The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks

Jeff Irion & Naoki Saito

Department of Mathematics University of California, Davis

SIAM Annual Meeting 2014 Chicago, IL July 7, 2014

- 4 Denoising Experiment
- 5 Summary and Future Work

Generalized Haar-Walsh Transform

- 4 Denoising Experiment
- 5 Summary and Future Work

Classical signals can be viewed as signals on graphs with simple structures. For example:

(b) Barbara

We wish to extend techniques from classical signal processing to the setting of general graphs. For example:

Aims & Objectives:

- **1** Develop an overcomplete multiscale transform for signals on graphs
- Oevelop a corresponding best-basis search algorithm
- Investigate usefulness for approximation, denoising, classification, function estimation, etc.

Challenges:

- Irregular structure of the domain
- a Lack of translation, dilation, and a general notion of frequency
 - Critical elements in the wavelet transform
- Omputational complexity!

Aims & Objectives:

- **1** Develop an overcomplete multiscale transform for signals on graphs
- ② Develop a corresponding best-basis search algorithm
- Investigate usefulness for approximation, denoising, classification, function estimation, etc.

Challenges:

- Irregular structure of the domain
- 2 Lack of translation, dilation, and a general notion of frequency
 - Critical elements in the wavelet transform
- Omputational complexity!

Generalized Haar-Walsh Transform

- Denoising Experiment
- 5 Summary and Future Work

Let G be a graph.

- $V = V(G) = \{v_1, \dots, v_N\}$ is the set of vertices.
- $E = E(G) = \{e_1, \dots, e_N\}$ is the set of edges, where $e_k = (v_i, v_j)$ represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some $1 \le i, j \le N$.
- $W = W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where w_{ij} denotes the edge weight between vertices i and j.

Let G be a graph.

• $V = V(G) = \{v_1, \dots, v_N\}$ is the set of vertices.

- $E = E(G) = \{e_1, \dots, e_{N'}\}$ is the set of edges, where $e_k = (v_i, v_j)$ represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some $1 \le i, j \le N$.
- $W = W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where w_{ij} denotes the edge weight between vertices i and j.

Let G be a graph.

- $V = V(G) = \{v_1, \dots, v_N\}$ is the set of vertices.
- E = E(G) = {e₁,..., e_{N'}} is the set of edges, where e_k = (v_i, v_j) represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some 1 ≤ i, j ≤ N.
- $W = W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where w_{ij} denotes the edge weight between vertices i and j.

Let G be a graph.

- $V = V(G) = \{v_1, \dots, v_N\}$ is the set of vertices.
- $E = E(G) = \{e_1, \dots, e_{N'}\}$ is the set of edges, where $e_k = (v_i, v_j)$ represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some $1 \le i, j \le N$.
- $W = W(G) \in \mathbb{R}^{N \times N}$ is the weight matrix, where w_{ij} denotes the edge weight between vertices i and j.

Our Assumptions

In this talk, we assume that the graph is

- connected.
- undirected. $w_{ij} = w_{ji}$, and thus W is symmetric.

- We used Fielder vectors of the Laplacian matrices.
- The associated cost is from $O(N\log N)$ to $O(N^2)$, depending on the graph and the implementation.
- More info ⇒ J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, pp. 488–491, 2014.

- We used Fielder vectors of the Laplacian matrices.
- The associated cost is from $O(N\log N)$ to $O(N^2)$, depending on the graph and the implementation.
- More info ⇒ J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, pp. 488–491, 2014.

- We used Fielder vectors of the Laplacian matrices.
- The associated cost is from $O(N\log N)$ to $O(N^2)$, depending on the graph and the implementation.
- More info ⇒ J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, pp. 488–491, 2014.

- We used Fielder vectors of the Laplacian matrices.
- The associated cost is from $O(N\log N)$ to $O(N^2)$, depending on the graph and the implementation.
- More info ⇒ J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, pp. 488–491, 2014.

- We used Fielder vectors of the Laplacian matrices.
- The associated cost is from $O(N\log N)$ to $O(N^2)$, depending on the graph and the implementation.
- More info ⇒ J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," *Proceedings of 2014 IEEE Workshop on Statistical Signal Processing*, pp. 488–491, 2014.

Generalized Haar-Walsh Transform

- 4 Denoising Experiment
- 5 Summary and Future Work

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

jlirion@math.ucdavis.edu (UC Davis) Ge

Generalized Haar-Walsh Transforn

jlirion@math.ucdavis.edu (UC Davis)

Generalized Haar-Walsh Transforr

jlirion@math.ucdavis.edu (UC Davis)

Generalized Haar-Walsh Transform

July. 7, 2014 12 / 26

$\mathsf{GHWT} \text{ on } P_6$

.	•	••••••	••••	••••	•••••

GHWT on P_6 – Coarse-to-Fine Dictionary

We call this the coarse-to-fine dictionary.

Notation is $\psi_{k,\ell}^{J}$, where

- *j* is the level
- k denotes the region on level j
- ℓ is the *tag*

We have 3 types of basis vectors:

- scaling vectors $(\ell = 0)$
- Haar-like vectors ($\ell = 1$)
- Walsh-like vectors $(\ell \ge 2)$

jlirion@math.ucdavis.edu (UC Davis) General

Generalized Haar-Walsh Transform

GHWT Algorithm

Input: a graph partitioning and a signal $f \in \mathbb{R}^N$ on the graph

Output: a dictionary of expansion coefficients $\{d_{k,l}^j\}$

- Step 1: Obtain expansion coefficients on level $j = j_{max} \Leftrightarrow$ reorder the original signal
- Step 2: Use the coefficients on level j to compute the coefficients on level j-1 as follows:
- Step 2a: Compute the scaling coefficient

Case 1: If $N_k^j = 1$, then set

$$d_{k,0}^{j-1} := d_{k',0}^j$$

Case 2: If $N_k^j \ge 2$, then set

$$d_{k,0}^{j-1} := \frac{\sqrt{N_{k'}^j} d_{k',0}^j + \sqrt{N_{k'+1}^j} d_{k'+1,0}^j}{\sqrt{N_k^{j-1}}}$$

Step 2b: If $N_k^{j-1} \ge 2$, then compute the <u>Haar-like coefficient</u> as

$$d_{k,0}^{j-1} := \frac{\sqrt{N_{k'+1}^j} d_{k',0}^j - \sqrt{N_{k'}^j} d_{k'+1,0}^j}{\sqrt{N_k^{j-1}}}$$

Step 2c: If $N_k^{j-1} \ge 3$, then compute the <u>Walsh-like coefficients</u>. For $\ell = 1, ..., 2^{j_{\max}-j} - 1$:

- Case 1: If neither subregion has a coefficient with tag ℓ , then do nothing
- Case 2: If (without loss of generality) only subregion k' has a coefficient with tag ℓ , then set

$$d_{k,2\ell}^{j-1} := d_{k',\ell}^j$$

Case 3: If both subregions have coefficients with tag ℓ , then compute

$$\begin{aligned} d_{k,2\ell}^{j-1} &:= \left(d_{k',\ell}^j + d_{k'+1,\ell}^j \right) / \sqrt{2} \\ d_{k,2\ell+1}^{j-1} &:= \left(d_{k',\ell}^j - d_{k'+1,\ell}^j \right) / \sqrt{2} \end{aligned}$$

GHWT on P_6 – Fine-to-Coarse Dictionary

Note that the basis vectors (or coefficients) with tag ℓ on level j were used to generate those with tags 2ℓ and $2\ell + 1$ on level j - 1.

Using this fact, we can reorganize the basis vectors by their tags to yield the *fine-to-coarse dictionary*:

GHWT on P_6 – Fine-to-Coarse Dictionary

Note that the basis vectors (or coefficients) with tag ℓ on level j were used to generate those with tags 2ℓ and $2\ell + 1$ on level j - 1.

Using this fact, we can reorganize the basis vectors by their tags to yield the *fine-to-coarse dictionary*:

(a) Coarse-to-fine dictionary

(b) Fine-to-coarse dictionary

- j = 0 is the coarsest level, j = 16 is the finest
- $\bullet\,$ Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 1$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 2$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 3$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 4$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 5$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 6$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 7$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 8$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 0$$
, Region $k = 0$, $l = 9$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 1$$
, Region $k = 0$, $l = 1$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 1$$
, Region $k = 0$, $l = 2$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 1$$
, Region $k = 0$, $l = 3$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 2$$
, Region $k = 0$, $l = 1$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 2$$
, Region $k = 0$, $l = 2$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 2$$
, Region $k = 1$, $l = 1$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 2$$
, Region $k = 1$, $l = 2$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 3$$
, Region $k = 0$, $l = 1$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 3$$
, Region $k = 0$, $l = 2$

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 3$$
, Region $k = 2$, $l = 1$

GHWT on MN Road Network

- j = 0 is the coarsest level, j = 16 is the finest
- Inverse Euclidean weights, partitioned via the Fiedler vector of $L_{\rm rw}$

Level
$$j = 3$$
, Region $k = 2$, $l = 2$

Observations

- When performed on an unweighted dyadic path graph (partitioned dyadically), the GHWT corresponds exactly to the Haar-Walsh wavelet packet transform
- The generalized Haar basis is a choosable basis from the fine-to-coarse dictionary
- Given a recursive partitioning with $O(\log N)$ levels, the computational cost of the GHWT is $O(N \log N)$

	Ν	$j_{\sf max}$	GHWT Run Time
MN Road Network	2,636	14	0.11 s
Facebook Dataset	4,039	26	0.62 s
Brain Mesh Dataset	127,083	20	4.29 s

(Experiments performed using MATLAB on a personal laptop.)

Generalized Haar-Walsh Transform

4 Denoising Experiment

 Added noise to the mutilated Gaussian on the MN road network (left) to yield a signal with an SNR of 5.00 dB (right)

Expanded into 3 bases: Laplacian eigenvectors, the generalized Haar basis, and the GHWT coarse-to-fine level j = 6 basis

Oenoised via soft-thresholding, using an elbow detection algorithm to determine the thresholds

 Added noise to the mutilated Gaussian on the MN road network (left) to yield a signal with an SNR of 5.00 dB (right)

- **2** Expanded into 3 bases: Laplacian eigenvectors, the generalized Haar basis, and the GHWT coarse-to-fine level j = 6 basis
- Oenoised via soft-thresholding, using an elbow detection algorithm to determine the thresholds

jlirion@math.ucdavis.edu (UC Davis)

Generalized Haar-Walsh Transform

July. 7, 2014 22 / 26

- GHWT level 6 has the best localization for this denoising task
 - Small enough to capture details, large enough to drown out noise
 - The generalized Haar basis is too localized and the Laplacian eigenvectors are too global
- Most retained coefficients for GHWT level 6 are scaling coefficients, not Haar-like (as in the generalized Haar basis)

Motivation

Generalized Haar-Walsh Transform

Summary

- The GHWT is a *multiscale transform* that is a generalization of the Haar Transform and the Walsh-Hadamard Transform
- It produces an overcomplete dictionary of orthonormal bases from which we can choose a basis most suitable for the task at hand

Future Work

- Allow for partitions to have "soft" boundaries
- Investigate different graph partitioning methods
- Investigate usefulness for classification and function estimation

Summary

- The GHWT is a *multiscale transform* that is a generalization of the Haar Transform and the Walsh-Hadamard Transform
- It produces an overcomplete dictionary of orthonormal bases from which we can choose a basis most suitable for the task at hand

Future Work

- Allow for partitions to have "soft" boundaries
- Investigate different graph partitioning methods
- Investigate usefulness for classification and function estimation

Acknowledgements & References

Funding by

- NSF VIGRE DMS-0636297
- NDSEG Fellowship, 32 CFR 168a
- ONR grant N00014-12-1-0177

References

- J. Irion, N. Saito: "The Generalized Haar-Walsh Transform," *Proceedings of 2014 IEEE Workshop on Statistical Signal Processing*, pp. 488–491, 2014.
- J. Irion, N. Saito: "Hierarchical Graph Laplacian Eigen Transforms," Japan SIAM Letters, vol. 6, pp. 21–24, 2014.
- R. Coifman, M. Wickerhauser: "Entropy-based algorithms for best basis selection," *IEEE Transactions on Information Theory*, vol. 38, no. 2, pp. 713–718, 1992.