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Today’s Goals

Briefly review some basic concepts and terminology of graph theory
and graph Laplacians
Review our tools that we recently developed:

Hierarchical Graph Laplacian Eigen Transform (HGLET) ≈ Hierarchical
Block Discrete Cosine Transforms on graphs;
Generalized Haar-Walsh Transform (GHWT) = Haar-Walsh Wavelet
Packet Dictionary for graphs

Present some interesting applications using them: matrix data
analysis; signal segmentation & denoising
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Basics of Graph Laplacians

Definitions and Notation

Let G be a graph.
V =V (G) = {v1, . . . , vn} is the set of vertices.
For simplicity, we often use 1, . . . ,n instead of v1, . . . , vn .
E = E(G) = {e1, . . . ,em} is the set of edges, where ek = (i , j ) represents
an edge (or line segment) connecting between adjacent vertices i , j for
some 1 ≤ i , j ≤ n.
W =W (G) ∈Rn×n is the weight matrix, where wi j denotes the edge
weight between vertices i and j .
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Basics of Graph Laplacians

Definitions and Notation . . .

Note that there are many ways to define wi j .

For example, for unweighted graphs, we typically use

wi j :=
{

1 if i ∼ j (i.e., i and j are adjacent);

0 otherwise.

This is often referred to as the adjacency matrix and denoted by A(G).

For weighted graphs, wi j should reflect the similarity (or affinity) of
information at i and j , e.g., if i ∼ j , then

wi j :=1/dist(i , j ) or exp(−dist(i , j )2/ε2),

where dist(·, ·) is a certain measure of dissimilarity and ε> 0 is an
appropriate scale parameter.
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Basics of Graph Laplacians

Our Assumptions

In this talk, we assume that the graph is
connected. Otherwise, we would simply consider the components
separately.
undirected. Edges do not have direction, which means that
wi j = w j i and thus W is symmetric.

The graph may be weighted or unweighted.
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Basics of Graph Laplacians

Matrices Associated with a Graph

Let D = D(G) :=diag(d1, . . . ,dn) be the degree matrix of G where

di :=
n∑

j=1
wi j is the degree of the vertex i .

We can now define several Laplacian matrices of G:

L(G) :=D −W Unnormalized

Lrw(G) :=In −D−1W = D−1L Random-Walk Normalized

Lsym(G) :=In −D− 1
2 W D− 1

2 = D− 1
2 L D− 1

2 Symmetrically-Normalized

Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric. See,
e.g., Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005, for an attempt to
symmetrize graph Laplacian matrices for strongly connected digraphs.
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Basics of Graph Laplacians

Why Graph Laplacian Eigenfunctions?

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this talk, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Basics of Graph Laplacians

A Simple Yet Important Example: A Path Graph
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︸ ︷︷ ︸
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The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 4sin2(πk/2n); φk (`) ∝ cos
(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. However, the notion of
frequency is not well defined on a more general graph!
The eigenvectors of Lsym ≡ D1/2· the eigenvectors of Lrw

≡ the DCT Type I basis vectors
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Basics of Graph Laplacians

A Brief Review of Graph Laplacian Eigenpairs

In this slide, we only consider the unnormalized Laplacian
L(G) = D(G)−W (G). It is a good exercise to see how the statements
in this slide change for Lrw and Lsym.
L(G) is positive semi-definite. Hence, we can sort the eigenvalues of
L(G) as 0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G).
mG (λ) := the multiplicity of λ.
rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. L(G) has mG (0) diagonal blocks; the
eigenspace corresponding to λ= 0 is spanned by the indicator vectors
of each connected component.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected. Then, the
eigenfunction corresponding to λ0 = 0 is the constant function φ0 = 1n .
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) :=λ1(G), viewing it as a quantitative measure of connectivity.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
Goal: Split the vertices V into two “good” subsets, X and X c

Plan: Use the signs of the entries in φ1 known as the Fiedler vector
Why? Using φ1 of L(G) to generate X and X c yields an approximate
minimizer of the RatioCut function1:

RatioCut(X , X c ) :=cut(X , X c )

|X | + cut(X , X c )

|X c | , where cut(X , X c ) := ∑
i∈X
j∈X c

wi j

We can also use the signs of φ1 of Lrw (equivalently, Lsym) to cut a
graph, which yield an approximate minimizer of the Normalized Cut (or
NCut) function of Shi and Malik2:

NCut(X , X c ) :=cut(X , X c )

vol(X )
+ cut(X , X c )

vol(X c )
, where vol(X ) := ∑

i∈X
di

1L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2J. Shi & J. Malik: “Normalized cuts and image segmentation”, IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.
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Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering

The practice of using the Fiedler vector to partition a graph is supported by
the following theory.

Definition (Weak Nodal Domain)

A positive (or negative) weak nodal domain of f on V (G) is a maximal
connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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connected induced subgraph of G on vertices v ∈V with f (v) ≥ 0 (or
f (v) ≤ 0) that contains at least one nonzero vertex. The number of weak
nodal domains of f is denoted by W( f ).

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.
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Graph Partitioning via Spectral Clustering

Example of Graph Partitioning
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Figure: The MN road network
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Figure: The MN road network partitioned via the Fiedler vector of Lrw
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Graph Partitioning via Spectral Clustering

One Can Do This Recursively!
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The MN road network recursively partitioned via the Fiedler vectors of Lrw’s of
subgraphs: j = 2
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Multiscale Basis Dictionaries

Outline

1 Basics of Graph Laplacians

2 Graph Partitioning via Spectral Clustering

3 Multiscale Basis Dictionaries

4 Matrix Data Analysis

5 Simultaneous Segmentation & Denoising of 1-D Signals

6 Summary & References
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Multiscale Basis Dictionaries

Motivation: Building Multiscale Basis Dictionaries

Wavelets have been quite successful on regular domains
They have been extended to irregular domains ⇒ “2nd Generation
Wavelets” including graphs, e.g.:

Coifman and Maggioni (2006): diffusion wavelets; Bremer et al.
(2006): diffusion wavelet packets
Jansen, Nason, and Silverman (2008): Adaptation of the lifting scheme
to graphs
Hammond, Vandergheynst, and Gribonval (2011): Spectral graph
wavelet transforms (via spectral graph theory)
Sharon and Shkolnisky (2015): Laplacian multiwavelet bases (via a
combination of spectral graph theory and multiresolution analysis)
. . .
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Multiscale Basis Dictionaries

Key Difficulties to Build Wavelets/Wavelet Packets on Graphs

Using graph Laplacian eigenvectors as “cosines” or Fourier modes on graphs
with eigenvalues as (the square of) their “frequencies” has been popular.

However, the notion of frequency is ill-defined on general graphs and the
Fourier transform is not properly defined on graphs

Graph Laplacian eigenvectors may also exhibit peculiar behaviors depending
on topology and structure of given graphs!

For example, eigenvectors corresponding to high eigenvalues may be highly
localized; see: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries around
graph Laplacian eigenvalue 4,” Linear Algebra and its Applications, vol. 438,
no. 8, pp. 3231–3246, 2013.

Hence, building wavelets on graphs based on the Littlewood-Paley theory is
quite challenging

Moreover, the notion of smoothness class of functions (e.g., Sobolev and
Besov spaces) is also difficult to define on graphs =⇒ Spaces of
homogeneous type (e.g., Deng & Han, 2009); the LP theory on more
abstract setting (e.g., Mhaskar & Prestin, 2004) ?
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Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

1 Recursively partition the graph

m These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

2 Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Outline

1 Basics of Graph Laplacians

2 Graph Partitioning via Spectral Clustering

3 Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT

4 Matrix Data Analysis

5 Simultaneous Segmentation & Denoising of 1-D Signals

6 Summary & References
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a transform that can be viewed as a generalization of the
block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dictionaries on Graphs November 17, 2015 23 / 69



Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

1 Generate an orthonormal basis for the entire graph ⇒ Laplacian
eigenvectors (Notation is φ j

k,l with j = 0)
2 Partition the graph using the Fiedler vector φ j

k,1 (recall that it
naturally bipartitions the graph)

3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian
eigenvectors

4 Repeat...

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,n0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,n1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,n1

1−1

]

[
φ2

0,0φ
2
0,1 · · ·φ2

0,n2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,n2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,n2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,n2
3−1

]
...
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Multiscale Basis Dictionaries Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this exactly yields a dictionary of the
multiscale block DCTs.
A union of bases on disjoint subsets is obviously orthonormal.
Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand ⇒
best-basis algorithm, local discriminant basis algorithm, . . .
One can use any graph bipartition method other than the one based
on the Fiedler vectors to construct the HGLET dictionary; ∃ many
recent graph partitioning methods, e.g., diffuse interface model of
Bertozzi & Flenner, . . .
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Bertozzi & Flenner, . . .
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Outline
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm can be summarized as follows...
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive partitioning of the graph ⇒ Fiedler vectors
2 Generate an orthonormal basis for level jmax (the finest level) ⇒

scaling vectors on the single-node regions
As with HGLET, the notation is ψ j

k,l
3 Using the basis for level jmax, generate an orthonormal basis for level

jmax−1 ⇒ scaling and Haar-like vectors
4 Repeat... Using the basis for level j , generate an orthonormal basis for

level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,n−2 ψ0
0,n−1

]
...[

ψ
jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

GHWT on P6
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

GHWT on P6

ψ0
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3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Basis Vector & Coefficient Notation

GHWT basis vectors and coefficients are written as ψ j
k,` and c j

k,`,
respectively, where j and k correspond to level and region and ` is the tag.

`= 0 ⇒ scaling coefficient/basis vector
`= 1 ⇒ Haar-like coefficient/basis vector
`≥ 2 ⇒ Walsh-like coefficient/basis vector
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks

For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions.
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions.
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

Remarks . . .

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like).

Figure:

This reorganization gives us more options for choosing a good basis.
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Figure: Default dictionary; i.e., coarse-to-fine

This reorganization gives us more options for choosing a good basis.
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We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like).

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis.
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Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 1
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 1, Region k = 0, l = 2

−98 −96 −94 −92 −90
43

44

45

46

47

48

49

50

 

 

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

−98 −96 −94 −92 −90
43

44

45

46

47

48

49

50

 

 

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

saito@math.ucdavis.edu (UC Davis) Multiscale Basis Dictionaries on Graphs November 17, 2015 33 / 69



Multiscale Basis Dictionaries Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)
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Computational Complexity: HGLET vs. GHWT

Recursive Partitioning (RP) via Fiedler vectors costs from O(n logn)
to O(n2) depending on an input graph
Given a recursive partitioning with O(logn) levels, the computational
cost of the GHWT is O(n logn) whereas that of the HGLET is O(n3)

The following table shows the results of our numerical experiments
computed on a desktop PC (CPU: 16 GB RAM, 3.2 GHz Clock
Speed):

Dataset n jmax RP HGLET GHWT
Dendritic Tree 1154 13 0.49 s 0.99 s 0.07 s

MN Road Network 2640 14 0.76 s 10.57 s 0.18 s
Facebook Graph 4039 46 18.10 s 57.15 s 1.17 s
Brain Mesh Data 127083 21 164.18 s N/A 11.59 s
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Related Work

The following articles also discussed the Haar-like transform on graphs and trees,
but neither the Walsh-Hadamard transform nor Wavelet Packets on them are
discussed:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs: top-down and
bottom-up constructions,” in Wavelets XI (M. Papadakis et al. eds.), Proc.
SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive multi-scale basis
for sparse unordered data,” Ann. Appl. Stat., vol. 2, pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees, graphs
and high dimensional data: Theory and applications to semi supervised
learning,” in Proc. 27th Intern. Conf. Machine Learning (J. Fürnkranz et al.
eds.), pp. 367–374, Omnipress, Haifa, 2010.
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Outline

1 Basics of Graph Laplacians

2 Graph Partitioning via Spectral Clustering

3 Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT

4 Matrix Data Analysis

5 Simultaneous Segmentation & Denoising of 1-D Signals

6 Summary & References
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Best-Basis Algorithms for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.
We generalize this approach, developing and implementing an
algorithm for selecting the basis from the dictionary of HGLET /
GHWT bases that is “best” for approximation and compression.
We require an appropriate cost functional J . For example:

J (x) = ‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

0 < p ≤ 1

Another example cost functional is based on the Minimum Description
Length (MDL).
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The Minimum Description Length (MDL) Criterion
Given two or more competing models that are supposed to generate the observed
data, choose the model that describes the data and the model itself with the least
amount of bits.
The basic idea behind the MDL principle: The more you can compress a sequence
of data, the more regularity you have detected in the data, hence the more you
have learned from the data.

⇒ Need to specify the model class for a given signal
⇒ No time today to go over the details of the MDL philosophy and the actual cost

functional we use; More details can be found in:
J. Rissanen, Information and Complexity in Statistical Modeling, Springer, 2007.
P. D. Grünwald, The Minimum Description Length Principle, The MIT Press, 2007.
N. Saito, “Simultaneous noise suppression and signal compression using a library of
orthonormal bases and the minimum description length criterion,” in Wavelets in
Geophysics (E. Foufoula-Georgiou and P. Kumar, eds.), Chap. XI, pp. 299–324,
Academic Press, 1994.
N. Saito and E. Woei, “Simultaneous segmentation, compression, and denoising of
signals using polyharmonic local sine transform and minimum description length
criterion,” 2005 IEEE/SP 13th Workshop on Statistical Signal Processing,
pp. 315–320, 2005.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.
With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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According to cost functional J , this is the best basis for approximation.

With the GHWT dictionary, we can run the best-basis algorithm on both
the default(coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the results.
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Matrix Data Analysis

Motivation

There are many examples of data in matrix format:
Images
Ratings/Reviews

Rows → Netflix users
Columns → movies
Ai j → user i ’s rating of movie j on a 1-5 scale

Spatiotemporal data
Rows → sensors
Columns → times
Ai j → sensor i ’s temperature reading at time j

By utilizing graph-based techniques, we can discover and exploit underlying
structure in the data for a variety of tasks.
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Matrix Data Analysis

Method

1 Use the matrix data to recursively partition the rows and the columns
(explained on next slide)

2 Use the GHWT and best-basis algorithm to analyze the matrix
Analyze along the rows and extract the best basis
Analyze the row best basis coefficients along the columns and extract
the best basis

3 Analyze the expansion coefficients for a variety of tasks, e.g.,
compression, classification, regression, etc.
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Matrix Data Analysis

Matrix Partitioning à la Dhillon (2001)1

Given a matrix A ∈RNR×NC , the rows and columns are viewed as the
two sets of nodes in a bipartite graph.
Ai j denotes the weight between the node for row i and the node for
column j (If A is a term-document matrix, then Ai j is a relative
frequency of occurrence of term i in the document j ).
Then, matrices associated with this bipartite graph can be written as:

W =
[

O A
AT O

]
D =

[
DR O
O DC

]
DR :=diag(A1);DC :=diag(AT1)

L = D −W =
[

DR −A
−AT DC

]
1I. S. Dhillon: Co-clustering documents and words using Bipartite Spectral Graph

Partitioning, Proc. 7th ACM SIGKDD, pp. 269–274, 2001.
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Matrix Data Analysis

Matrix Partitioning à la Dhillon (2001)

The Fiedler vector of Lrw bipartitions this bipartite graph:

φ1 =
[

D−1/2
R u

D−1/2
C v

]
,

where u and v are the second left and right singular vectors of
D−1/2

R AD−1/2
C .

The rows and the columns are partitioned simultaneously.
We recursively apply this bipartitioning method to generate a full
partitioning of the rows and columns of the matrix.
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Matrix Data Analysis

Example 1: Science News Dataset

Dataset: the Science News database (1153×1042)

Rows → (appropriately chosen)
words
Columns → article abstracts
from 8 fields: Anthropology;
Astronomy; Behavioral Sciences;
Earth Sciences; Life Sciences;
Math & CS; Medicine; Physics
Ai j → the relative frequency of
word i appears in abstract j ⇒
all column sums are 1

Figure: Science News database (original
order)
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Matrix Data Analysis

Example 1: Science News Dataset
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Figure: Words and abstracts embedded in {φ1,φ2,φ3} at the top level.
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Matrix Data Analysis

Example 1: Science News Dataset
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The best basis coefficient are all 0's
after this line; in fact the best basis turns
out to be essentially the canonical basis
in this case. The sparsity is 10.1%

Figure: Haar basis vs. Walsh basis vs.
GHWT best basis approximation
results. The vertical line denotes the
percentage of nonzero entries in the
matrix (10.1%).

Cost functional: 1-norm
Total number of orthonormal
bases searched: > 10370

62.3% of the Haar coefficients
and 100% of the Walsh
coefficients must be kept to
achieve perfect reconstruction,
compared to 10.1% for the
GHWT best basis

⇒ The Haar and Walsh bases
could not efficiently capture the
underlying structure of this
Science News dataset under the
current matrix partitioning
strategy!
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Matrix Data Analysis

Example 1: Science News Dataset

The GHWT best basis is almost exactly the canonical basis.

Combined Rows:
“el” and “niño”
“la” and “niña”
“meteor” and “shower”

Combined Columns:
“Science Talent Search announces Finalists” and “Talent Search:
Student Finalists’ Flair for science to be rewarded”
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image

Dataset: the 512×512 “Barbara” image with the rows and columns
shuffled.

Left: the original Barbara image
Middle: the shuffled Barbara image
Right: the shuffled image reordered according to the recursive
partitioning
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
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Figure: Approximation results. The “shuffled” and
“reordered” results are for the cases that the
shuffled image (middle figure on previous page) and
reordered image (figure on the right) was analyzed,
respectively.

Cost functional: 1-norm
Total number of ONBs
searched: > 6.37×10173

The GHWT BB nearly
matches the graph Haar
basis and performs better
than the graph Walsh basis
The GHWT BB performs
much better than the
Coiflet and Haar bases
directly applied on the
image, which are fixed and
therefore cannot account for
nondyadic geometry of the
data
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
We can also use the GHWT and best basis algorithm to ascertain
information about the spatial structure of the matrix data.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional.
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
We can obtain different results by using a different cost functional.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.5-quasinorm as our cost functional.
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Matrix Data Analysis

Example 2: The Shuffled Barbara Image
Another option is to not consider regions with fewer than Nmin nodes.

Figure: The coarse-to-fine row and column best bases for “Barbara” using the
0.1-quasinorm as our cost functional; regions with fewer than
[NR /20] = [NC /20] = 26 nodes were not considered in the best basis search.
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Matrix Data Analysis

Discussion

Originally developed for signals on graphs, here we have shown the
effectiveness of the GHWT for analyzing matrix data
The GHWT best-basis algorithm searches over an immense number of
orthonormal bases, including the graph Haar/Walsh bases
When selected using an appropriate cost functional, the GHWT best
basis equals or outperforms the graph Haar/Walsh bases
This demonstrates the importance/advantage of a data-adaptive basis
dictionary from which one can select the most suitable basis for one’s
task at hand!
Should we add a regularization term in the cost functional to obtain a
more meaningful basis, e.g., what combinations of words and articles
are well captured by the top basis vectors selected as the best basis?
=⇒ Local Regression Basis (LRB) of Saito and Coifman?
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Simultaneous Segmentation & Denoising of 1-D Signals

Outline
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Simultaneous Segmentation & Denoising of 1-D Signals

Motivation

Thanks to the versatility of graphs, graph-based techniques have been
used to tackle classical problems, e.g., the nonlocal means algorithm
for image denoising can be viewed as a graph-based technique.
Here, we demonstrate the versatility of our graph methods by applying
the HGLET and hybrid best-basis algorithm to the problem of
denoising and segmenting a 1-D signal sampled on a regular lattice
into meaningful parts.
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Simultaneous Segmentation & Denoising of 1-D Signals

Simply put, the goal is to partition a given 1-D signal into segments based
on the characteristics of the signal, which may help interpretation, analysis,
compression, etc.
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Simultaneous Segmentation & Denoising of 1-D Signals

Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:
1 Recursively partition the graph: Construct a recursive

bipartitioning by minimizing NCut (without using the Fiedler vectors).
2 Perform the 3 HGLET transforms: Use the eigenvectors of L, Lrw,

and Lsym of the unweighted path graph, i.e., three types of the DCTs
(no eigenvector computation necessary).

3 Find the hybrid best basis: Use the MDL cost functional to search
among the coefficients from the 3 HGLET variations.

4 Modify the graph’s edge weights: Cut the edges that are 5% and
10% to the left and right of each partition in the best basis.

Reconstruct: synthesize the signal using the MDL-quantized coefficients.
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Simultaneous Segmentation & Denoising of 1-D Signals

Results: Msignal (n = 256)

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

2.5

3

(a) Msignal
0 50 100 150 200 250

−0.5

0

0.5

1

1.5

2

2.5

3

(b) Reconstruction with segmentation

Figure: HGLET L and HGLET Lrw segments; no segments are captured by
HGLET Lsym.
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Simultaneous Segmentation & Denoising of 1-D Signals

Results: Piece-Regular (n = 1021)
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(c) SNR = 23.85 dB

Figure: HGLET L and HGLET Lsym segments (no HGLET Lrw segments).
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Simultaneous Segmentation & Denoising of 1-D Signals

Results: “Blocks” (n = 2048)
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(c) SNR = 18.26 dB

Figure: HGLET L, HGLET Lrw, and HGLET Lsym segments.
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Simultaneous Segmentation & Denoising of 1-D Signals

A Real Signal Example (n = 2048)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

(b)

Figure: Gamma-ray log from North Sea subsurface formations. ∆z = 6inches.
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Discussion

The MDL seeks an efficient way to represent the signal ⇒ dissimilar
regions are more efficiently represented separately than together.
Partitions have a cost, and so regions will be merged unless keeping
them separate offers a savings in cost that warrants the extra cost of
the partition.
Forcing artificial cuts around the BB partitions work like a
perturbation similar to the spin-cycle method in denoising.
No eigenvalue solver is necessary; everything is explicit, i.e., the true
NCut computation and the fast DCTs =⇒ What to do with image
segmentation on a 2D lattice?
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Summary

Although graph Laplacian eigenvectors have been popular as replacement of the
Fourier (or DCT) basis on a graph, the analogy takes us only so far due to their
sensitivity to the geometry and topology of underlying graphs.

We developed multiscale basis dictionaries on graphs and networks: HGLET and
GHWT. We also developed a corresponding best-basis algorithm.

The HGLET is a generalization of Hierarchical Block Discrete Cosine Transforms
originally developed for regularly-sampled signals and images.

The GHWT is a generalization of the Haar-Walsh Wavelet Packet Transforms.

Both of these transforms allow us to choose an orthonormal basis suitable for the
task at hand: approximation, classification, regression, matrix data analysis, . . .

They are also useful for regularly-sampled signals, e.g., can deal with signals of
non-dyadic length; adaptive signal segmentation, . . .

Developing harmonic analysis tools for directed graphs will be challenging yet
important =⇒ our idea: use integral operator/distance matrix + SVD instead of
differential operator/graph Laplacian matrix + EIG (with Eugene Shvarts)

Still many things to do: generalization to image segmentation; better quantization
strategies for MDL computation; . . .
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References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
My Course Slides on “Harmonic Analysis on Graphs and Networks”
Talk slides of the minisymposia on Laplacian Eigenfunctions at: ICIAM
2007, Zürich (Organizers: NS, Mauro Maggioni); SIAM Imaging
Science Conference 2008, San Diego (Organizers: NS, Xiaomin Huo);
IPAM 5-day Workshop 2009, UCLA (Organizers: Peter Jones, Denis
Grebenkov, NS); SIAM Annual Meeting 2013, San Diego (Organizers:
Chiu-Yen Kao, Braxton Osting, NS); BIRS 5-day Workshop 2015,
Banff (Organizers: Peter Jones, Denis Grebenkov, NS).

Jeff Irion disseminates the codes for HGLET/GHWT and related tools at
https://github.com/JeffLIrion/MTSG_Toolbox
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The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/

J. Irion & N. Saito: “Applied and computational harmonic analysis on graphs
and networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper #
95971F, 2015.
N. Saito & E. Woei: “Tree simplification and the ‘plateaux’ phenomenon of
graph Laplacian eigenvalues,” Linear Algebra and its Applications, vol. 481,
pp. 263–279, 2015.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” Proc. 2014
IEEE Workshop on Statistical Signal Processing, pp. 488-491, 2014.
J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” JSIAM
Letters, vol. 6, pp. 21–24, 2014.
Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries around graph Laplacian
eigenvalue 4,” Linear Algebra and its Applications, vol. 438, no. 8, pp.
3231–3246, 2013.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” JSIAM Letters, vol. 1, pp. 13–16, 2009.
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Thank you very much for your attention!
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