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ABSTRACT
We introduce a novel multiscale transform for signals on
graphs which is a generalization of the classical Haar and
Walsh-Hadamard Transforms. Using a recursive partitioning
of the graph and successive averaging and differencing op-
erations, our transform generates an overcomplete dictionary
of orthonormal bases. We describe how to adapt the classical
best-basis search algorithm to this setting, and show results
from preliminary denoising experiments.

Index Terms— Fiedler vectors, spectral graph partition-
ing, multiscale basis dictionaries, wavelets on graphs

1. INTRODUCTION

A current area of focus in the field of signal processing is the
extension of classical techniques on regular domains to the
setting of graphs. Examples of such signals on graphs include
recordings on sensor networks and flow measurements on net-
works. In particular, much effort has been devoted to devel-
oping wavelet transforms for these signals on graphs, but a
key challenge in doing so is that we no longer have tools such
as translation and dilation at our disposal. Furthermore, the
notion of frequency is not well-defined on graphs, in general.
In our previous work [1], we circumvented these difficulties
by developing a multiscale transform rather than a true gener-
alization of wavelets; in fact, our transform can be viewed as a
generalization of the hierarchical block discrete cosine trans-
forms. The Hierarchical Graph Laplacian Eigen Transform
(HGLET), as we named it, utilizes a recursive partitioning of
the graph to produce an overcomplete basis dictionary.

In this article, we use the general framework of the
HGLET to develop a novel multiscale redundant trans-
form which we call the Generalized Haar-Walsh Transform
(GHWT); this is a generalization of the classical Haar Trans-
form and Walsh-Hadamard Transform. Furthermore, we
show that for this transform there exists an analog of fre-
quency (or sequency). We also take the best-basis algorithm
[2], originally developed for wavelet packets on classical
signals, and generalize it to our HGLET/GHWT dictionaries.
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2. PRELIMINARIES

Let G be an undirected connected graph. Associated with
G we have a set of nodes V (G), and we define N := |V (G)|.
We also have a set of edges E(G) and edge weights W (G) =
(Wi j ) ∈RN×N . As G is undirected, W (G) is symmetric.

The foundation upon which the GHWT is constructed is
a recursive partitioning of the graph, and we now introduce
the necessary notation. This partitioning will have multiple
levels, and we use j = 0 to denote the coarsest level (where
the only region, or subgraph, is the entire graph) and j = jmax
to denote the finest level (where each region contains a single
node). We use K j to denote the number of regions on level
j and we use k to refer to these regions, where 0 ≤ k < K j .
We use G j

k to denote the subgraph formed by restricting to the
nodes in region k on level j and to the edges between them,
and we define N j

k := |V (G j
k )|.

We partition a subgraph G j
k into two subgraphs on level

j + 1 as follows. First, we define the Laplacian matrix of a
graph G as L(G) := D(G)−W (G), where D(G) is the diago-
nal degree matrix with entries di =∑

j Wi j . Alternatively, we
may use the random-walk normalized Laplacian Lrw(G) :=
D(G)−1L(G). For both L and Lrw, it is known that the smallest
eigenvalue is λ0 = 0 and that the corresponding eigenvector
is φ0 = 1V (G)/

p
N ; that is, the normalized global indicator

vector [3]. For a connected graph, all other eigenvalues are
strictly positive. We compute the first nonconstant eigenvec-
tor φ1, also known as the Fiedler vector, and partition the
subgraph according to the signs of its entries. Justification
of such bipartitioning comes from that fact that it yields an
approximate minimizer of the bipartitioning criterion called
the RatioCut (or the Normalized Cut) when L (or Lrw, respec-
tively) is used [3]. When applied to G j

k , where N j
k > 1, this

partitioning method generates two subgraphs, G j+1
k ′ and G j+1

k ′+1
(as the overall partitioning of the graph is not required to be
balanced, we have that k ≤ k ′ ≤ 2k). We repeat this process
until the graph is fully partitioned, meaning that all partitions
at the finest level contain a single node. Note that the GHWT
does not require the partitioning to be balanced. Moreover, it
accepts any other recursive graph bipartitioning techniques.



3. GENERALIZED HAAR-WALSH TRANSFORM

We now introduce our Generalized Haar-Walsh Transform.
As with the HGLET, the two main steps in this transform are
to (1) recursively partition the graph and (2) generate a full
orthonormal basis on each level of the graph partitioning.

Our notation for the basis vectors is ψ j
k,l , where j ∈

[0, jmax] denotes the level, k ∈ [0,K j ) denotes the index of the
region on level j , and l ∈ [0,2 jmax− j ) denotes the tag of the
basis vector. A basis vector’s tag is an integer which, when
expressed in binary, specifies the sequence of low-frequency
(averaging) and high-frequency (differencing) operations that
were used to generate it. Within a given region k on level j ,
the tags are never duplicated, and thus they serve as unique
identifiers for the basis vectors within the region. We refer
to basis vectors with tag l = 0 as scaling vectors, those with
tag l = 1 as Haar-like vectors, and those with tag l ≥ 2 as
Walsh-like vectors.

The GHWT algorithm can be summarized as follows:
Algorithm 1 (GHWT)

Step 1: Generate a full recursive partitioning of the graph, as
described in Section 2. This yields a set of regions G j

k ,
with 0 ≤ j ≤ jmax and 0 ≤ k < K j .

Step 2: Generate an orthonormal basis {ψ jmax
k,0 }0≤k<N on level

jmax. Since each region contains a single node, we sim-
ply have ψ jmax

k,0 = 1
V (G

jmax
k )

∈RN .

Step 3: For j = jmax, . . . ,1, use the orthonormal basis on
level j to generate an orthonormal basis on level j −1
as follows. For k = 0, . . . ,K j−1 −1:

Step 3a: Compute the scaling vector on G j−1
k as

ψ
j−1
k,0 := 1

V (G
j−1
k )

/√
N j−1

k . (1)

Step 3b: If N j−1
k > 1, then compute the Haar-like vector on

G j−1
k as

ψ
j−1
k,1 :=

N j
k ′+1

√
N j

k ′ψ
j
k ′,0 −N j

k ′

√
N j

k ′+1ψ
j
k ′+1,0√

N j
k ′

(
N j

k ′+1

)2 +N j
k ′+1

(
N j

k ′
)2

, (2)

where G j−1
k is split into G j

k ′ and G j
k ′+1.

Step 3c: If N j−1
k > 2, then compute the Walsh-like vectors

on G j−1
k . For l = 1, . . . ,2 jmax− j −1:

Case 1: If neither subregion has a basis vector with tag
l , then do nothing.
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Fig. 1. GHWT basis vectors on the Minnesota road network
(N = 2636), where the random-walk normalized Laplacian
Lrw was used for recursive partitioning. The edge weights of
the graph were the inverse of the physical distances between
the corresponding nodes.

Case 2: If (without loss of generality) only subregion
G j

k ′ has a basis vector with tag l , then set

ψ
j−1
k,2l :=ψ j

k ′,l . (3)

Case 3: If both subregions have a basis vector with tag
l , then compute

ψ
j−1
k,2l : =

(
ψ

j
k ′,l +ψ

j
k ′+1,l

)/p
2 (4)

ψ
j−1
k,2l+1 : =

(
ψ

j
k ′,l −ψ

j
k ′+1,l

)/p
2. (5)

The result is an overcomplete dictionary of orthonormal
bases, each of which we view as an orthogonal matrix in
RN×N . The overall cost of generating these bases is O(N 2),
which is due to forming a dense N×N matrix via simple arith-
metic operations. If we simply wish to expand a signal on
the graph (i.e., f ∈ RN ) in terms of these bases, the cost is
O(N log N ). This is done by expanding the signal in terms of
the basis on the level jmax (which merely amounts to reorder-
ing the signal), and then performing the operations in (1)-(5)
on the coefficients rather than the basis vectors. Fig. 1 shows
some GHWT basis vectors on the MN road network.

At this point we make several observations about the
GHWT. First, note that the GHWT basis vectors on each
level are localized; i.e., their support does not extend beyond
the region to which they correspond. This is due to the way in
which the basis vectors are defined on the finest level (where



each region contains a single node) in Step 2, and to how the
basis vectors on regions containing multiple nodes are formed
by taking linear combinations of basis vectors on their two
subregions in Step 3. Therefore, the bases corresponding to
subgraphs G j

k and G j ′
k ′ will be disjoint if V (G j

k )∩V (G j ′
k ′ ) =;.

Furthermore, if region G j
k is divided into subregions G j+1

k ′ and

G j+1
k ′+1, then the basis vectors corresponding to G j

k will span

the same space as the union of those corresponding to G j+1
k ′

and G j+1
k ′+1. By making use of these properties, we can select

an orthonormal basis containing basis vectors corresponding
to multiple levels of the graph partitioning.

To demonstrate these points, we use the simple example
of P6; that is, the unweighted path graph of length six. We
group the basis vectors by region and arrange them as in Fig.
2. This illustrates both the manner in which the graph is re-
cursively partitioned and how the span of each block of basis
vectors includes the span of all blocks of basis vectors di-
rectly beneath it. We refer to this ordering of basis vectors as
the coarse-to-fine dictionary.

In addition to grouping basis vectors by their correspond-
ing region, we can also group them by their tag, l , and we
call this the fine-to-coarse dictionary. From Step 3, note that
the basis vectors on level j with tag l are used to generate the
basis vectors on level j − 1 with tags 2l and 2l + 1. There-
fore, the vectors {ψ j

k,l }k span the same space as the vectors

{ψ j−1
k,2l }k ∪ {ψ j−1

k,2l+1}k . Exploiting this relationship affords us
more options for selecting a basis.

Again, we use P6 as an example. Reversing the order of
the levels in Fig. 2 and grouping the basis vectors by tag,
we obtain Fig. 3. As with the coarse-to-fine dictionary, the
span of each block of basis vectors in the fine-to-coarse dic-
tionary includes the span of all blocks of basis vectors di-
rectly beneath it. However, notice that the structure of the
groups/blocks differs between the coarse-to-fine and fine-to-
coarse dictionaries.

Not only do the tags allow us to regroup the basis vectors,
thereby providing more choosable bases, they also impart
upon the basis vectors an approximate notion of frequency.
From (1), we see that the scaling vectors (l = 0) are constant
on their support. From (2), we see that the Haar-like vectors
(l = 1) assume exactly two distinct values on their support.
And from (3)-(5), we see that the tags of the Walsh-like vec-
tors (l ≥ 2) specify the sequence of average and difference
operations by which they were generated. Generally speak-
ing, larger l values indicate more oscillation, with exceptions
occurring when imbalances in the partitioning necessitate the
use of (3), as opposed to (4) and (5).

4. BEST-BASIS ALGORITHM

With the GHWT basis vectors arranged in both the coarse-to-
fine and fine-to-coarse dictionaries, the best-basis algorithm
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Fig. 2. The coarse-to-fine dictionary for P6. Scaling, Haar-
like, and Walsh-like vectors are in black, red, and blue, re-
spectively. The basis vectors are grouped by region, and thus
the structure of the blocks indicates the manner in which the
graph is recursively partitioned.

is a straightforward generalization of [2]. As one of the ob-
jectives is to achieve efficient approximation of a given sig-
nal on the graph, we begin by specifying a cost functional
J which favors sparse signals. We first perform a search
among the coarse-to-fine dictionary. We initialize the best-
basis as the union of the bases on the bottom level ( j = jmax)
and we proceed upwards one level at a time, using J to com-
pare the cost of a block of basis vectors to the cost of its de-
scendant basis vectors in the current best-basis and updating
the best-basis when necessary. Upon completion, this search
yields the coarse-to-fine best-basis. We then search among the
fine-to-coarse dictionary, starting at the bottom level ( j = 0)
and proceeding upwards until we have obtained the fine-to-
coarse best-basis. The final step is to compare the costs of the
coarse-to-fine and fine-to-coarse best-bases, and the result is
the overall best-basis for that signal on the graph. By con-
struction, this basis is orthonormal. Furthermore, we can use
this same search procedure to find the best-basis from among
the HGLET dictionary, although in that context there is only
one dictionary from which to search. That is, there is no fine-
to-coarse HGLET dictionary because the basis vectors on a
given level can be grouped only by region, not by tag.

5. DENOISING EXPERIMENTS

Here we illustrate the results of a simple denoising experi-
ment. As our original signal, we used a mutilated Gaussian
function on the MN road network (Fig. 4a). We added white
Gaussian noise to the signal so that the SNR became 5.00
dB (Fig. 4b). We ran both the HGLET and GHWT on the
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Fig. 3. The fine-to-coarse dictionary for P6, where basis vec-
tors are grouped by tag.

noisy signal, using Lrw where the edge weights are inverse of
the physical distances between nodes. We then ran the best-
basis search algorithm on the transformed signals and used
soft-thresholding to denoise them. To be more precise, we
sorted the magnitude of the best-basis coefficients in the non-
increasing order; used these sorted coefficient magnitudes as
the threshold value for soft-thresholding; and searched the
threshold value that yielded the best SNR. The best SNR of
the HGLET best basis was 7.53 dB (38% of the coefficients
kept) whereas that of the GHWT best basis was 11.58 dB
(11% of the coefficients were kept; see Fig. 4c,d). It is in-
teresting to note that the GHWT basis came from the fine-
to-coarse dictionary; recall that the HGLET does not have a
fine-to-coarse dictionary. This suggests that for the purpose of
denoising, grouping the basis vectors by ‘frequency’ (as in the
fine-to-coarse dictionary) seems more effective than grouping
them by location (as in the coarse-to-fine and HGLET dictio-
naries).

6. DISCUSSION

The purpose of this article has been to introduce our novel
multiscale transform, the GHWT. While the framework of
the GHWT is similar to that of our HGLET [1], the resulting
bases are fundamentally different: the HGLET yields basis
vectors that are smooth on their support, whereas the GHWT
produces basis vectors that are piecewise constant on their
support. Furthermore, by construction the GHWT basis vec-
tors are equipped with a notion of ‘frequency’ which is re-
flected in their tags, l . In contrast, the HGLET basis vec-
tors are formulated by extending Laplacian eigenvectors on
subgraphs to the entire graph and therefore, as shown in [4],
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(c) Denoised via GHWT
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Fig. 4. Signals from our denoising experiment.

we cannot make definitive statements about their ‘frequency.’
Another key difference is that the GHWT provides not only
the coarse-to-fine dictionary but also the fine-to-coarse dictio-
nary for a given graph.

It is worth mentioning that a number of researchers have
developed generalizations of the Haar Transform to this graph
setting; see [1] and the references therein. The GHWT is
more general in that each of these Haar-like transforms gener-
ate a single basis, whereas the GHWT generates a dictionary
of bases, with the generalized Haar basis as one choosable
option. And by using the best-basis algorithm, we are guar-
anteed to obtain a basis that (according to the specified cost
functional J ) is at least as good as the generalized Haar basis
for approximation.
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