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Motivations: Why Graphs?

Motivations: Why Graphs and Networks?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Motivations: Why Graphs?

Motivations: Why Graphs & Networks?

Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels’ for data sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel1; Signal Segmentation as we will see
later.

1A. Buades, B. Coll, J.-M. Morel, “A review of image denoising algorithms, 315 with
a new one,” Multiscale Model. Simul., vol. 4 (2), pp. 490–530, 2005.
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Motivations: Why Graphs?

Today’s Goals

Briefly review some basic concepts and terminology of graph theory
and graph Laplacians
Introduce the tools we recently developed:

Hierarchical Graph Laplacian Eigen Transform (HGLET) ≈ Hierarchical
Block Discrete Cosine Transforms on graphs;
Generalized Haar-Walsh Transform (GHWT) = Haar-Walsh Wavelet
Packet Dictionary for graphs

Present some interesting applications using them: noise removal (or
denoising); signal segmentation; matrix data analysis
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Basics of Graph Theory: Graph Laplacians

Definitions and Notation

Let G be a graph.
V =V (G) = {v1, . . . , vn} is the set of vertices.
For simplicity, we often use 1, . . . ,n instead of v1, . . . , vn .
E = E(G) = {e1, . . . ,em} is the set of edges, where ek = (i , j ) represents
an edge (or line segment) connecting between adjacent vertices i , j for
some 1 ≤ i , j ≤ n.
W =W (G) ∈Rn×n is the weight matrix, where wi j denotes the edge
weight between vertices i and j .

1 2 3

45

w12 w23

w34

w45

w35

w24
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Basics of Graph Theory: Graph Laplacians

Definitions and Notation . . .

Note that there are many ways to define wi j .

For example, for unweighted graphs, we typically use

wi j :=
{

1 if i ∼ j (i.e., i and j are adjacent);

0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).

For weighted graphs, wi j should reflect the similarity (or affinity) of
information at i and j , e.g., if i ∼ j , then

wi j :=1/dist(i , j ) or exp(−dist(i , j )2/ε2),

where dist(·, ·) is a certain measure of dissimilarity and ε> 0 is an
appropriate scale parameter.
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Basics of Graph Theory: Graph Laplacians

Our Assumptions

In this talk, we assume that the graph is
connected. Otherwise, we would simply consider the components
separately.
undirected. Edges do not have direction, which means that
wi j = w j i and thus W is symmetric.

The graph may be weighted or unweighted.
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Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph

Let D = D(G) :=diag(d1, . . . ,dn) be the degree matrix of G where

di :=
n∑

j=1
wi j is the degree of the vertex i .

We can now define several Laplacian matrices of G:

L(G) :=D −W Unnormalized

Lrw(G) :=In −D−1W = D−1L Random-Walk Normalized

Lsym(G) :=In −D− 1
2 W D− 1

2 = D− 1
2 L D− 1

2 Symmetrically-Normalized

Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric. See,
e.g., Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005, for an attempt to
symmetrize graph Laplacian matrices for strongly connected digraphs.
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Basics of Graph Theory: Graph Laplacians

Graph Laplacians . . .
Let f ∈Rn be a data vector defined on V (G). Then

L f (i ) = di f (i )−
n∑

j=1
wi j f ( j ) =

n∑
j=1

wi j
(

f (i )− f ( j )
)

.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (i ) = f (i )−
n∑

j=1
pi j f ( j ) = 1

di

n∑
j=1

wi j
(

f (i )− f ( j )
)

.

Lsym f (i ) = f (i )− 1√
di

n∑
j=1

wi j√
d j

f ( j ) = 1√
di

n∑
j=1

wi j

 f (i )√
di

− f ( j )√
d j

 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).
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Basics of Graph Theory: Graph Laplacians

Why Graph Laplacian Eigenfunctions?

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this talk, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Basics of Graph Theory: Graph Laplacians

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .
2

1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0


︸ ︷︷ ︸

W (G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 4sin2(πk/2n); φk (`) =
√

2
n cos

(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. However, the notion of
frequency is not well defined on a more general graph!
The eigenvectors of Lsym ≡ D1/2· the eigenvectors of Lrw

≡ the DCT Type I basis vectors
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A Brief Review of Graph Laplacian Eigenpairs

A Brief Review of Graph Laplacian Eigenpairs

In this review part, we only consider undirected graphs and their
unnormalized Laplacians L(G) = D(G)−W (G).
It is a good exercise to see how the statements change for Lrw, Lsym.
L(G) is positive semi-definite as was shown earlier. Hence, we can sort
the eigenvalues of L(G) as 0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G).
mG (λ) := the multiplicity of λ.
rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. L(G) has mG (0) diagonal blocks; the
eigenspace corresponding to λ= 0 is spanned by the indicator vectors
of each connected component.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected. Then, the
eigenfunction corresponding to λ0 = 0 is the constant function φ0 = 1n .
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) :=λ1(G), viewing it as a quantitative measure of connectivity.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
Goal: Split the vertices V into two “good” subsets, X and X c

Plan: Use the signs of the entries in φ1 known as the Fiedler vector
Why? Using φ1 of L(G) to generate X and X c yields an approximate
minimizer of the RatioCut function1:

RatioCut(X , X c ) :=cut(X , X c )

|X | + cut(X , X c )

|X c | , where cut(X , X c ) := ∑
i∈X
j∈X c

wi j

We can also use the signs of φ1 of Lrw (equivalently, Lsym) to cut a
graph, which yield an approximate minimizer of the Normalized Cut (or
NCut) function of Shi and Malik2:

NCut(X , X c ) :=cut(X , X c )

vol(X )
+ cut(X , X c )

vol(X c )
, where vol(X ) := ∑

i∈X
di

1L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2J. Shi & J. Malik: “Normalized cuts and image segmentation”, IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Graph Partitioning via Spectral Clustering

Example of Graph Partitioning
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Figure: The MN road network
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Figure: The MN road network partitioned via the Fiedler vector of Lrw
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 2
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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One Can Do This Recursively!
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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Multiscale Basis Dictionaries

Motivation: Building Multiscale Basis Dictionaries

Wavelets have been quite successful on regular domains
They have been extended to irregular domains ⇒ “2nd Generation
Wavelets” including graphs, e.g.:

Coifman and Maggioni (2006): diffusion wavelets; Bremer et al.
(2006): diffusion wavelet packets
Jansen, Nason, and Silverman (2008): Adaptation of the lifting scheme
to graphs
Hammond, Vandergheynst, and Gribonval (2011): Spectral graph
wavelet transforms (via spectral graph theory)
Sharon and Shkolnisky (2015): Laplacian multiwavelet bases (via a
combination of spectral graph theory and multiresolution analysis)
. . .
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Multiscale Basis Dictionaries

Key Difficulties to Build Wavelets/Wavelet Packets on Graphs

It has been quite popular to use graph Laplacian eigenvectors as
“cosines” or Fourier modes on graphs with eigenvalues as (the square
of) their “frequencies”
However, the notion of frequency is ill-defined on general graphs and
the Fourier transform is not properly defined on graphs
Graph Laplacian eigenvectors may also exhibit peculiar behaviors
depending on topology and structure of given graphs!
For example, eigenvectors corresponding to high eigenvalues may be
highly localized; see: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries
around graph Laplacian eigenvalue 4,” Linear Algebra and its
Applications, vol. 438, no. 8, pp. 3231–3246, 2013.
Hence, building wavelets on graphs based on the Littlewood-Paley
theory is quite challenging
Moreover, the notion of smoothness class of functions (e.g., Sobolev
and Besov spaces) is also difficult to define on graphs =⇒ Can define
it on metric/quantum graphs . . . Spaces of homogeneous type?
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Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

1 Recursively partition the graph

m These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

2 Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...

saito@math.ucdavis.edu (UC Davis) ACHA on Graphs & Networks August 12, 2015 28 / 71



Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

1 Generate an orthonormal basis for the entire graph ⇒ Laplacian
eigenvectors (Notation is φ j

k,l with j = 0)

2 Partition the graph using the Fiedler vector φ j
k,1

3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian
eigenvectors

4 Repeat...

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,n0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,n1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,n1

1−1

]

[
φ2

0,0φ
2
0,1 · · ·φ2

0,n2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,n2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,n2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,n2
3−1

]
...
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this exactly yields a dictionary of the
multiscale BDCT-II
Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand ⇒
best-basis algorithm, local discriminant basis algorithm, . . .

A union of bases on disjoint subsets is obviously orthonormal[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,n0

0−1

]
[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,n1

0−1

][
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,n1

1−1

]
[
φ2

0,0 · · · φ2
0,n2

0−1

][
φ2

1,0 · · · φ2
1,n2

1−1

][
φ2

2,0 · · · φ2
2,n2

2−1

][
φ2

3,0 · · · φ2
3,n2

3−1

]
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm can be summarized as follows...
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive partitioning of the graph ⇒ Fiedler vectors
2 Generate an orthonormal basis for level jmax (the finest level) ⇒

scaling vectors on the single-node regions
As with HGLET, the notation is ψ j

k,l
3 Using the basis for level jmax, generate an orthonormal basis for level

jmax−1 ⇒ scaling and Haar-like vectors
4 Repeat... Using the basis for level j , generate an orthonormal basis for

level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,n−2 ψ0
0,n−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Notation

j ∈ [0, jmax] denotes levels, where j = 0 is the coarsest level (i.e., the
entire graph) and j = jmax is the finest level (each region is a single
node)
k ∈ [0,K j ) indexes the regions on level j

n j
k denote the number of nodes in region k on level j

If n j
k > 1 then we let k ′ and k ′+1 denote the indices of the children

regions on level j +1
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Basis Vector & Coefficient Notation

GHWT basis vectors and coefficients are written as ψ j
k,` and c j

k,`,
respectively, where j and k correspond to level and region and ` is the tag.

`= 0 ⇒ scaling coefficient/basis vector
`= 1 ⇒ Haar-like coefficient/basis vector
`≥ 2 ⇒ Walsh-like coefficient/basis vector
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks

For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure:

This reorganization gives us more options for choosing a good basis
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Figure: Default dictionary; i.e., coarse-to-fine

This reorganization gives us more options for choosing a good basis
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 2, l = 2
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Computational Complexity: HGLET vs. GHWT

Recursive Partitioning (RP) via Fiedler vectors costs from O(n logn)
to O(n2) depending on an input graph
Given a recursive partitioning with O(logn) levels, the computational
cost of the GHWT is O(n logn) whereas that of the HGLET is O(n3)

The following table shows the results of our numerical experiments
computed on a desktop PC (CPU: 16 GB RAM, 3.2 GHz Clock
Speed):

Dataset n jmax RP HGLET GHWT
Dendritic Tree 1154 13 0.49 s 0.99 s 0.07 s

MN Road Network 2640 14 0.76 s 10.57 s 0.18 s
Facebook Graph 4039 46 18.10 s 57.15 s 1.17 s
Brain Mesh Data 127083 21 164.18 s N/A 11.59 s
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Related Work

The following articles also discussed the Haar-like transform on graphs and
trees, but neither the Walsh-Hadamard transform nor Wavelet Packets on
them are discussed:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive
multi-scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2,
pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi
supervised learning,” in Proc. 27th Intern. Conf. Machine Learning (J.
Fürnkranz et al. eds.), pp. 367–374, Omnipress, Haifa, 2010.
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Multiscale Basis Dictionaries Best-Basis Algorithm for HGLET & GHWT

Outline
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Best-Basis Algorithms for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is
“best” for approximation.

We require a cost functional J . For example:

J (x) = ‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

0 < p ≤ 1

Another example cost functional is based on . . .
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Multiscale Basis Dictionaries Best-Basis Algorithm for HGLET & GHWT

The Minimum Description Length (MDL) Criterion
Given two or more competing models that are supposed to generate the observed data,
choose the model that describes the data and the model itself with the least amount of
bits. The basic idea behind the MDL principle: The more you can compress a sequence
of data, the more regularity you have detected in the data, hence the more you have
learned from the data.
⇒ Need to specify the model class for a given signal
⇒ No time today to go over the details of the MDL philosophy and the actual cost

functional we use; More details can be found in:

J. Rissanen, Information and Complexity in Statistical Modeling, Springer, 2007.
P. D. Grünwald, The Minimum Description Length Principle, The MIT Press, 2007.
N. Saito, “Simultaneous noise suppression and signal compression using a library of
orthonormal bases and the minimum description length criterion,” in Wavelets in
Geophysics (E. Foufoula-Georgiou and P. Kumar, eds.), Chap. XI, pp. 299–324,
Academic Press, 1994.
N. Saito and E. Woei, “Simultaneous segmentation, compression, and denoising of
signals using polyharmonic local sine transform and minimum description length
criterion,” 2005 IEEE/SP 13th Workshop on Statistical Signal Processing,
pp. 315–320, 2005.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.

With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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Applications 1-D Signal Segmentation

Motivation

Thanks to the versatility of graphs, graph-based techniques have been used
to tackle classical problems, e.g., the nonlocal means algorithm for image
denoising can be viewed as a graph-based technique. Here, we demonstrate

the versatility of our graph methods by applying the HGLET and hybrid
best-basis algorithm to the problem of denoising and segmenting a 1-D
signal sampled on a regular lattice into meaningful parts.
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Applications 1-D Signal Segmentation

Simply put, the goal is to partition a given 1-D signal into segments based
on the characteristics of the signal, which may help interpretation, analysis,
compression, etc.
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Applications 1-D Signal Segmentation

Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best basis segmentation converges:
1 Recursively partition the graph. We construct a recursive

bipartitioning by minimizing NCut (without using the Fiedler vectors).
2 Perform the 3 HGLET transforms. That is, we use the

eigenvectors of L, Lrw, and Lsym of the unweighted path graph.
3 Find the hybrid best basis. We use the MDL cost functional to

search among the coefficients from the 3 HGLET variations.
4 Modify the graph’s edge weights. If the two adjacent segments in

the resulting best basis are represented by the same HGLET
transform, then we double the weight of the edge joining them and
halve the weights of its two neighboring edges.

Post-process the segments of the final best basis and reconstruct the
denoised signal from the quantized coefficients.
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Applications 1-D Signal Segmentation

Results
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Figure: HGLET L, HGLET Lrw, and HGLET Lsym segments.

saito@math.ucdavis.edu (UC Davis) ACHA on Graphs & Networks August 12, 2015 50 / 71



Applications 1-D Signal Segmentation

A Real Signal Example
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Figure: Gamma-ray log from North Sea subsurface formations. ∆z = 6inches.
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Applications 1-D Signal Segmentation

Simultaneous Segmentation and Denoising
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(b) Denoised (a) (n = 2048, SNR = 21.60 dB)
0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

(d) Denoised (c) (n = 1021, SNR = 22.82 dB)

Figure: HGLET L, HGLET Lrw, and HGLET Lsym segments.
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Applications 1-D Signal Segmentation

Discussion

Why does the MDL perform well for this task?
1 The MDL seeks an efficient way to represent the signal ⇒ dissimilar

regions are more efficiently represented separately than together
2 Partitions have a cost, and so regions will be merged unless keeping

them separate offers a savings in cost that warrants the extra cost of
the partition
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Applications 1-D Signal Segmentation

Discussion
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(d) “Piece-Regular” (n = 1021, SNR = 20 dB)

What do we learn from this
particular example?

Our method is versatile in
that it is compatible with
signals of arbitrary length
⇒ signals whose length are
non-dyadic and even prime
are perfectly fine
Even with the addition of
significant noise and
changing the length from
dyadic to prime, the resulting
partitions look similar
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Applications Matrix Data Analysis

Motivation

There are many examples of data in matrix format:
Images
Ratings/Reviews

Rows → Netflix users
Columns → movies
A(i , j ) → user i ’s rating of movie j on a 1-5 scale

Spatiotemporal data
Rows → sensors
Columns → times
A(i , j ) → sensor i ’s temperature reading at time j

By utilizing graph-based techniques, we can discover and exploit underlying
structure in the data for a variety of tasks.
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Applications Matrix Data Analysis

Method

1 Use the matrix data to recursively partition the rows and the columns
(explained on next slide)

2 Use the GHWT and best-basis algorithm to analyze the matrix
i. Analyze along the rows and extract the best basis
ii. Analyze the row best basis coefficients along the columns and extract

the best basis
3 Threshold the expansion coefficients and reconstruct

Compare to the tensor Haar basis and, where applicable, to 2-D
wavelets
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Applications Matrix Data Analysis

Matrix Partitioning
1 Recursively partition the columns

2 Append row averages on the column
clusters

3 Recursively partition the rows (utilizing
the appended averages)

4 Append column averages on the row
clusters

5 Recursively partition the columns
(utilizing the appended averages)

6 Append row averages on the column
clusters

7 Recursively partition the rows (utilizing
the appended averages)

8 Repeat steps (4)-(7)...

Result: recursive partitioning trees on the
rows and columns.

6

7

See also: R. R. Coifman & M. Gavish, “Harmonic analysis of digital data bases,” in: Wavelets and
Multiscale Analysis (J. Cohen & A. I. Zayed, eds.), Birkhäuser, New York, pp. 161–197, 2011.
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Applications Matrix Data Analysis

Matrix Partitioning
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See also: R. R. Coifman & M. Gavish, “Harmonic analysis of digital data bases,” in: Wavelets and
Multiscale Analysis (J. Cohen & A. I. Zayed, eds.), Birkhäuser, New York, pp. 161–197, 2011.
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Applications Matrix Data Analysis

Example 1

Dataset: the Science News database (1047×1000)

Rows → article abstracts from 8
fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics
Columns → (appropriately
chosen) words
A(i , j ) → the number of times
word j appears in abstract i
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Figure: Science News database (original
order).
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Figure: Science News database
(reordered rows and columns).
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Applications Matrix Data Analysis

Example 1
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Figure: Haar basis vs. GHWT best basis
approximation results. The horizontal
line denotes the percentage of nonzero
entries in the matrix (4.5%).

Cost functional: 1-norm
Total number of orthonormal
bases searched: > 10300

The best basis performs much
better than the Haar basis!
39.1% of the Haar coefficients
must be kept to achieve perfect
reconstruction

⇒ The Haar basis could not
efficiently capture the
underlying structure of this
Science News dataset under the
current matrix partitioning
strategy (including that of
Coifman and Gavish)!
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Applications Matrix Data Analysis

Example 1: Top 3 Basis Functions
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Figure: The support of these basis functions is very localized, i.e., only a few
nonzero entries.
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Applications Matrix Data Analysis

Example 2

Dataset: the “Barbara” image with the rows and columns shuffled.

Left: the original Barbara image
Middle: the shuffled Barbara image
Right: the shuffled image reordered according to the recursive
partitioning
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Example 2
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Figure: Approximation results. For
“Coif3 (shuffled)” the shuffled image
(middle figure on previous page) was
analyzed, and for “Coif3 (reordered)”
the reordered image (figure on the
right) was analyzed.

Cost functional: 1-norm
Total number of orthonormal
bases searched: 1.36×1087

The GHWT best basis exactly
matches the Haar basis

As long as the cost functional
is chosen correctly for the
task at hand (e.g.,
approximation, denoising,
etc.), the GHWT best basis
will always perform at least
as well as the Haar basis

The GHWT best basis (Haar
basis) performs much better
than the Coiflet, which yields a
fixed basis that cannot account
for the geometry of the data
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Example 2

Reconstructions with
10% of the coefficients
for the GHWT best basis
/ Haar basis (top row)
and the Coiflet on the
reordered image (bottom
row).

saito@math.ucdavis.edu (UC Davis) ACHA on Graphs & Networks August 12, 2015 64 / 71



Applications Matrix Data Analysis

Example 2 . . .

Of course, the Coiflet performs great when the image is not shuffled.

(a) Coiflet reconstruction
(10% coefficients kept)

(b) GHWT reconstruction
(10% coefficients kept)
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(c) Relative Reconstruction Error

But as seen on the previous slides, the GHWT excels when the structure of
the matrix data is not known a priori.
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Discussion

Originally developed for signals on graphs, here we have shown the
effectiveness of the GHWT for analyzing matrix data
The GHWT best-basis algorithm searches over an immense number of
orthonormal bases, including the graph Haar basis
When selected using an appropriate cost functional, the GHWT best
basis equals or outperforms the graph Haar basis

In Example 1, the best-basis algorithm found a basis that performed
much better than the Haar basis
In Example 2, the best-basis algorithm chose the Haar basis as the best
basis

This demonstrates the importance/advantage of data-adaptive basis
dictionary from which one can select the most suitable basis for one’s
task at hand!
Still need to examine the meaning of the best basis vectors, e.g., what
combinations of words and articles are well captured by the top basis
vectors selected as the best basis?
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Summary

Although graph Laplacian eigenvectors have been popular as replacement of the
Fourier (or DCT) basis on a graph, the analogy takes us only so far due to their
sensitivity to the geometry and topology of underlying graphs.

We developed multiscale basis dictionaries on graphs and networks: HGLET and
GHWT. We also developed a corresponding best-basis algorithm.

The HGLET is a generalization of Hierarchical Block Discrete Cosine Transforms
originally developed for regularly-sampled signals and images.

The GHWT is a generalization of the Haar-Walsh Wavelet Packet Transforms.

Both of these transforms allow us to choose an orthonormal basis suitable for the
task at hand: approximation, classification, regression, matrix data analysis, . . .

They are also useful for regularly-sampled signals, e.g., can deal with signals of
non-dyadic length; adaptive signal segmentation, . . .

Developing harmonic analysis tools for directed graphs will be challenging yet
important =⇒ our idea: use integral operator/distance matrix + SVD instead of
differential operator/graph Laplacian matrix + EIG (with Eugene Shvarts)

Still many things to do: generalization to image segmentation; better quantization
strategies for MDL computation; . . .

saito@math.ucdavis.edu (UC Davis) ACHA on Graphs & Networks August 12, 2015 68 / 71



Summary & References

References
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My Course Slides on “Harmonic Analysis on Graphs and Networks”
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2007, Zürich (Organizers: NS, Mauro Maggioni); SIAM Imaging
Science Conference 2008, San Diego (Organizers: NS, Xiaomin Huo);
IPAM 5-day Workshop 2009, UCLA (Organizers: Peter Jones, Denis
Grebenkov, NS); SIAM Annual Meeting 2013, San Diego (Organizers:
Chiu-Yen Kao, Braxton Osting, NS); BIRS 5-day Workshop 2015,
Banff (Organizers: Peter Jones, Denis Grebenkov, NS).

Jeff Irion disseminates the codes for HGLET/GHWT and related tools at
https://github.com/JeffLIrion/MTSG_Toolbox
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The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/
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Thank you very much for your attention!
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