classification, function estimation, etc.

Motivation
The regular signals analyzed in classical signal processing
can be viewed as signals on graphs with very simple
structures. For example:

1a. A portion of a 1D signal 1b. Barbara

A current aim in signal processing is to extend the tools
developed for regular signals to signals on graphs; e.g.,
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2a. A mutilated Gaussian signal
on the MN road network
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2b. Thickness data on a
dendritic tree

Problem Setup
a graph G with vertices V = {v1, . . . , vN}
an edge weight matrix W

a data vector f ∈ RN, where fi corresponds to vi

Notation & Recursive Partitioning
A preliminary step for the GHWT is to use recursive
bisection to generate a recursive partitioning of the graph
(see [1] for an example). Our notation is:

j ∈ [0, jmax] denotes levels, where j = 0 is the coarsest
level (the only region is the entire graph) and j = jmax is
the finest level (each region is a single node)

k ∈ [0,K j) indexes the regions on level j

In addition, we let

N j
k denote the number of nodes in region k on level j

If N j
k > 1 then we let k ′ and k ′ + 1 denote the indices of

the children regions on level j + 1

Basis Vector & Coefficient Notation
GHWT basis vectors and coefficients are written as ψj

k,`

and d j
k,`, respectively, where j and k correspond to level

and region and ` is the tag.

` = 0 ⇒ scaling coefficient/basis vector

` = 1 ⇒ Haar-like coefficient/basis vector

` ≥ 2 ⇒ Walsh-like coefficient/basis vector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−8

−6

−4

−2

0

2

4

6

8

3a. Haar
function
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3b. Haar-like
vector ψ2
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3c. Haar-Walsh
wavelet packet
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3d. Walsh-like
vector ψ1

0,5

Generalized Haar-Walsh Transform (GHWT)
Step 1: Start at level j = jmax. As each region is a single

node, define an orthonormal basis consisting of
kronecker deltas. Obtain expansion coefficients d jmax

k,0

by reordering the signal.

Step 2: For j = jmax, . . . , 1: use the coefficients on level j
to compute coefficients on level j − 1 as follows.
For k = 0, . . . ,K j−1 − 1:

Step 2a: Compute the scaling coefficient.

Case 1: If N j−1
k = 1, then set

d j−1
k,0 := d j

k ′,0. (1)

Case 2: If N j−1
k > 1, then compute

d j−1
k,0 :=

√
N j

k ′d
j
k ′,0 +

√
N j

k ′+1d j
k ′+1,0√

N j−1
k

. (2)

Step 2b: If N j−1
k ≥ 2, then compute the Haar-like

coefficient as

d j−1
k,0 :=

√
N j

k ′+1d j
k ′,0 −

√
N j

k ′d
j
k ′+1,0√

N j−1
k

. (3)

Step 2c: If N j−1
k ≥ 3, then compute the Walsh-like

coefficients. For ` = 1, . . . , 2jmax−j − 1:

Case 1: If neither subregion has a coefficient with tag
`, then do nothing.

Case 2: If (without loss of generality) only subregion
k ′ has a coefficient with tag `, then set

d j−1
k,2` := d j

k ′,`. (4)

Case 3: If both subregions have coefficients with tag
`, then compute

d j−1
k,2` : =

(
d j

k ′,` + d j
k ′+1,`

)/√
2 (5)

d j−1
k,2`+1 : =

(
d j

k ′,` − d j
k ′+1,`

)/√
2. (6)

GHWT Output: TWO Dictionaries
The GHWT expansion coefficients and basis vectors can
be grouped in two ways:
1 coarse-to-fine dictionary – grouping is by region; i.e.,

the two child regions are beneath their parent region
2 fine-to-coarse dictionary – grouping is by tag,

exploiting the fact that the vectors/coefficients with tag
` are used to generate those with tags 2` and 2` + 1 on
the next coarser level

Using the path graph of length 6 as an example, we have:
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4a. Coarse-to-fine dictionary
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4b. Fine-to-coarse dictionary

Considering both dictionaries affords more options for
choosing a basis.

Best-Basis Algorithm
We generalized the best-basis algorithm [3] to our
transform.

Step 1: Specify a cost functional J (e.g., `p quasi-norm
with 0 < p < 1)

Step 2: For the coarse-to-fine dictionary, intialize the best
basis as the bottom level. Proceed upwards, using J
to compare the cost of each block of coefficients to
the blocks beneath it and updating the best basis as
necessary. The result is the coarse-to-fine best basis.

Step 3: Repeat for the fine-to-coarse dictionary.

Step 4: Use J to compare the coarse-to-fine and
fine-to-coarse best bases. The result is the overall
best basis.

Observations
When performed on an unweighted dyadic path graph (partitioned
dyadically), the GHWT corresponds exactly to the Haar-Walsh
wavelet packet transform

The generalized Haar basis is a choosable basis from the
fine-to-coarse dictionary

Given a recursive partitioning with O(log N) levels, the
computational cost of the GHWT is O(N log N)

Recursive partitioning via Fiedler vectors costs from O(N log N) to
O(N2)

N jmax GHWT Run Time
MN Road Network 2, 636 14 0.11 s
Facebook Dataset 4, 039 26 0.62 s
Brain Mesh Dataset 127, 083 20 4.29 s

(Experiments performed on a personal laptop.)

Denoising Experiment
1 Add Gaussian noise to mutilated Gaussian on the MN road network

(Fig. 2a) to yield a signal with SNR 5.00 dB (Fig. 5a)
2 Perform the GHWT and consider the fine-to-coarse best-basis (J is

the `p quasi-norm with p = 0.1), Haar basis, and GHWT
coarse-to-fine level j = 6 basis

3 Denoise via soft-thresholding

Haar & best basis: threshold chosen manually using original signal
Level 6: threshold chosen using elbow selection algorithm (original
signal not used)
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5a. Noisy signal, SNR = 5.00 dB
−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

 

 

−1

−0.5

0

0.5

1

1.5

2

2.5

5b. GHWT fine-to-coarse best
basis, SNR = 11.59 dB
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5c. Haar basis, SNR = 12.83 dB
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5d. GHWT coarse-to-fine level
j = 6, SNR = 13.46 dB

GHWT level 6 has the best localization for this denoising task; Haar
is too localized and best basis is too global

Most retained coefficients for GHWT level 6 are scaling coefficients,
not Haar-like (as in the Haar basis) or higher frequency Walsh-like
(as in the best basis) coefficients

Future Work
Investigate usefulness for classification and function estimation

Allow for partitions to have “soft” boundaries

Investigate different graph partitioning methods
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